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Abstract— Mental state monitoring is a topical issue in 

neuroengineering, more particularly for passive brain-

computer interface (pBCI) applications. One of the mental 

states that are currently under focus is mental workload. The 

level of workload can be estimated from 

electroencephalographic activity (EEG) and markers derived 

from this signal. In active BCI applications, a well-known 

neurophysiological marker, the event-related potential (ERP), 

is commonly enhanced using a spatial filtering step. In this 

study, we evaluated how a spatial filtering method such as the 

xDAWN algorithm could improve mental workload 

classification performance. Twenty participants performed a 

Sternberg memory task for 18 minutes with pseudo-

randomized trials of low vs. high workload (2/6 digits to 

memorize). Three signal processing chains were compared on 

their performance to estimate mental workload from the single-

trial ERPs of the test item (i.e. present/absent in the memorized 

list). All 3 included an FLDA classifier with a shrinkage 

covariance estimation and a 10-fold cross-validation. One chain 

used the ERPs of a relevant electrode for workload estimation 

(Cz) and the 2 others used the ERPs of the 32 electrodes and an 

xDAWN spatial filtering step with either 1 or 2 virtual 

electrodes kept for classification. Statistical analyses revealed 

that spatial filtering significantly improved mental workload 

estimation, with up to 98% of correct classification using the 

xDAWN algorithm and 2 virtual electrodes. 

 

I. INTRODUCTION 
Neuroengineering is a growing research field which 

encompasses mental state monitoring (MSM). Such 
monitoring is performed by what has recently been named 
passive Brain-Computer Interfaces (pBCI), systems that 
perform mental state estimation thanks to neurophysiological 
markers and feature translation algorithms [1]. Those pBCIs 
provide new means to enhance and supplement the human 
computer interaction, with a major interest for safety 
applications. Mental workload, which can be defined as the 
amount of mental resources engaged in a task, and more 
generally as task’s difficulty [2], is currently under focus for 
e-learning and driving applications [3].  

For active BCI systems it is common to use spatial 
filtering methods such as Common Spatial Pattern (CSP) 
filters to improve classification performances of electro-
encephalography (EEG) data [4]. This is done using epochs 
of band pass filtered signal, and then classification is carried 
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out using features such as the log variance of this signal. 
Furthermore, several active BCI systems use event-related 
potentials (ERPs) as features. To increase classification 
performance using these markers, they often encompass 
spatial filtering steps, e.g. using the xDAWN algorithm 
which has originally been developed for the P300 speller 
application [6]. 

Usually, pBCIs make use of tools developed for active 
BCIs. As regards CSP filtering, it has been applied to 
estimate mental workload from several power bands by Roy 
and collaborators, but with only 65.51% of correct 
classification [5]. Moreover, to our knowledge, when pBCI 
systems use markers such as ERPs, they seldom perform 
spatial filtering. Yet, it has recently been done in affective 
computing with promising results. Indeed, Mathieu and 
collaborators demonstrated that a spatial filtering method 
such as the xDAWN algorithm could be used to enhance 
arousal estimation for negative emotions with up to 87% of 
correct classification [7]. But then they used peak values as 
features, therefore adding a computational step which can be 
costly in terms of real-life applications. It seems important to 
try and perform such a classification directly on the whole 
single-trial ERP and compare the classification performances 
between a chain that does not include the spatial filtering step 
and a chain that does. Also, it should be interesting to 
evaluate the use of such a spatial filtering method for other 
states than affective states, such as mental workload.  

This study was designed to assess whether a spatial 
filtering method such as the xDAWN algorithm could 
enhance mental workload classification at the single-trial 
level. Mental workload was manipulated by varying the 
number of digits in memory in a classical Sternberg memory 
task. Three classification processing chains were compared, 
one that performed classification directly on the ERP signal 
of one electrode, and two that included a spatial filtering step 
and performed classification either on one or two virtual 
electrodes.    

 

II. METHODS 

This research was promoted by Grenoble’s clinical 

research direction (France) and was approved by the French 

ethics committee (ID number: 2012-A00826-37). 

 

A. Experimental design 

Mental workload was manipulated using a Sternberg 
memory task [8]. At each trial, the 20 healthy participants (9 
females; M = 25, S.D. = 3.5 years) had to memorize a list of 
sequential digits visually presented on a computer screen. 
Then, a test item flanked with question marks was presented 
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(Fig. 1). The participants had to answer as quickly as possible 
whether this test item was present or not in the memorized 
list using a response box. Two levels of workload were 
considered, i.e. 2 and 6 digits to memorize (low and high 
workload respectively). This paradigm was performed during 
18 minutes, and included 72 trials of each workload level 
which were pseudo-randomly presented. 

 

B. Data acquisition & pre-processing 

Participants’ performance to the test item, i.e. reaction 
times and accuracy were recorded, along with their EEG 
activity using a BrainAmp

TM
 system (Brain Products, Inc.) 

and an Acticap® equipped with 32 Ag-AgCl active 
electrodes positioned according to the extended 10-20 
system. The reference and ground electrodes used for 
acquisition were those of Acticap, i.e. FCz for the reference 
electrode and AFz for the ground electrode. The data were 
sampled at 500 Hz. The electro-oculographic (EOG) activity 
was also recorded using 2 electrodes positioned at the eyes 
outer canthi, and 2 respectively above and below the left eye. 

The EEG signal was band-pass filtered between 1 and 40 
Hz, re-referenced to a common average reference and 
corrected for ocular artifacts using the signal recorded from 
the EOG electrodes and the SOBI algorithm [9]. It was also 
down-sampled to 100Hz. The ERPs were extracted by 
epoching the EEG signal from 200ms before stimulus onset 
to 600ms after stimulus onset (test item). Three processing 
chains were considered and the features used for 
classification were the ERPs from: 

1) One channel (Cz), no spatial filter; 

2) One virtual electrode computed from the 32 electrodes; 

3) Two virtual electrodes computed from the 32 electrodes. 

 
Hence, one processing chain was based solely on the ERPs 

from the Cz electrode which is a relevant electrode for 
workload estimation [10]. In order to be fed to the spatial 
filtering algorithm, the data were concatenated to form an s-
by-e matrix (s: number of samples, e: number of electrodes) 
by placing all the trials end to end. 

C.  Spatial filtering 

We used the xDAWN algorithm to enhance the 

discrimination between the ERPs of the test item in a low 

and in a high workload condition. The xDAWN algorithm 

works as follow. The generative EEG signal model is given 

by: 

𝐗 = 𝐃1𝐏1 +𝐃2𝐏2 + 𝐍                          (1)                                          

where 𝐗 is the s-by-e EEG matrix with s the total number of 

samples, and e the number of EEG channels. 𝐃1 and 𝐃2 are 

Toeplitz binary sparse matrices with the following 

dimension: s-by-s_trial (s_trial: number of samples for one 

trial). 𝐏1 and 𝐏2 correspond to the stereotypical evoked 

response matrices of dimension s_trial-by-e and 𝐍 is the 

additional noise term. Therefore, 𝐃1𝐏1 corresponds to the 

specific ERP responses for the high workload condition, 

whereas 𝐃2𝐏2 corresponds to the common response for all 

conditions (low and high workload). The equation (1) can 

also be written as follow:   

𝐗 = (𝐃1 𝐃2) (
𝐏1
𝐏2
) + 𝐍 = 𝐃𝐏 + 𝐍            (2)                                            

The stereotypical responses contained within 𝐏 are estimated 

by solving the following problem in the least squares sense: 

�̂� = min𝐏‖𝐗 − 𝐃𝐏‖𝐹
2                         (3)                                                     

Next, the spatial filters are computed by maximizing the 

Rayleigh quotient: 

𝜌(𝐰, 𝐗) =
𝐰𝑇(𝐃1�̂�1)

𝑇
𝐃1�̂�1𝐰

𝐰𝑇𝐗
𝑇
𝐗𝐰

                   (4)                                       

This quotient is maximized by solving a generalized 

eigenvalue problem. The xDAWN filters are designed to 

enhance the ratio between the signal and the signal plus 

noise ratio (SSNR);𝜌(𝐰, 𝐗). The spatially filtered signal z, 

made of what we call ‘virtual sensors’, can then be obtained 

by applying the weights, or spatial filters w onto the data X:  

𝐳𝑘 = 𝐗𝐰𝑘                               (5)                                                    

Figure 1. Trial structure. Participants have to memorize 2 or 6 digits and then answer whether the test item was present in the memorized list. The 

circled segment indicates the item on which the analyses were focused. 



  

 

D. Classification & Analyses 

Our whole processing chain consisted of a pre-processing 

step, the spatial filtering step if required, and then a subject-

specific classification step. The classification step was 

similar for the 3 chains and was performed using a Fisher 

Linear Discriminant Analysis (FLDA), with a shrinkage 

covariance estimation [11] and a 10-fold cross-validation. At 

100 Hz we had 60 samples per trial. As mentioned earlier we 

had 72 trials per workload level. Therefore, for the 10-fold 

cross-validation process we had 65 trials per workload level 

to train the classifier, and 7 to test it. We compared the 

performances obtained using the 3 processing chains 

mentioned earlier (B.). 

For both the first 2 chains, 60 features were used for 

classification. For the 3
rd

 chain, given that 2 virtual 

electrodes were considered, 120 features were used for 

classification. Both behavioral performances and 

classification results were compared using repeated 

measures ANOVAs and Tukey post-hoc tests. Classification 

performances were also compared against chance level using 

single means t-tests. The significance level was set at 0.05. 

 

III. RESULTS 

A. Behavior & ERPs 

Participants were slower to respond (m1_RT = 490.29ms; 
sd1_RT = 53.61ms; m2_RT = 583.78ms; sd2_RT = 57.74ms) and 
had a lower accuracy (m1_ACC = 0.98; sd1_ACC = 0.05; m2_ACC 
= 0.89; sd2_ACC = 0.09) in the high workload condition than in 
the low one (p<0.001). Moreover, the grand average ERPs of 
the test item on the Cz electrode revealed several components 
in accordance with the literature, i.e. the N1, P2, N2 and P3 
components (Fig. 2).  

Figure 3. First two spatial filters computed using the xDAWN algorithm: A. Spatial patterns (absolute value); B. Grand average event-related potentials. 
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Figure 2. Grand average event-related potentials of the test item at 

electrode Cz depending on workload condition. 
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B. Spatial filters 

For the two processing chains that included a spatial 

filtering step, the xDAWN spatial filters considered for 

classification were the 1
st
 and 1

st
 and 2

nd
 filters that had the 

highest associated eigenvalue. The grand average ERPs and 

spatial patterns of those filters are given in Fig. 3. Both 

ERPs of the filters clearly display components that are 

temporally related to the N1, P2, N2 and P3 components. 

Their spatial patterns also reveal an important implication of 

the electrodes placed on the parieto-occipital region, which 

is consistent with the processing of visual stimuli. 

Furthermore, they reveal that the fronto-central region is also 

implicated for mental workload classification, which is 

consistent with working memory processing.  

 

C. Classification 

Fig. 4 illustrates the mental workload estimation 

performances depending on the signal used for classification 

(m1 = 48.48%; sd1 = 6.43%; m2 = 52.85%; sd2 = 5.25%; m3 

= 97.89%; sd3 = 3.66%). There was a significant 

enhancement of classification performance thanks to the 

spatial filtering step. Indeed, classification performance 

significantly increased from chain #1 to chain #2, and from 

chain #2 to chain #3 (p<0.001). 

Moreover, the performance of the chain that used the Cz 

signal was not significantly different from the chance level 

(p=0.30), whereas both chains that included a spatial 

filtering step were (p<0.05 and p<0.001 respectively).  
 

IV. DISCUSSION 

Mental workload estimation can be achieved using event-

related potentials as neurophysiological markers. To enhance 

single-trial classification performance, spatial filtering is 

commonly done in active BCIs and has proven to be 

particularly efficient. However, it is seldom performed for 

passive BCI applications. In this study, we assessed the 

importance of enhancing the contrast between workload 

conditions using a spatial filtering step. The algorithm we 

used, xDAWN, allowed us to significantly improve 

classification performance compared to a processing chain 

that does not include a spatial filtering step, and to obtain 

outstanding performances with up to 98% of correct 

classification using two virtual electrodes. It should be noted 

that there was an important inter-subject variability, which 

may explain why the filtered ERPs present small variations 

with load when averaged across subjects.  

This study paves the way to building better processing 

chains for mental state monitoring applications, such as e-

learning. However, it should be noted that our mental 

workload estimation is only based on event-related 

potentials of task-related or task-relevant items. Therefore, 

although we achieved very high classification performances, 

this is a focused improvement, for applications in which the 

system knows and controls the visual (or auditory) display. 

Hence, it has low generalization capabilities. In order to 

progress towards efficient passive BCI systems that can 

generalize to any task, the next step is to evaluate how task-

irrelevant probes can be used to estimate mental workload.  
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Figure 4. Mental workload estimation performance depending on the 

signal used for classification. Average across participants; a star 
indicates a significant difference (p<0.001). 
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