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Die theoretische Vernunft erkennt, „was da ist“,
die praktische Vernunft hingegen erschließt, „was da sein soll“.

nach Immanuel Kant [1724–1804]





Abstract

For sudden, often hazardous aerosol injections such as volcanic eruptions, wild fires,
and mineral dust uplifts, uncertainties of emission source parameters impose the
characterizing impediment for skillful numerical simulations. Large amounts of acci-
dentally emitted aerosols can infer serious impacts on health, climate, environment,
and economy. This highlights the societal need for reliable forecasts of released
particulate matter. Data assimilation and inverse modeling methods incorporate the
knowledge gained from both numerical modeling and observations. Applying spatio-
temporal assimilation techniques, the combination of the atmospheric dynamics with
observations induces constraints with potentially advantageous effects on the simu-
lations. Furthermore, ensemble-based analyses provide valuable information about
the skill of the forecast results. However, predictions remain uncertain in regions,
where observational information is restricted. Confining factors are manifold and
include the inaccessibility of observational infrastructure, limitations of measurement
configurations or retrieval feasibility, as well as obstructing meteorological conditions,
such as clouds, which may strongly restrict remote sensing of aerosols. The research
field of observability investigates the impact of utilized observations, thus focusing
on observation network optimization and information quantity specification.
Taking the most challenging case of volcanic eruption as prototype example for sudden
aerosol injections, the research described in this thesis develops and investigates new
methodologies to assess the impact of observations on the analysis. The emphasis is
placed on assimilation-based analyses applying both initial value and emission factor
optimization for volcanic ash dispersion predictions. As observational input, two
entirely different satellite-borne remote sensing principles are exploited: firstly, verti-
cally integrated SEVIRI (Spinning Enhanced Visible and Infrared Imager) volcanic
ash column mass loadings and secondly, vertically resolved CALIOP (Cloud-Aerosol
Lidar with Orthogonal Polarization) particle extinction coefficient profiles. For the
assimilation within the EURAD-IM (European Air pollution Dispersion-Inverse
Model) system, appropriate observation operators and their adjoint realizations are
constructed. The basic theoretical principles of observability in case of volcanic ash
column mass loading observations are deduced from the viewpoint of the Kolmogorov-
Sinai entropy. The practical analyses are presented for the Eyjafjallajökull eruption
event in April 2010. Ensemble versions of both the four dimensional variational (4D-
var) data assimilation technique and the particle smoother approach are implemented
and processed, able to identify regions of high and low uncertainty in the dispersion
simulation results. The analyses reveal a considerable constraining impact of SEVIRI
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retrievals to the ash dispersion, while CALIOP retrievals append information only
on a very local scale. It is not possible to make a statement on the difference of the
resulting quality of the various ensemble simulations due to the following reasons:
firstly, the differences of the assimilation approaches of 4D-var and particle smoother
algorithms and secondly, the evaluation of the single Eyjafjallajökull scenario only.
The variable degree of reliability is shown as a consequence of cloud cover dependent
observability from space for both quasi-continuous SEVIRI data and sparse CALIOP
overpasses.



Kurzzusammenfassung

Im Falle unerwarteter und häufig auch gefährlicher Aerosolemissionen wie beispiels-
weise Vulkanausbrüche, Waldbrände und Mineralstaubaufwirbelungen führen deren
unsichere Quellparameterabschätzungen zu charakteristischen Schwierigkeiten bei
der Erstellung geeigneter numerischer Simulationen. Große Mengen plötzlich emit-
tierter Aerosole können ernsthafte Folgen für Gesundheit, Klima, Umwelt und
Wirtschaft nach sich ziehen. Daraus ergibt sich die gesellschaftliche Notwendigkeit,
verlässliche Ausbreitungsvorhersagen von freigesetzten Partikelansammlungen in der
Atmosphäre bereitzustellen. Methoden der Datenassimilation und inversen Model-
lierung verbinden die Erkenntnisse, die sowohl aus numerischer Modellierung als auch
aus Beobachtungen gewonnen werden. Die Anwendung raum-zeitlicher Assimilations-
techniken nutzt die Verbindung von atmosphärischer Dynamik mit unterschiedlichsten
Beobachtungen. Daraus können sich Korrekturen ergeben, die potentiell vorteilhafte
Effekte auf die Simulationen verursachen. Darüber hinaus erbringen ensemblebasierte
Analysen wertvolle Informationen über die Güte der Vorhersageergebnisse. Diese
Prognosen bleiben jedoch unsicher für Regionen, in denen Beobachtungsinforma-
tionen eingeschränkt verfügbar sind. Begrenzende Faktoren gibt es viele. Zum
Beispiel: Unzugänglichkeiten für Beobachtungsinfrastrukturen, Einschränkungen bei
Messkonfigurationen oder eingeschränkte Retrievalumsetzbarkeiten sowie störende
meteorologische Bedingungen. Zu letzteren zählen insbesondere Wolken, die Fern-
erkundungsbeobachtungen von Aerosolen stark behindern. Das Forschungsgebiet der
Beobachtbarkeit untersucht den Einfluss von Beobachtungen und konzentriert sich
dabei auf die Optimierung von Beobachtungsnetzwerken und auf die Ermittlung des
zugehörigen Informationsumfangs.
In Anwendung einer vulkanischen Eruption als besonders anspruchsvoller Proto-
typ für plötzliche Aerosolereignisse entwickelt und untersucht die in dieser Arbeit
beschriebene Forschung neue Methodiken, den Einfluss von Beobachtungen auf
die Analyse zu bewerten. Dabei liegt der Schwerpunkt auf assimilationsbasierten
Analysen unter Verwendung von Anfangswert- und Emissionsfaktoroptimierung für
Vulkanasche-Ausbreitungsvorhersagen. Als Beobachtungs-Dateneingabe werden zwei
völlig verschiedene Satelliten gestützte Fernerkundungsprinzipien genutzt: einerseits
vertikal integrierte SEVIRI (Spinning Enhanced Visible and Infrared Imager) Vul-
kanaschemassen in einer definierten Säule, andererseits vertikal aufgelöste CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization) Partikelextinktionskoeffizienten-
Profile. Für die Assimilation im EURAD-IM-System (European Air pollution
Dispersion-Inverse Model) werden entsprechende Beobachtungsoperatoren und deren
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adjungierte Versionen entwickelt. Die theoretischen Grundsätze der Beobachtbarkeit
im Falle von Beobachtungen von Vulkanasche-Massesäulen sind aus der Perspektive
der Kolmogorov-Sinai-Entropie abgeleitet. Die praktischen Analysen werden für
das Eyjafjallajökull-Ausbruchsereignis im April 2010 aufgezeigt. Ensembleversionen
einerseits mit vier-dimensionaler variationeller (4D-var) Datenassimilationstechnik
und andererseits mit „particle smoother“-Ansatz werden implementiert und ausge-
führt. Durch die Simulationsergebnisse lassen sich Regionen identifizieren, die hohe
bzw. niedrige Unsicherheiten der Partikelausbreitung aufzeigen. Die vorgenommenen
Analysen weisen eine deutlich beschränkende Wirkung der SEVIRI-Retrieval auf
die Ascheausbreitung auf, während die CALIOP-Retrieval gewisse Informationen
auf sehr lokalen Skalen beitragen. Wegen der unterschiedlichen Assimilationsan-
sätze von 4D-var gegenüber „particle smoother“-Algorithmen kann auf Basis des
einzigen Eyjafjallajökull-Szenarios keine Aussage über die Unterschiede der Ergeb-
nisqualität von den Ensemblesimulationen getroffen werden. Der variable Grad
der Verlässlichkeit resultiert aus der bewölkungsabhängingen Beobachtbarkeit aus
dem Weltall sowohl seitens der quasi-kontinuierlichen SEVIRI-Daten als auch der
vereinzelten CALIOP-Überflüge.
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1 | Introduction

The Earth’s atmosphere transports and transforms many different aerosols originating
from natural and anthropogenic emission sources, which are often dependent on
hardly predictable processes. Special aerosol events include for instance wildfires,
mineral dust storms, or accidental aerosol releases resulting from damage of industrial
plants or reactors. Their sudden appearance in combination with their potential
hazards is the reason that skillful predictions of the succeeding aerosol dispersion
are indispensable. However, the assessment of meaningful predictions has a major
associated challenge: emission parameters and observability, which analyzes the
impact of observations on the value of the forecast in a probabilistic manner, must
first be adequately quantified. This work particularly focuses on sudden aerosol
events, which are characterized by the release of enormous amounts of special aerosol
emissions that can cause hazardous outcomes for humans’ health (Pöschl [2005]),
and that can negatively affect society (e. g. Chester [2005]) and the environment (e.
g. Thordarson and Self [2003]).
To simulate the aerosol dispersion, numerical models are used. They primarily
rest on theoretical knowledge of the atmosphere system. This knowledge generally
encompasses the meteorological fields as a basis for the main dynamic terms of
advection, dispersion, and deposition. In case of sudden aerosol injections, dispersion
models often rely on poorly known emission source describing input parameters,
including emission location, emission start and end time, emission mass rate and
composition, plume height, and particle size distribution. Consequently, the sum of
all these uncertainties involved in the input estimations can lead to large forecast
inaccuracies, such that hazard assessments might fail with fatal consequences.
The eruption of the Icelandic volcano Eyjafjallajökull in April and May 2010 can
be considered as a prototype exceptional aerosol event. This incident caused a
wide-reaching closure of the European air space. The temporary air traffic shutdown
resulted in global economical losses of 4.7 billion US-Dollars (Oxford Economics
[2010]). The decision to keep airplanes grounded during the volcanic ash dispersion
above Europe was mainly based on simulation results of ash dispersion models. Thus
in 2010, it was debated if dispersion models even approximate the true atmospheric
state, and how reliable these dispersion forecasts are. Explosive volcanic eruptions
are aerosol events that are particularly challenging to predict, since their emissions
behave in an erratic manner. This is especially momentous because the emission
plume height can change drastically within short periods over hundreds to thousands
of meters altitude, and the mass eruption rate can vary from kilograms to several
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tons of particulate matter per second. This thesis emphasizes the examination of
volcanic aerosol events being selected as a paradigm, since it compromises these
special challenges. For most considerations related to volcanic eruptions scenarios,
analogical characteristics and methods can be identified for other sudden aerosol
events.
To estimate the source term of volcanic ash emissions, two approaches are common.
With heuristic emission modules, which rest on statistical analyses of historical
eruptions, the total mass emission of the fine ash fraction can be roughly derived
from emission plume height information (Mastin et al. [2009]; Suzuki et al. [1983]).
The other procedure includes additional information on the eruption plume’s charac-
teristics caused by the prevailing meteorological conditions (Woodhouse et al. [2013];
Folch et al. [2016]).
Observations obtained from a wide range of different sensors can contribute valuable
information about the aerosol scenario. Ground-based observations performed near
the emission source can directly explore many important source parameters. Cameras
observing within the infrared spectral range enable the derivation of microphysical
quantities of the ash particles within the eruption plume (Prata and Bernardo [2009]).
Ultraviolet cameras detect sulfur dioxide contained in the plume, such that the
precursor amount of sulfate aerosol can be retrieved (Burton et al. [2015]). However,
recent studies like Burton [2016] also apply ultraviolet imaging for volcanic ash
monitoring. Stohl et al. [2011] used webcam observations to estimate the eruption
column top heights of the 2010 Eyjafjallajökull eruption. Weather radar (radio
detection and ranging) instruments are capable of capturing volcanic ash plume
heights within their detection area during the normal operation of the system, as
realized by Arason et al. [2011].
Since volcanic eruptions often occur in remote regions on Earth, where such ob-
servational infrastructure is not readily available, observations of volcanic clouds
in places remote to the emission source can provide important information about
the scenario. Accordingly, Flentje et al. [2010] performed among other observations
in situ measurements of particle number concentrations of the volcanic ash that
initially arrived in Southern Germany two and a half days after the eruption start of
the Eyjafjallajökull. Aircraft based measurements performed on specially equipped
research airplanes obtain an unique insight into the transported ash cloud (e. g.
Schumann et al. [2011]). Remote sensing instruments are able to capture a broader
picture of the volcanic ash cloud, retrieving ash characteristics from their spectral
signature. With lidar (light detection and ranging) measurements, spectral and
vertically resolved optical properties of the transported ash were obtained in central
Europe during the Icelandic eruption in 2010, and attempts to retrieve the mass
concentration within the ash clouds were carried out for instance by Ansmann et al.
[2011] and Gasteiger et al. [2011]. The organization of ground-based instruments
in networks is advantageous to attain the four dimensional distributions of volcanic
clouds, as realized by Pappalardo et al. [2013] in the framework of EARLINET
(European Aerosol Research Lidar Network).
Satellite sensors generally observe the horizontal distribution and extension of vol-
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canic ash clouds. Here, also infrared instrumentations are primarily favorable to
derive ash optical properties and estimates of mass loadings. This has been carried
out by e. g. Prata and Prata [2012] using SEVIRI (Spinning Enhanced Visible and
Infrared Imager) data and Dubuisson et al. [2014], who applied their retrieval algo-
rithm to analyze near simultaneously infrared measurements from SEVIRI, MODIS
(Moderate Resolution Imaging Spectroradiometer), and IASI (Infrared Atmospheric
Sounding Interferometer). Volcanic ash AOD (aerosol optical depth) and microphys-
ical properties observed by MISR (Multi-angle Imaging Spectroradiometer) even
indicate aging processes of the ash plume during its transport (Kahn and Limbacher
[2012]). Space borne lidar instruments, such as CALIOP (Cloud-Aerosol Lidar with
Orthogonal Polarization) or CATS (Cloud-Aerosol Transport System) allow for the
determination of the ash cloud height and thickness in addition to optical properties
(Winker et al. [2012]), but the assessment is restricted to the re-visitation times and
narrow swath of the lidar beam. A full overview of volcanic emission monitoring
from space is provided by Thomas and Watson [2010].
In principle, observations are subject to limitations that must be considered. In
particular, remote sensing retrievals are restricted to cloud clear areas. Furthermore,
the discrimination of different aerosol species, and the retrieval of one certain aerosol
type are challenging. Vertically integrated measurement quantities are restricted
in the way that the three dimensional dispersion within the atmosphere cannot
be identified. Consequently, all these limitations add up to initial measurement
uncertainties.
The combination of volcanic ash transport and dispersion models with observations
can be accomplished by the comparison of model results with measurements or
retrievals. For instance, Webley et al. [2012] validated their WRF-Chem (Weather
Research and Forecasting model coupled to Chemistry) ash dispersion simulation
by means of different observational data from satellite and ground-based platforms.
Another approach to connect models with observations is by inverse modeling and
data assimilation. Thus, models can be well constrained in terms of adjusting
model states, or in an enhanced way with respect to initial value or emission factor
optimization (Elbern et al. [2007], Chap. 2 of Zehner [2010]). This leads to more
reliable and more accurate dispersion forecasts, such that the scenario, the associated
mechanisms, and subsequent hazards can be assessed. A review of how observations
of airborne ash from space are exploited by volcanic ash dispersion modelers is given
by Wilkins et al. [2016a].
Wilkins et al. [2016c] presented their results of the volcanic ash transport connected
with the 2011 Grímsvötn eruption in Iceland using the novel technique of data inser-
tion. Further related studies with a focus on the Eyjafjallajökull eruption are given
by Wilkins et al. [2014; 2016b]. They initialized NAME (Numerical Atmospheric
dispersion Modeling Environment) with SEVIRI ash cloud heights and column ash
mass loadings retrieved with the algorithm of Francis et al. [2012]. Later on, they up-
dated the model state using this retrieved data in addition to probabilistic estimates
of ash, cloud, and clear sky classifications described by Mackie and Watson [2014].
Assuming an ash layer thickness of 1.0 km and applying satellite retrieved ash cloud
heights was demonstrated as most beneficial with respect to the ash transport, while
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ash concentrations were predominantly under-predicted. Further, the dynamical
system evolution of the model was not appropriately considered. The method can
not be applied before retrieved remote sensing data for the initialization is provided.
In that work, the estimation of actual emissions was neglected, as well as observation
and model errors.
Eckhardt et al. [2008] and Kristiansen et al. [2010] developed an analytical inversion
method in FLEXPART (FLEXible PARTicle dispersion model) to estimate vertical
profiles of sulfur dioxide emissions and tested it on the basis of the 2007 Jebel at Tair
and the 2008 Kasatochi eruption, respectively. Using satellite-borne total column
retrievals, the vertical wind shear of horizontal winds was exploited to extract the
emission heights. Stohl et al. [2011] improved this method by extracting vertically
and temporally resolved a posteriori emissions, as a linear combination of the best
fitting a priori emission scenarios. Model errors derived from the difference of two
different meteorological input data sets, and observation errors were taken into
account to determine the ash emissions of the Eyjafjallajökull eruption. Kristiansen
et al. [2012] and Steensen et al. [2017] applied further configurations, alternatively
testing the algorithm with NAME and EMEP (European Monitoring and Evaluation
Programme) dispersion models, respectively. Furthermore, Steensen et al. [2017]
explored how different satellite data and uncertainty assumptions affect the volcanic
ash emission estimates. To quantify the uncertainties of volcanic ash emissions,
Kristiansen et al. [2012] advise an ensemble approach.
Since in the year 2010 the ECMWF’s (European Centre for Medium-Range Weather
Forecasts) IFS (Integrated Forecast System) did not contain a volcanic ash aerosol
variable, Benedetti et al. [2011] initialized the volcanic emissions applying the emis-
sions from Stohl et al. [2011] to the sulfate, black carbon and dust variables. The four
dimensional variational (4D-var) analysis of MODIS AOD constrained the volcanic
ash plume, especially in regions remote to the source. Regarding volcanic sulfur diox-
ide emissions, Flemming and Inness [2013] suggest to combine emission parameter
initialization with 4D-var assimilation, both on the basis of satellite retrievals. The
initialization was based on an ensemble of test tracers injected in different heights to
estimate the plume height for the assimilation. Among other methods, the 4D-var
approach provides the best linear unbiased estimate (BLUE, Talagrand [1997]) as
optimality criterion, such that the results consider the uncertainties of the model as
well as the observations.
Lu et al. [2016] set up an ensemble, where each member was assigned to a specific
emission profile. With an adjoint-free trajectory based 4D-var method, the best
emission estimation resulted from the weighted ensemble mean. The weights were
determined by cost function minimization considering synthetic observations of ash
column mass loadings in identical twin experiments. Yet, analysis uncertainty assess-
ments were not provided in the article.
Fu et al. [2016] and Fu et al. [2017] assimilated aircraft based measurements and
SEVIRI ash column mass loadings, respectively, obtained during the Eyjafjallajökull
eruption. They applied an Ensemble-Kalman Filter to the stochastic version of
the LOTOS-EUROS (Long Term Ozone Simulation – European Ozone Simulation)
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model. Thereby, they improved the estimation of the volcanic ash state and argued
that the aviation advice could be improved. Nonetheless, this is only justifiable for
forecast regions downwind of the assimilated observations and later forecast times.
To assess the hazards associated with volcanic ash clouds, probabilistic methods
estimating the forecast uncertainties are applied. For instance, Denlinger et al. [2012]
performed a Bayesian analysis to determine initial conditions and uncertainties with
satellite and ground-based observations. In this way, the posterior probability could
be derived and proofed as robust, while Gaussian distributed uncertainties were
considered.
All these studies demonstrate that inverse modeling and data assimilation overcome
the limits of simple forward modeling. Therefore, model calculations are benefi-
cially constrained by the observational data. However, the question where and
to what extend observations reduce uncertainties is not directly answered, but of
high practical interest. Flight route planning in aviation is a striking, yet by far
not the only example. Evaluation of improvements regarding analysis quality as a
product of observation configurations and data assimilation is the main subject in
the research topic of observability (Majumdar [2016]). Interests in this research field
include the optimization of observation networks, the evaluation of the quality gain
in the analysis due to individual or types of observations, and the appraisal to what
extend the analysis can be influenced by observations. A detailed literature review of
meteorological and atmospheric chemistry related studies is provided in Chapter 2.1.1.
Regarding special aerosol events, targeted observations can be expected to contribute
valuable information about the scenario. Additional information can be gained from
the dynamics of the system, such as when taking advantage of the vertical wind
shear to estimate the horizontal distribution. However, it has rarely been evaluated
which simulated temporal and spatial concentration patterns are actually controlled
by observations. This might be an important aspect in consideration of a strong
basis for decision making.

This work aims to develop and validate observability methodologies, which identify
those areas in the analysis that are well constrained by the information content
provided by observations. A related objective is to assess the limits of observability
in the analyses obtained. These objectives are pursued with the application of two
competing approaches:

• The analysis uncertainty is assessed with an ensemble setup of EURAD-IM
(European Air pollution Dispersion – Inverse Model, Elbern et al. [2007]) using
the 4D-var data assimilation technique in terms of initial value optimization.
• An ensemble of major size defined with ESIAS-chem (Ensemble for Stochastic

Integration of Atmospheric Simulations – atmospheric chemistry part, Franke
[2018]) is processed to perform emission factor optimization by means of
non-linear particle smoother data assimilation.

These approaches are combined with the employment of two fundamentally different
satellite-borne observation principles. On the one hand, SEVIRI retrievals of total
ash column mass loadings are used, which are confined to capture the horizontal ash
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distribution only. On the other hand, CALIOP retrieved profiles of aerosol extinction
coefficients contribute with sparse, but precise vertically resolved data.

This thesis is organized as follows: in the subsequent Chapter 2, a detailed insight
into the research field of observability is given. Thereby, particular attention is
given to the theory of obtaining the observability of exclusively horizontally resolved
observation data. Further, aerosol monitoring and the challenges of sudden aerosol
injection dispersion modeling are discussed in Section 2.2 and Section 2.3, respectively.
Chapter 3 introduces the concept of data assimilation, particularly focusing on the
applied methods of the 4D-var approach and ensemble-based particle smoother. The
aim of Chapter 4 is to introduce the observation systems of CALIOP and SEVIRI
including the retrieval description and a discussion of their skills. Chapter 5 describes
the modeling system of EURAD-IM as well as the ensemble environment of ESIAS.
In the sequel, Chapter 6 presents the main developments achieved, to properly
assimilate the selected remote sensing data and to evaluate the ensemble analysis
in terms of observability. In Chapter 7, at first the selected aerosol scenario of the
2010 Eyjafjallajökull eruption and the experiments’ setups are explained, before
all performed experiments are analyzed and their results are summarized. The
observability of SEVIRI data is investigated with both data assimilation techniques,
while the additive information gain due to CALIOP data is at first examined with
the 4D-var ensemble. Finally, conclusions are drawn in Chapter 8 and a perspective
with suggestions for further investigations and improvements is given.



2 | Observability of
sudden aerosol injections

Within this chapter, the theoretical approach to the term of observability is intro-
duced. Applications in atmospheric research are reviewed and analysis theories
and techniques related to the question of this thesis are discussed. The subsequent
exposition gives a closer insight to the subject of aerosol monitoring. The defini-
tion of sudden aerosol injections, the presentation of different scenario types, their
characteristics, and their special role in model predictions is of further concern.

2.1 Observability
Observability is a technical term, which originates from control theory, and has
application in many different areas. For example, it is used to find the optimal
sensor placement in chemical processing plants (Brewer et al. [2007]), to analyze
navigation systems (Batista et al. [2011]), for water resource planning (Xun-Gui
et al. [2012]), and in many other industrial applications. Observability describes the
ability to estimate the state of a system through observations. A dynamic system is
called observable if its state x(t) can be uniquely determined by the inputs and the
measurements y(t) for all times t > 0. Nakamura and Potthast [2015] introduced a
general definition of observability in inverse modeling: applying a linear model M
and observations yi = HMix0 for i = 0, ..., N , the linear problem can be written as

y0
y1
...
yN

 = H


M0

M1

...
MN

x0 =: Ax0 . (2.1)

Here, x0 describes the initial system state, H is the observation operator that maps
the model state into observation space, and Mi is the composition of M defined
by M0 = I,Mi = M ◦Mi−1. By this definition, I denotes the identity matrix.
Accordingly, observability of x0 is given for the observations yi, if the operator A is
injective.
In the following section, atmospheric studies on observability analysis are first
summarized to give an overview on the current research status. Subsequently,
analysis techniques are introduced with a focus on the investigation of initial value
and emission factor optimization during sudden aerosol events.
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2.1.1 Observability in atmospheric applications

In atmospheric sciences, observability studies are performed in the context of targeted
observations. According to Majumdar [2016], the question to be investigated with
respect to targeted observations is ”Where and when should one deploy and assimilate
observations, in order to improve a numerical forecast of a weather event that is
important to society?”. Optimized configurations of available observation capabilities
and the adaptive selection of measured parameters lead to decreased uncertainties,
and a reduction of the relative forecast error (Buizza et al. [2007]). However, if
initial values and other input variables are ineligibly chosen, the forecast system can
react very sensitively and result in rapidly growing forecast errors. Through data
assimilation, observations can constrain the considered input parameters. Targeting
observations must consequently be placed into these areas, where analysis errors
reinforce large forecast errors.
The earliest application to numerical weather prediction (NWP) was provided by
Lorenz [1965], who investigated the predictability of an idealized atmospheric model
determining the largest error growth due to the choice of initial conditions. Within
the last decades, several field campaigns have been performed relating to the issue
of targeting observations. Langland [2005] described successes and limitations of
targeting observations experienced from the FASTEX1 in 1997. Here, the life cycle of
typical Atlantic mid-latitude cyclones was explored, which is important to the short
range European weather forecast (Joly et al. [1999]). Many other campaigns followed,
including NORPEX2 (Langland et al. [1999]) in 1998, and WSR99 and WSR003

(Szunyogh et al. [2002]) in 1999 and 2000, respectively. From 2003 to 2014, different
campaigns were conducted in the framework of THORPEX4 (e. g. Majumdar et al.
[2011], Fourrié et al. [2006], Bielli et al. [2012]) by WMO (World Meteorological
Organization). For all analyses, mathematical techniques were developed to identify
the targeted regions, where the assimilation of observations yields to the largest
forecast improvements. The impact of targeted observations was generally small but
positive, and it was found that the impact is dependent on the region, the season,
and the observation system (Buizza et al. [2007]). Considering the characteristics of
the applied data assimilation system, Baker and Daley [2000] directly obtained the
forecast sensitivity to the observations and to the background field.
To evaluate the impact of assimilating targeted observations and to assess the value
of observational networks, observing system experiments (OSEs) were executed from
the late 1990s. By adding single components of the observational data to the analysis,
or by removing observational subsets, the forecast quality changes. Thus, the tar-
geted observation impact can be rated, comparing the forecast results with a control
experiment that includes all observations. The study of Bouttier and Kelly [2001],
for example, investigated the impacts of observing systems composed of different
satellite observations, radiosondes, aircraft, and drifting buoys on the ECMWF

1Fronts and Atlantic Storm Track EXperiment
2NORth-Pacific EXperiment
3Winter Storm Reconnaissance programs
4THe Observing system Research and Predictability EXperiment
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forecast system. In contrast to these real data experiments, observation system
sensitivity can also be studied by observing system simulation experiments (OSSEs),
where ”synthetic” observations that are artifically generated, are assimilated. OSSEs
relate to observing systems of potential networks or satellite missions for strategic
planning of observations to provide most improvements to the respective forecast
(Hoffman and Atlas [2016]). Thus, strategic planning of appropriately designed
observation platforms can be ensured. For instance, King et al. [2015] developed
a method finding optimal sensor locations and maximized the partial observability
of the dynamical system. These methods are suitable for stationary observation
platforms. The forecast sensitivity to observations (FSO) method investigates which
observation types or systems contribute beneficial information content most efficiently
to the forecasting system. Here, the adjoint of the data assimilation system is utilized
to measure the contribution of different observation subsets to the reduction in the
forecast error, averaged over a certain period (e. g. Langland and Baker [2004],
Cardinali [2009], Gelaro et al. [2010]). Based on ensemble data assimilation, Kalnay
et al. [2012] and Sommer and Weissmann [2016] implemented a localized ensemble
transform Kalman filter (LETKF, Hunt et al. [2007]) to approximate the observation
impact. Hereby, targeted observations effectively constrain forecast uncertainties and
the probability density function (PDF) can be optimized.
For all observability studies, it should be mentioned that the results are strongly
dependent on different factors including the model applied, the forecast horizon, the
analysis region, and the data assimilation scheme. Variational and ensemble-based
assimilation appears to be most beneficial with regards to observability assessments.
However, forecast improvements shown by the evaluation of one variable do not
necessarily imply improvements of other predicted variables. Accordingly, the inter-
pretation of observability analyses is challenging and rarely generalizable (Majumdar
[2016]).
In the research area of air quality and atmospheric chemistry, the observability
problem is less examined and rather novel. One of the first studies is performed
by Khattatov et al. [1999], who applied a variational assimilation method and an
extended Kalman filter to photochemistry. They determined that the linear combina-
tion of initial concentrations of a few long-lived atmospheric constituents is sufficient
to additionally forecast a larger number of short-lived species. Sandu [2006] first
studied targeted observations in terms of atmospheric chemistry and determined the
optimal placement of measuring sensors to minimize forecast uncertainties. Also
focusing on sensor placement, Liao et al. [2006] applied singular vectors for the
analysis of East Asian air pollution and considered stiff chemical interactions between
the constituents. Goris and Elbern [2013] examined the most sensitive chemical
compound within a certain time window and stated strategies for measurement
configurations. Adapting singular vector analysis (SVA), the targeted variables
were described by the chemical initial values and emissions. Thereby, they used a
chemical box model to analyze the formation of ozone (O3) and peroxyacetyl nitrate
(PAN) dependent on individual volatile organic compounds (VOCs). As extended
work, Goris and Elbern [2015] implemented the SVA algorithms in EURAD-IM and
identified, which chemical compounds must be preferably observed at the optimal
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observation placement. In the framework of the zeppelin campaign ZEPTER-25,
they enlarged the number of considered atmospheric compounds, looking at O3, NOx

(nitrogen oxides), HCHO (formaldehyde), CO (carbon monoxide), HONO (nitrous
acid), and OH (hydroxil). As another aspect in atmospheric chemistry, Wu et al.
[2017] identified the sensitivity of the observation network configurations with respect
to initial value and emission rate optimization. The authors performed this study by
combining ensemble Kalman filter and smoother with singular value decomposition,
after clarifying issues on the formal existence and convergence of optimal observation
locations on a finite time horizon (Wu et al. [2016]).
In a related context to sudden substance releases into the atmosphere, targeting
observations appropriate to a nuclear power plant accident were investigated by
Abida and Bocquet [2009]. Using sequential data assimilation, the information content
of mobile observation stations appeared to be more efficient for the source term
estimation, in contrast to locally fixed measurements. Examining the information
content about aerosol physical and chemical properties, Kahnert [2009] obtained the
observability of size-dependent aerosol compositions by ”synthetic” remote sensing
observations. The analysis showed that the assimilation of AOD, and vertical pro-
files of backscatter and extinction coefficients significantly improves the background
estimate and the total mass mixing ratio, while the size-resolved aerosol composition
cannot be derived sufficiently well.

2.1.2 Analyzing observability
There are many different approaches to investigate observability. In this section,
the aim is to describe approaches that focus on the identification of system state
sensitivities to observation impacts. For a deterministic atmospheric chemistry
forecast, the discrete temporal evolution of the system state x ∈ Rn can be described
by

x(ti+1) = Mx(ti) + e(ti), (2.2)
considering a time interval [t0, t1, ..., tN ] after a fixed initial state x(t0). Here, M
is the nonlinear model operator including prognostic equations, and e denotes the
vector of emissions. The state variable x(t) is controlled by the initial state x(t0) and
the emission rates e(ti), ti ∈ [t0, tN ]. The system is constrained by the assumption
that the model error is set to zero. Generalizing all m observations at time ti to an
observation vector y(ti) ∈ Rm, the observation system can be written as

y(ti) = Hx(ti) + ε(ti) . (2.3)

Here, H is the nonlinear forward observation operator that maps x(ti) from model
space into observation space, and ε denotes the observation error.
For volcanic ash dispersion forecasts, only at a few locations is the ash height directly
observable by lidars or ceilometers. Large areas, especially over sea, are exclusively
observed by passive satellite sensors like SEVIRI, only giving evidence of horizontal
ash cloud extension, if not occluded by clouds. In the following discussion, this

5ZEPpelin based Troposheric photochemical chemistry expERiment-2
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situation is taken as the standard situation to expose observability, which is finally
indicated by ensemble runs and presented in spaghetti plots. This is described in
three steps, starting from the theory of Kolmogorov-Sinai entropy, the Lyapunov
exponents, and finally arriving at the spaghetti plots.
To introduce the concept of quantitative information gain by a stream of observations,
the idea of the Kolmogorov-Sinai entropy (KSE) is introduced following Argyris
et al. [2010]. KSE considers the dynamic evolution of the system and measures
the information that is gained during every discrete time step with observations.
The accuracy of the observations defines a partition of the phase space with L
possible system states. Let these partitions be termed X(1)

k , X
(2)
k , ..., X

(L)
k . At first,

observations y0 = {y(i)
0 ; i = 1, ..., L} are accomplished at the initial time step t0 within

X
(i)
0 . This allows a certain localization of the initial condition in phase space. On

fixed time intervals ∆t, the mapping of y0 withinX(i)
1 , X

(i)
2 , ... is observed as y1,y2, ... .

Here, the upper index is assigned to the phase space partition i ∈ [1, 2, ..., L], the
lower index designates the time step tk := k with k ∈ [0, 1, 2, ..., N ]. The mapping
is defined as M∆t : X(i)

k → X
(i)
k+1,yk 7→ yk+1. Since the system develops according

to deterministic laws, the inverse images of the partitions Y (i)
0,k = M−k∆t(X(i)

k ) can
be arithmetically determined. Every observation yk provides additional information
about the situation of the initial observation y0, which must be placed in the
intersection of X(i)

0 ∩ Y
(i)

0,k .

Figure 2.1: Illustration of the Kolmogorov-Sinai entropy for the first time step k = 0, 1.
X

(i)
k denotes the different partitions of the pseudo-phase space, y(l)

k defines the observations,
here column mass loadings. l and l′ state the indices of observed ash containing partitions,
and M∆t and M−∆t describe the deterministic forward model and the backward in time
model, respectively. The inverse image Y (j)

0,1 is depicted in blue. Assuming a horizontally
layered structure of the ash, the white ellipses denote possible realizations of the location of
the observed quantity, whereas the dotted horizontal lines indicate additional background
knowledge about the partitions.
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Figure 2.1 illustrates schematically the KSE for the first time step. In this work,
the aim is to interrelate the theory of KSE with the information content that can
be gained from volcanic ash column mass loadings from SEVIRI, which are only
horizontally resolved observations. Hence, Figure 2.1 shows the different partitions
of the pseudo-phase space X(i)

k arranged within columns next to each other (white
and grey), at time step k = 0 on the left, and on the right at k = 1 after applying
the forward model M∆t. The accuracy of the partitions can be seen as analogous
to the horizontal resolution of the satellite retrieval. The grey columns picture the
partitions, which include observations yk of volcanic ash content, whereas the white
columns are observed to have no mass load of the observed variable. Running the
backward model M−∆t starting from the phase space partitions at k = 1, the inverse
images Y (i)

0,1 are depicted in blue at k = 0. Within the example of volcanic ash column
mass loads, the deformation of the vertical columns are taken to be caused by vertical
wind shear. Looking now at the information content attained by the observations,
the shaded columns all include once observed volcanic ash mass, the empty columns
contain the information that no ash was observed. For a comprehensive description
of the KSE, see Argyris et al. [2010].
To evaluate the information gain, the initial system state is examined. Now, let X0
be the complete set of the partitions X(i)

0 and Y0,1 be the set of all backward pictures
Y

(i)
0,1 , such that

X0 =
{
X

(i)
0 ; i = 1, ..., L

}
, and (2.4)

Y0,1 = M−∆tX1 =
{
Y

(i)
0,1 ;Y (i)

0,1 = M−∆tX
(i)
1 ; i = 1, ..., L

}
. (2.5)

The intersection off all possible subsets of X0 and Y0,1 is called first refinement of
partitioning and it is defined as

Z(1) := X0 ∧ Y0,1 :=
{
Z

(ij)
(1) ;Z(ij)

(1) = X
(i)
0 ∩ Y

(j)
0,1 ,with i, j = 1, ..., L

}
. (2.6)

The refinement enables a more precise localization of the initial state. Regarding the
probability p(Z(ij)

(1) ), that a certain system state can be captured within a cell of the
first partitioning refinement, the information gain is then given by

I(Z(1)) = −
L∑

i,j=1
p(Z(ij)

(1) ) ln
(
p(Z(ij)

(1) )
)
. (2.7)

Proceeding with the application example of Figure 2.1, the information content of the
volcanic ash position gained from the observations can be analyzed as follows: the
areas, where white columns of X(i)

0 are overlaid by empty columns of Y (j)
0,1 , have an

absolute likelihood to not contain any ash, as neither at k = 0 nor at k = 1 was any
ash observed. The sections that show shaded areas of X(i)

0 or Y (j)
0,1 overlapping empty

columns of Y (j)
0,1 or X(i)

0 , respectively, are equally probable to contain volcanic ash.
Subsequently, the regions characterized by the intersection of two shaded partitions
have the highest likelihood to contain volcanic ash. Upon the hypothesis that the
horizontally dotted lines display the boundaries of vertical model layers and the white
ellipses describe different ensemble member realizations of the ash cloud, it becomes
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clear that the intermediate layer is most probable to comprise the ash cloud. Thus,
the location of the volcanic ash can be constrained from the full vertical column
extension to the area, which is indicated by manifold observations.
Forward and backward integration over more than one time interval ∆t results in an
increased refinement. The k-th refinement is accordingly denoted as

Z(k) := X0 ∧M−∆tX1 ∧M−2∆tX2 ∧ ... ∧M−k∆tXk, (2.8)

with the result that the total information gain of k refinements can be calculated
as I(Z(k)). Longer integration times allow for better separation of the quantities in
the dynamical system, such that regions of high probability emerge to be localized
more precisely. In this way, correlations between the individual measurements can
be identified, as the likelihood for a particular observation value depends on previous
observation values. Finally, the KSE h(µ) is defined as the least upper bound of the
average information gain per time unit, which is evoked by the dynamical system,
with

h(µ) = sup
X,∆t

(
lim
k→∞

I(Z(k))
k∆t

)
. (2.9)

Hereby, the supremum refers to all possible partitions of the phase space X and
additionally to all considered time increments ∆t. Parameter µ describes an invariant
natural probability measure, since I(Z(k)) is determined using probability density
functions. In conclusion, the KSE measures the information gain per time unit
one can achieve, applying a series of sequentially taken observations in combination
with a model, which well characterizes the dynamical system. For regular attractors
h(µ) = 0, for strange attractors h(µ) generally is > 0, whereas for random and
chaotic systems h(µ)→∞ for k →∞. Due to the supremum, the computation of
h(µ) is hardly achievable. Therefore, the KSE is rather utilized for a theoretical or
qualitative characterization of the dynamical system.
Pesin [1977] investigated a connection between the KSE and Lyapunov exponents,
so that h(µ) is numerically computable. Lyapunov exponents provide information
about the stability of given trajectories in phase space, exploiting the exponential
divergence or convergence of neighboring trajectories. According to Argyris et al.
[2010], the maximal Lyapunov exponent is defined as

α(x̃0) = lim
k→∞

sup 1
k

ln
(
|x̃k|
|x̃0|

)
, (2.10)

where x̃0 describes the initial perturbation of the state vector x and x̃k denotes the
resulting perturbation of the reference trajectory after k time steps. Since CTMs
are based on initial values that hardly match the true atmospheric state exactly, the
initial deviations represent the initial value errors and uncertainties. If at least one
αi > 0, the model described system is called unstable, whereas negative Lyapunov
exponents characterize stability and a well predictable system. As a result, it is
possible to conclude how sensitive the system is to small perturbations of the initial
conditions. Within a certain accuracy of observations, two initial states might not
be distinguishable, although their trajectories are clearly diverse after a finite time
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interval. Hence, the dynamical system acts as an information source.
Pesin [1977] found that for n-dimensional systems, Lyapunov exponents and the
KSE of a subset V of the phase space are connected on certain conditions by

h(µ) =
∫
V

∑+
αi(x)µ(x)dx. (2.11)

Here, the index + symbolizes that the sum only consists of positive Lyapunov
exponents.
The concept of finding the most unstable initial perturbation, is considered in
the theory of singular value decomposition. The emission term e of Eq. (2.2) is
neglected, such that the model solution only depends on the initial condition with
x(t) = M [x(t0)]. Adding small perturbations and applying a first-order Taylor series
approximation, the model integration results in

M [x(t0) + x̃(t0)] = M [x(t0)] + ∂M

∂x
x̃(t0) +O[x̃(t0)2]. (2.12)

Following Kalnay [2003], let the matrix L(t0, t) = ∂M/∂x be the propagator of the
tangent linear model. It is linearized at a reference trajectory x(t), which is the
solution of the nonlinear model, and does not depend on x̃(t), although it propagates
the initial uncertainty to a final perturbation. Assuming the initial perturbation to
be sufficiently small to evolve linearly, quadratic and higher order terms of Eq. (2.12)
can be neglected. The evolution of the initial perturbation between t0 and t can be
written as

x̃(t) = L(t0, t)x̃(t0). (2.13)
The model’s adjoint is equivalent to the transpose of the tangent linear model LT

and propagates the system backward in time. Singular value decomposition denotes
that for the matrix L, there exist two orthogonal matrices U and V such that

UTLV = S. (2.14)

Here, UUT = I and VVT = I, where I is the identity matrix, and S is a diagonal
matrix with the singular values σi of L as diagonal elements. The singular vectors
ui and vi are the column vectors of U and V and it can be derived that

LTLvi = σiLTui = σ2
i vi. (2.15)

Kalnay [2003] declare vi to be the initial and ui to be the final singular vectors. The
vi vectors can be determined as the eigenvectors of LLT and the squared singular
values σ2

i concur with the eigenvalues λi of LLT . Since vi and ui span orthonormal
bases in the n-dimensional tangent linear space, they facilitate the identification of
the modes, which mainly determine the linearized evolution of the system. Even
if the treated system is described by differential equations with infinite degrees
of freedom, the dynamic can be described by a finite number of modes by lower
dimensional attractors. Accordingly, instabilities within the tangent linear model
can be diagnosed as each initial singular vector component expands or contracts
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by the extent equal to the singular value. The direction in the phase space of the
perturbation is indicated by the rotation of the evolved final singular vector. The
behavior of the adjoint model can be analyzed likewise, with interchanged initial
and final singular vectors. Hence, in a time interval [t0, t], the direction of maximum
error growth is given by the first initial singular vector v1 and the associated largest
singular value σ1.
In practise, stochastic forecasts are performed to estimate the skill of the prediction.
Thereby, several model forecasts are produced for one joint analysis, each involving
different perturbations, which are introduced in the initial conditions, in the parame-
terizations, or in the models themselves. The visualization of a single contour line for
every ensemble member provides guidance on the reliability of the forecast (Kalnay
[2003]): convergent contours display an agreement in the intensity and location of
the event, implying a well predictable event, whereas strongly divergent contour
lines symbolize large uncertainties in the event prediction. The latter case involves
low dimensionality in perturbation space, as perturbations follow the same basis
shape. A further benefit of the interpretation of these so-called spaghetti plots is the
derivation of information about the necessity of adaptive or targeting observations.
This is accomplished by tracing the areas of large uncertainty backward in time so
that regions can be identified, where supplementary observations lead in particular
to improved forecasts.
In this work, a new approach to the interpretation of spaghetti plots is enforced, find-
ing the connection to the observability of the considered event. Therefore, ensemble
analysis runs are evaluated by spaghetti plots. A small ensemble spread in the anal-
ysis indicates that the considered state variable is well observed in the way that the
analysis is well constrained by the observations, while regions holding large ensemble
spreads are characterized by none or inadequate observations, presuming that the
model ensemble members have similar stability in this sub-domain. The ensemble
spread supplies information about the system’s dynamics, with the result that in the
space of the ensemble members, the ensemble spread points in the direction of the
initial singular vector using the linear approximation. Hereby, a connection with the
theoretical approach of the KSE or rather with the more practicable information
gain attempt of Pesin [1977] is established.

2.2 Monitoring aerosols

Aerosols are liquid and solid particulates in the atmosphere, originating from either
natural sources, such as wind-driven elevation of soil materials or emissions due
to geological and vegetational processes, or from anthropogenic sources, such as
transportational, industrial, and combustion emissions. They appear with a very
large spatio-temporal variety: their size, number, and chemical composition depend
on diverse factors including the location, emissions, chemical and physical processes,
and meteorological conditions.
Aerosols play a major role influencing the earth system in many respects. Due to
the direct interaction of the particles with the solar and terrestrial radiation, the
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atmosphere’s energy budget changes. This interaction by scattering and absorption
describes the so-called direct aerosol effect. According to Boucher et al. [2013] (in
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change –
IPCC), the anthropogenic effective radiative forcing due to aerosol-radiation inter-
actions is appraised to amount to -0.45Wm−2. Furthermore, aerosols act as cloud
condensation nuclei (CCN) and ice nuclei (IN). The clouds formed thereafter imply
changes in the radiative budget and the redistribution of latent heat. These impacts
are formerly known as indirect aerosol effects. The various processes influencing
the climate budget are still not completely understood and are a topic of recent
research. In the latest IPCC report, the total effective radiative forcing including
direct and indirect aerosol effects is assessed to be -0.9Wm−2 with large uncertainties
(Boucher et al. [2013]). Wind blown aerosols, which are deposed, for example on
snow, can decrease the albedo and accelerate melting processes. Another influence
of aerosols on earth system is given by the interactions of particles and gases in
atmospheric chemistry. If aerosols are not directly emitted, they can be formed
by gas-to-particle conversion processes (secondary aerosols), as for instance sulfate
aerosols and sulfuric acid droplets result from the reaction of gaseous sulfur dioxide
and with water and hydroxyl radicals. In the atmosphere, aerosols can pass through
different processes, such as coagulation, meaning the encounter of different particles,
condensation, describing the transition from gas phase to liquid phase on aerosol
surfaces, and other chemical reactions. Even the biogeochemical cycle in the Earth’s
system is influenced by aerosols, as for example the iron that is contained in mineral
dust serves as nutrients to the oceanic ecosystem (Martin and Fitzwater [1988]).
In the same way, aerosols can influence vegetation on land positively. In contrast,
photosynthesis and other plantal processes can be impaired due to aerosol induced
attenuated radiation. Human life can also be affected by aerosols. Inhalation of
aerosols and their deposition in the respiratory tract may induce health risks (Shi-
raiwa et al. [2012]). Further, daily life can be influenced, if large amounts of aerosols
impact on surfaces of constructions or means of transportation (e. g. Prata and Rose
[2015]).
Atmospheric monitoring connects all research fields regarding atmospheric processes
and their impacts (Lahoz et al. [2012]). The fields of aerosol measurements and
aerosol modeling are shortly presented in the following paragraphs, since their evalu-
ation mainly supports reasonable decision making and risk management.
Aerosols are observed from all different monitoring platforms, namely from ground-
based stations, on the ocean mainly from ship-based platforms, and from balloons,
aircraft, and satellites. Ground-based measurements are restricted point measure-
ments and might only be representative on a very local scale. On that account,
they are generally composed in observation network infrastructures to achieve larger
coverage and organized operation. Sophisticated ground-based, ship, balloon and
aircraft borne data are typically only available on a campaign basis. But recently,
there have been attempts for implementation of routine measurements, such as the
In-Service Aircraft for a Global Observing System (IAGOS, Petzold et al. [2015])
on airplanes. Observations from space have the advantage to provide operational
measurements on global scale for polar-orbiting satellites and reduced hemispheric
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scale for geostationary satellites.
Observation techniques are distinguished between in situ and remote sensing mea-
surements. In situ observations refer to the measurement of aerosols directly at their
location, either taken on the ground or from aircraft. This is of great advantage to
receive precise information about the aerosol characteristics, such as for instance
particle size, number, or composition. In contrast to the gaseous components of the
atmosphere, aerosols are not fully described with reference to their concentration.
Accordingly, there are many different observation quantities, which characterize
aerosols, like mass and number concentrations, size spectrum, shape, internal struc-
tures and chemical composition, and optical and physical properties (e. g. Minikin
et al. [2012]).
Remote sensing measurements correspond to observations obtained from distance.
The instrumentation can be installed on ground, boats, aircraft, and satellites. Re-
mote sensing instruments detect the spectral signatures of the aerosols within a
certain wavelength mask. Sensors, that record the reflected, absorbed and scattered
radiation originating from the sun or the Earth’s surface, are named passive instru-
ments. They are distinguished from active sensors that emit a well defined energy
into the atmosphere and detect the reflected and backscattered signal. Observing
from distance gives a broader picture of the aerosol conditions in the atmosphere with
remote sensors compared to in situ measurements. Hence, typical remote sensing
aerosol products are the spatial distribution, both horizontally and vertically, the tem-
poral variation, the fraction of fine and coarse particle modes, and a large variety of
the spectral characteristics (e. g. Lee et al. [2009]). With additional post-processing
of the data products, many other aerosol quantities can be retrieved. Nevertheless,
the retrieval of aerosol remote sensing data is an ill-posed problem because the
number of properties to ideally describe the aerosols in the atmosphere is much larger
than the number of parameters that can be derived from the measurements. Further,
remote sensing is impaired by the influence of molecular scattering, gas absorption,
and surface reflection. For aerosol observations, the presence of clouds inhibits the
detection of aerosol signatures, either due to overwhelming cloud reflection using
passive sensors or as a result of signal extinction in the case of active remote sensing.
Aerosol models simulate the chemical and microphysical properties of the particles
and their spatio-temporal distribution (e. g. Hendricks et al. [2012]). Since the
simulations allow for the collection of consistent information about atmospheric
conditions where observations are not available, aerosol scenarios for past and future
conditions my also be studied. The scales of aerosol models differ from global scale (e.
g. the ECMWF Integrated Forecasting System – IFS, Morcrette et al. [2009]) with a
resolution of up to hundreds of kilometers to local scales (e. g. the Modal Aerosol
Dynamics model for Europe – MADE, Ackermann et al. [1998]) with resolutions
down to a few meters.
The aerosol properties to be modeled generally include the mass concentration, the
size distribution, the chemical composition, the shape, and the solubility and mixing
state. The properties vary from model to model and the list can be extended by
many aerosol characteristics. Since modeled aerosol sizes generally range from a few
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nanometers to more than ten micrometers, they are implemented within a modal
aerosol scheme or by size bins. The set of simulated aerosol species is individual
for each aerosol module, but the main constituents are sulfate, nitrate, ammonium,
black and organic carbon, mineral dust, sea salt and water. To describe the dynamics
of aerosols, a selection of the physical and chemical processes is realized in the
numerical code of the models. By way of example, advection, diffusion, and sedi-
mentation describe the transportation processes of aerosols within the atmosphere.
Coagulation, condensation, evaporation, nucleation, and aerosol-cloud interactions
determine conversion processes and emissions and deposition depict the sources and
sinks, respectively. To estimate the influences of aerosols on the energy budget, an
associated radiative transfer module processing the aerosol-radiation interactions
must be linked.
Inverse modeling and data assimilation are important contributions to aerosol mon-
itoring. Aerosol models suffer from uncertain initial conditions and insufficient
knowledge about the emission sources. Therefore, the observational information
helps to overcome these weaknesses by using assimilation algorithms that accomplish
initial value and emission factor optimization.

2.3 Special aerosol events

The term of special aerosol events involves all scenarios that emerge with low proba-
bility, and where large amounts of particulate matter are suddenly injected into the
atmosphere. Such emission events have in common that they occur unexpectedly, the
emitted substances do not constitute of ordinary everyday aerosol, and the events
are hardly predictable. Thus, special aerosol events are rarely respected in generic
air quality forecasts, unless additional information about the scenario contributes to
the modeling system. But to appraise the consequences and hazards of the injected
pollutants, chemistry transport models are sustained by additional information about
the scenario to simulate the pollutants’ dispersion.
This added information is often affected by very large errors of the emission pa-
rameters: in many occasions, the emission location and the inception of the aerosol
injection are not exactly known. Especially problematic is the assignment of the
injection height and the amount of emitted material. In a similar manner, the com-
position and size distribution of the aerosols is not fully determinable. Consequently,
the numerical evaluation of the vertical and horizontal distribution, the transport,
physical and chemical processes within the atmosphere, as well as sink processes
such as sedimentation and deposition cannot be absolutely precise, if the emission
parameters have large uncertainties. Hence, the quality of the aerosol forecast is
impaired.
The assessment of these parameters by measurements is often hardly realizable. If
there are observation instruments nearby, it is still challenging to capture the full
extension of the scenario. In many cases, special events even take place in remote
regions of the globe, where close observations are barely available. In this case
the appraisal of the scenario and its emissions is performed by data assimilation of
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observations, which are obtained in places remote to the emission source. In this way,
comprehension of the scenario, the associated processes and hazards can be gained.
In the following section, the main types of sudden aerosol injections are described
and their relevance on consideration interest is discussed:

Volcanic eruptions
Volcanic eruptions occur in many different eruption styles. Explosive or so-called
hydromagmatic eruptions characterize the style by which huge amounts of volcanic
particles and gases can be injected into the atmosphere. These eruptions are provoked
by the encounter of hot magma with water. The full set of erupted material is termed
tephra, whereas the aerosol portion characterized by particle diameters ≤2mm is
called volcanic ash (Cashman and Rust [2016]). The ash is composed of crystals
and glassy fragments of mainly basalt, andesite, or rhyolite, which differ in terms
of silicon dioxide (SiO2) percentage. Another important volcanic aerosol is sulfate,
which is formed during transport from emitted sulfur dioxide.
Volcanic aerosol emissions are of special interest to be monitored, because they have
a strong impact on climate (e. g. Robock [2000]), vegetation (e. g. Grattan and
Pyatt [1994]), and on health (e. g. Hansell et al. [2006]). Aviation can be affected
during volcanic eruptions, since the aircraft turbines operate within the temperature
ranges of the melting point of volcanic ash. Subsequent engine failures can be very
hazardous, so that air traffic control centers advise the airplanes to stay grounded
(Prata and Rose [2015]).

Mineral dust uplifts
Mineral dust raising is generally induced by aeolian erosion of the ground in arid
and semi-arid regions. Also human activities can provoke the uplift of dust. In total,
about 2000Mt dust are annually emitted into the atmosphere (Shao et al. [2011]).
Mineral dust appears in different chemical compositions (Formenti et al. [2003]),
which are represented by the varying portions of sand, silt, and clay in chemistry
transport models (e. g. Tegen and Fung [1994]).
In some parts of the world, mineral dust regularly affects the air quality in the
planetary boundary layer (e. g. Prospero [1999]). Certain atmospheric chemistry
processes as well as cloud formation are triggered by the presence of mineral dust
particles (Bauer et al. [2004]). On regional to global scales, mineral dust even influ-
ences the Earth system: it changes the radiative balance (Sokolik and Toon [1999])
and interacts with bio-geochemical processes such as the carbon cycle (Shao et al.
[2011]). The impact on human health (e. g. Griffin and Kellogg [2004]) is significant
even in places remote to the desert region due to the long distance transport.

Wildfire emissions
Wildfires include all kind of vegetation fires such as forest fires, bush fires, peat fires,
or grass fires. They can arise due to deliberate and accidental arson, or they can
be set on fire naturally by lightning. The pollutants released by wildfires include
many greenhouse gases (carbon dioxide, methane, nitrous oxide etc.) and particulate
matter, mainly consisting of black and organic carbon (Andreae and Merlet [2001]).
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Wildfires are generally dangerous, as they actively destroy parts of the ecosystem.
The released smoke strongly contributes to air pollution and impacts the climate
system in terms of radiation and atmospheric chemistry (e. g. Langmann et al.
[2009]). Furthermore, the emitted particulates can be unhealthy or even toxic to be
inhaled (Kim et al. [2014]).

Accidental releases
The scenarios of accidental releases encompass pollutant emissions rising into the
atmosphere as consequence of a damage or breakdown of industrial plants. The
emitted aerosols can include a variety of anthropogenic substances, but if there is a
fire involved in the accident, the released aerosols surely involve carbon compounds.
In case of nuclear accidents like for example in Fukushima in 2011, the emitted
material is even radioactive (Adachi et al. [2013]).
Although accidental releases are rarely investigated in atmospheric science, the re-
lated hazards and impacts are evident: in the same way as for the above described
aerosol scenarios, aerosols released during industrial accidents interact with radiation.
They impact air quality and atmospheric chemistry, and they can be very hazardous
to all kind of organisms on Earth.
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In atmospheric science, the objective is to gain a detailed understanding of the
physical and chemical processes in the atmosphere and its interactions with associated
earth system compartments. Both prospects of modeling and observations allow the
obtainment of reliable information about the atmospheric system (see Section 2.2).
However, the concept of data assimilation addresses algorithms that provide the most
accurate and consistent image of the system state and its evolution. For this optimal
state estimation, observational information and a priori knowledge are combined with
physical and chemical laws by models. Data assimilation can propagate information
from data-rich regions to data-poor areas and, to a certain extent, it enables the gain
of additional information on unobserved variables. Allowing for specific uncertainties
and errors of the information elements, their respective contribution to the analysis
is weighted. Therefore, data assimilation encompasses various techniques, proceeding
from estimation and probability to control theories.
In the following sections, the concept of four dimensional variational (4D-var) data
assimilation is introduced as well as the theory of the ensemble-based particle
filter and smoother. Detailed descriptions of the historical development of and
accomplishments due to various data assimilation techniques, mainly of atmospheric
emphasis, are given by Daley [1991], Talagrand [1997], Kalnay [2003], Lahoz et al.
[2010], and van Leeuwen [2015].

3.1 Four dimensional variational
data assimilation

A well established data assimilation method in numerical weather prediction that
enables to improve the knowledge of the system state is given by 4D-var data
assimilation (e. g. Rabier et al. [2000]; Navon [2009]). Yet to a minor degree, 4D-var
data assimilation is also applied in inverse atmospheric chemistry transport modeling
(e. g. Elbern et al. [2000; 2007]; Wang et al. [2001]; Engelen and McNally [2005]).
In general, the 4D-var approach seeks to find the most probable model parameters
or initial states by applying the variational calculus. Thereby, these parameters are
optimized in space and with simultaneous consideration of the temporal evolution of
the system.
The objective is to determine the best estimation of a state variable x, taking into
account a first guess estimation xb, named background, and observations y. Hence,
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the a posteriori probability p(x|y) can be derived with the Bayes’ Theorem, such
that

p(x|y) = p(y|x)p(x)
p(y) = p(y|x)p(x)∫

p(y|x′)p(x′)dx′ . (3.1)

Here, p(x) denotes the a priori probability density function (PDF), describing
the knowledge of the likelihood of the model state, and p(y) is the PDF of the
observations.
The negative natural logarithm is applied to Equation (3.1), which yields the cost
function

J(x) = − ln(p(x|y)) + c = − ln(p(y|x))− ln(p(x)) + c , (3.2)
where c is a constant resulting from the denominator in Equation (3.1). Thereby,
y ∈ RM with M being the dimension of the partial phase space of the observations.
In addition, the misfit of the background field xb to the state vector x is taken into
account. The background field can either be acquired by a short term forecast or by
climatology such that xb ∈ RN with N the dimension of the partial phase space of
the model state, which is identical to the dimension of the background phase space.
Assuming uncorrelated background and observation errors and Gaussian distributed
PDFs, the a priori PDF and the observation likelihood PDF read

p(xb|x) = 1
√

2πN |B|1/2
exp

(
−1

2(xb − x)TB−1(xb − x)
)
, and

p(y|x) = 1
√

2πM |R|1/2
exp

(
−1

2(y−H(x))TR−1(y−H(x))
)
,

(3.3)

respectively. The superscript T denotes the transposed of a vector, B ∈ RN×N is the
background error covariance matrix, and R ∈ RM×M indicates the observation error
covariance matrix. H depicts the forward observation operator that maps the model
state vector from model space into the space of observations (see Section 2.1.2).
Thus, choosing an appropriate constant c of Equation (3.2), the maximum a posteriori
probability can be obtained by finding the minimum of the scalar cost function

J(x) = 1
2(xb − x)TB−1(xb − x) + 1

2(y−H(x))TR−1(y−H(x)). (3.4)

This is the standard 3D-var cost function, which does not take the temporal evolution
of the system into account. In 4D-var data assimilation, timely smoothing is
achieved by comparing all observations within the assimilation window with the
corresponding model state and integrating the information forward and backward
in time. Additionally, the cost function is now transferred to the incremental
representation (Courtier et al. [1994]), where x(t0) = xb(t0) + δx(t0), and d(ti) =
y(ti)−HMixb(ti), such that

J(δx(t0)) = 1
2(δx(t0))TB−1(δx(t0))

+ 1
2

N∑
i=1

(d(ti)−HMiδx(ti))TR−1(d(ti)−HMiδx(ti)).
(3.5)
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This cost function, which is used for initial value optimization, is defined within the
time interval [t0, tN ]. H and Mi describe the linearized observation operator and the
tangent linear model integration operator with Mi = MtiMti−∆t...M∆t, respectively.
According to Elbern et al. [2007], a joint optimization of initial values and emission
factors is attainable by adding a third, emission related term, with K ∈ RE×E the
covariance matrix of emission errors, and perturbations δu resulting in

J(δx(t0), δu) = Jb + Jo + Je

= 1
2(δx(t0))TB−1(δx(t0))

+ 1
2

N∑
i=1

(d(ti)−HMiδx(ti))TR−1(d(ti)−HMiδx(ti))

+ 1
2(δu)TK−1(δu).

(3.6)

The number of emission factors is represented by E and δu denotes a scaled deviation
of the modified emissions e from the background emission rate values eb. To minimize
this cost function, the root of its gradient

∇J = B−1δx(t0)−
tN∑
ti=t0

M?
iHTR−1(d(ti)−HMiδx(ti)) + K−1δu (3.7)

must be determined. HT denotes the transposed of the tangent linear observation
operator and M? is the adjoint of the tangent linear forward model. It propagates
the observational increments backwards in time, from time step ti to the initial time
t0. HT maps the vectors from observation space into model space. As a result, the
variational data assimilation algorithm fulfills the preconditions that the observation
operator and the model itself are linear or linearized, and all errors are Gaussian
distributed, to provide the best linear unbiased estimation (BLUE) as analysis. In
practice, the cost function is minimized by iterative minimization algorithms such as
quasi-Newton or conjugate gradient methods.
For the calculation of the costs (Equation (3.6)) and the gradient (Equation (3.7)),
the background error covariances of both the model state variables and the emission
factors must be known. They weight the accuracy of the background state or
emission knowledge relative to the observational accuracy, and they correlate the
different components of the state or emission vector, respectively (Elbern and Schmidt
[2001]). In general, the construction of the background error covariance matrix B is
challenging, since it includes the cross-correlations of the entries of the model state
vector, which has a dimension of O(106), and it has a high condition number. The
diffusion approach following Weaver and Courtier [2001] is an excellent method as
it sets up a proper covariance model operator utilizing the diffusion equation and
regarding the square root of the covariances. Thus, higher flexibility in the design
of anisotropic and heterogeneous influence radii is guaranteed (Elbern et al. [2007]).
Furthermore, intensive computations of B and K can be circumvented by applying
the preconditioning of the cost function (Weaver and Courtier [2001]; Elbern et al.
[2007]). Therefore, the background error covariance matrices are split up using their
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square roots such that B = B1/2BT/2 and K = K1/2KT/2. In a next step, new
variables v and w are defined as

v := B−1/2δx, and w := K−1/2δu. (3.8)

Substituting these variables into Equation (3.6), the cost function can be expressed
as

J(v,w) = 1
2vTv + Jo + 1

2wTw. (3.9)

Consequently, the gradient of the cost function with respect to the newly derived
variables v and w is determined by

∇J(v,w) =
(

v
w

)
−
(

B1/2 0
0 K1/2

)
×

tN∑
ti=t0

HTM?
iR−1(d(ti)−HMiδx(ti)). (3.10)

For operational application, the preconditioning presents a suitable method for
4D-var data assimilation, which allows for an easier computation of the gradient
of the cost function. Further, the chosen substitution of v and w compensates
ill-conditioned features that occur due to the formulation of B and K, as for example
an unfavorable condition number of the covariance matrices during the minimization
procedure (Elbern and Schmidt [2001]). Since the model state x of the initial iteration
is initialized with the initial background state xb, the difference δx = 0. Moreover,
v = 0 enters the minimization algorithm during the first iteration. The same applies
to w. After the minimization, the optimized initial state and emission vector e are
determined by

x(t0) = B1/2v(t0) + xb(t0), and
e(t0) = K1/2w(t0) + eb(t0).

(3.11)

During every following iteration, v and w as well as x and e are updated. Hence, x
and e converge to the analysis iteratively.
Detailed derivations and supplementary aspects of the 4D-var data assimilation
algorithms are given in Elbern et al. [1997], Bouttier and Courtier [1999], and Lorenc
[2003].

3.2 Ensemble data assimilation via
particle smoother

For 25 years, operational numerical weather prediction has benefited from ensemble
forecasting (Toth and Kalnay [1993]; Tracton and Kalnay [1993]). Ensemble modeling
describes the procedure of simulating different realizations of a system, processing
several model runs of the same episode, for instance by introducing perturbations in
the initial conditions or in the model formulations. As a result of these stochastic
forecasts, the skill of the prediction can be estimated and additionally, the forecast
uncertainties can be obtained from the ensemble spread. Ideally, the set ensemble
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members should represent the uncertainty of the initial conditions, as well as the
uncertainty of other introduced perturbations. The same holds true for the resulting
data assimilation analyses. With the increase of computational resources, ensemble
modeling has been established in many fields of atmospheric research: as mentioned
before, ensembles are extremely important to numerical weather prediction (Buizza
et al. [2005]), but also climate modeling (Murphy et al. [2004]), air quality modeling
(Marécal et al. [2015]), and the more specific topic of dispersion simulation of released
matter during special events (Galmarini et al. [2001]; Kristiansen et al. [2012]) profit
significantly.
Most of the developed ensemble data assimilation methods, such as the ensemble
Kalman filter (Evensen [2009]), rely on linear or linearized models, and on the
assumption of Gaussian error statistics. This is insufficient for atmospheric models,
which feature the representation of a complex nonlinear system. The approach of
particle filtering eludes these assumptions and allows for nonlinearities of the model
and its errors (van Leeuwen [2009]).
The method rests on the Bayes’ Theorem (Equation (3.1)), where the a priori PDF
is represented by an ensemble of Nem model runs, with probability

p(x) = 1
Nem

Nem∑
i=1

δ(x− xi), (3.12)

where xi denotes the model state of the ith ensemble member, also named particle,
while δ indicates the Dirac delta function. By applying a model, the particles are
propagated forward in time to the next observation time t. Subsequently, the weight
is attributed to each ensemble member i following

wi(t) = p(y(t)|xi(t))∑Nem
j=1 p(y(t)|xj(t))

, (3.13)

by assessing the distance of the model state to the observation. The a posteriori
PDF at time t is determined by inserting Equation (3.12) in Equation (3.1), resulting
in

p(x(t)|y(t)) =
Nem∑
i=1

p(y(t)|xi(t))∑Nem
j=1 p(y(t)|xj(t))

δ(x(t)− xi(t)). (3.14)

In a next step, the resampling of the ensemble members with respect to the ensemble
members’ weights takes place: the classical particle filter accomplishes the resampling
by multiplying individual particles according to their weights, which can lead to either
the elimination of weak ensemble members or the replication of strong ensemble
members; or by finding new members in the neighborhood of the particles with
sufficiently large weights (Nakamura and Potthast [2015]). With the new selection
of particles, the ensemble model is again propagated forward in time to the next
available observation set. The procedures of weighting, resampling, and model
integration are repeated accordingly. The ensemble mean of the a posteriori ensemble
representation is defined as

x̄ =
∫

xp(x|y)dx ≈
Nem∑
i=1

wixi (3.15)
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and tends to depict the best estimation of the predicted or analyzed system state.
In contrast to particle filters, which always propagate forward in time, step by step,
the particle smoother reuses earlier observations anew to determine the weights
wi upon proceeding to a new observation time. This assures consistency with
measurements over the entire assimilation window.
A problem of particle filter and smoother algorithms is the filter degeneracy. It
describes the dominance of a few particles prevailing in many resampling steps,
while a larger portion of particles are assigned to negligible weights. Thus, the
statistical information in the ensemble becomes insignificant. Discussion of attempts
to overcome filtering degeneracy is exposed by e. g. Li et al. [2014] and Snyder et al.
[2008], and is beyond the scope of this thesis.
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Observational data from two completely diverse satellite systems are used for both
data assimilation and evaluation of the resulting analyses. In this chapter, the different
observation systems of SEVIRI and CALIOP are introduced. The data applied in
this work are described in detail as well as the underlying retrieval algorithms. These
retrievals convert the measured spectral radiance into an atmospheric or geophysical
quantities, as mass concentrations or aerosol extinction coefficients. Observational
data, which are exclusively used for validation purposes, are shortly presented for
each case in the analysis Chapter 7.

4.1 SEVIRI
To receive information about the horizontal distribution of aerosols above Europe,
retrieval data from the optical imaging radiometer SEVIRI are chosen. While SEVIRI
has the capability to gather observations of many different atmospheric phenomena,
the focus here is on volcanic ash observations.

4.1.1 Instrumentation and measurement configuration
The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is installed on board
the European geostationary meteorological satellite Meteosat Second Generation
(MSG, Schmetz et al. [2002]). The MSG program, as cooperation between EUMET-
SAT (EUropean organisation for the exploitation of METeorological SATellites) and
ESA (European Space Agency), involves four similar satellites (Meteosat-8, -9, -10
and -11) in total, operating since January 2004 successively, still time overlapping and
therefore in backup service. One of these spin stabilized MSG satellites (Figure 4.1)
provides real-time imagery, orbiting the Earth in about 36 000 km altitude with a
nadir point of approximately 0◦North, 0◦West. As a geostationary satellite its orbit
takes 24 hours, whereas the satellite rotates 100 revolutions per minute around its
own axis, which is aligned in parallel with the north-south axis of the Earth.
The SEVIRI instrument (Aminou [2002]) is an optical imaging radiometer and has a
total field of view on the Earth’s disc from about 70◦S (south) to 70◦N (north) and
from 70◦W (west) to 70◦E (east). Eleven spectral channels are integrated with three
detectors and one high resolution channel with nine detectors, scanning the Earth
and atmosphere line by line from South to North and East to West. The resulting
images are composed of 3712× 3712 diamond shaped pixels for the eleven normal
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channels and 11136× 5568 pixels for the high resolution channel. Correspondingly,
the sub-satellite spatial resolution comprises 3 km× 3 km and 1 km× 1 km for the
standard channels and the high resolution channel, respectively. The horizontal
resolution increases to approximately 10 km× 10 km at the edges of the scanning
field. The received full disc images are provided remarkably frequent with a repeat
cycle of 15 minutes.

Figure 4.1: Artist’s view of
Meteosat Second Generation in
space (source: ESA [2002]). The
oval aperture on the right side of
the satellite depicts the lens cover
of SEVIRI.

SEVIRI’s channels observing the earth-atmo-
sphere system include eleven narrow-band chan-
nels in the visible and infrared electromagnetic
spectrum with a nominal spectral band width of
about 1µm, and one high resolution broad band
channel in the visible spectrum (see Tabel 4.1).
Each channel has individual capacities to col-
lect information about clouds, aerosol, water
vapor, land and sea surface, or ozone. Via
cloud tracking, wind fields can be ascertained.
The combination of the atmospheric spectral
response at different wavelength ranges enables,
among other things, the receipt of information
regarding atmospheric instabilities (König and
de Coning [2009]), and the discrimination of
aerosol species like volcanic ash (Prata [1989])
and mineral dust (Banks and Brindley [2013]). Due to the observation frequency,
even rapidly changing phenomena like convective storms can be well tracked and
hazardous effects can be estimated and predicted (Senf et al. [2015]).

Table 4.1: Characteristics of SEVIRI’s spectral channels, examining the wavelength range
and the observation request of each channel. The information is assembled from Schmetz
et al. [2002] and Schmetz et al. [2005].

No. Name Spectral Band Observation Objective
[µm]

1 VIS 0.6 0.56 – 0.71 clouds, aerosols, wind, surface, vegetation
2 VIS 0.8 0.74 – 0.88 clouds, aerosols, wind, surface, vegetation
3 NIR 1.6 1.50 – 1.78 cloud phase, aerosols, surface
4 IR 3.9 3.48 – 4.36 low clouds, fog, wind, surface temperatures
5 WV 6.2 5.35 – 7.15 water vapor, high level clouds/wind
6 WV 7.3 6.85 – 7.85 water vapor, atmospheric instability
7 IR 8.7 8.30 – 9.10 cirrus clouds, atmospheric instability, surface
8 IR 9.7 9.38 – 9.94 ozone, wind in lower stratosphere
9 IR 10.8 9.80 – 11.80 cloud top temperature, wind, surface
10 IR 12.0 11.00 – 13.00 cloud top temperature, surface
11 IR 13.4 12.40 – 14.40 cirrus cloud height, atmospheric instability
12 HRV 0.4 – 1.1 clouds, surface
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4.1.2 Volcanic ash mass loading retrieval
For the retrieval of volcanic ash concentrations and other parameters from SEVIRI
measurements, the observed signatures of infrared channels are simulated with a
radiative transfer model. As a first step, all observed pixels containing volcanic ash
must be identified and discriminated from pixels including meteorological clouds,
smoke, anthropogenic aerosols, and wind blown mineral dust. Therefore, the retrieval
algorithm takes advantage of the reverse absorption effect, which was initially
described by Prata [1989]. Regarding the Planck brightness temperatures Tλ of
the infrared channels with centered wavelengths λ at 10.8µm and 12.0µm, their
difference

∆T = T10.8 − T12.0 (4.1)

appears negative for volcanic ash, while it is generally positive for liquid water and
ice clouds. Volcanic ash particles, which mainly consist of silicates, absorb infrared
radiation more strongly at shorter wavelengths compared to water and ice particles
that absorb more strongly at longer wavelengths (Pavolonis et al. [2006]). Prior
to that step, the water vapor correction algorithm described by Yu et al. [2002]
is applied to reduce water vapor absorption effects, which typically accounts for
an additional brightness temperature difference of about -0.5K to -1.0 K (Prata
and Prata [2012]). Due to calibration uncertainties, field-of-view misalignments and
mixed pixel effects, the ash pixel criterion ∆T < 0K can be selected within the range
-0.5K< ∆T < 0.5K (Prata and Grant [2001]).
In the next step, the brightness temperatures T10.8 and T12.0 are inverted with a
radiative transfer model (Wen and Rose [1994]) to determine the effective particle
radius and optical depths. Therefore, several specific assumptions have to be made
(Wen and Rose [1994]; Prata and Grant [2001]; Prata and Kerkmann [2007]; Prata
and Prata [2012]):

• The volcanic ash particle shape is spherical, such that Mie theory can be
applied for the calculation of the efficiency extinction factor Qext = σext/(πr2).
Here, σext denotes the extinction cross section and r is the particle radius.
• For the Mie calculations, a volcanic ash refractive index has to be estimated,
which depends on the observation wavelength λ and the particles’ composition.
• The volcanic ash composition is siliceous and the volcanic ash has a density of
2600 kgm−3.
• The particle sizes are approximated using the modified-γ and log-normal size

distributions. Within each pixel, the particle size distribution is uniform and
monodisperse.
• The volcanic ash cloud is uniform and plane parallel and it has a geometrical

thickness L.
• The surface temperature Ts and the cloud top temperature Tc are generally

chosen within some discrete intervals.
• The radiation is isotropic and absorption, transmission and scattering of

radiation between the satellite and the ash cloud layer are neglected.
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In consequence, the observed radiance per pixel Ii can be determined via

Ii = (1−Ri(re, τ))B(Tc) + ti(re, τ)(B(Ts)−B(Tc)), (4.2)

where Ri is the reflectivity of each ash containing pixel, B is the Planck function
and ti is the transmissivity of the clouds. The effective radius re of the particles of
the size distribution n(r) is described by

re =
∫
πr3n(r)dr∫
πr2n(r)dr . (4.3)

The size distribution and the effective radius dependent on the particle radius r. The
infrared optical depth τ(λ) is derived using up to 16 scattering angles upwards from
the ash cloud, such that

τ(λ) = πL
∫ ∞

0
r2Qext(λ, r)n(r)dr. (4.4)

Finally, the total mass loading of volcanic ash Ml within the atmospheric column of
the observed pixel can be directly obtained from

Ml = 4
3ρ

reτ(λ)
Qext(λ, re)

. (4.5)

The sensitivity study by Wen and Rose [1994] assesses the errors of the column ash
mass loading to be between 40% and 60% due to the uncertainties of the numerous
assumptions. In addition, the retrieval algorithm is preferentially sensitive to volcanic
ash particles with diameters between 2µm and 32µm (Stohl et al. [2011]), and the
lower boundary of the detection limit is about 0.2 gm−2 (Prata and Prata [2012]).
Other investigations have aimed to obtain more robust volcanic ash concentration
retrievals from infrared measurements: Francis et al. [2012] and Dubuisson et al. [2014]
include the information of a third SEVIRI channel in their algorithms, while Pavolonis
et al. [2006] find that, in comparison to the two wavelength approach, the algorithm is
more sensitive to the presence of volcanic ash using four channels at 0.65µm, 3.75µm,
11.0µm, and 12.0µm . This method even includes mitigation effects of underlying
water and ice clouds (see also Pavolonis et al. [2013]). Millington et al. [2012] and
Kylling et al. [2015] apply coupled systems of a radiative transfer model combined with
the Lagrangian volcanic ash dispersion models NAME and FLEXPART, respectively.
Investigations on the characteristics of highly irregular and porous volcanic ash
particles in the context of infrared optical properties were performed by Kylling et al.
[2014]. They demonstrate that larger particles are detectable in case of irregular
shapes compared to mass equivalent spheres. Additionally, retrievals with spherical
particles appear to underestimate column mass loadings in contrast to the retrievals
assuming morphologically complex inhomogeneous ash particles. Clarisse et al.
[2010] developed an algorithm based on correlation coefficients for the application of
hyperspectral sounders such as IASI (Infrared Atmospheric Sounding Interferometer).
Within this study, an upgraded version of the data set described by Stohl et al. [2011]
and Prata and Prata [2012] is provided and used (F. Prata, personal communication,
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Figure 4.2: MSG-SEVIRI’s total field of view and the area of the retrieved volcanic ash
data set, which is encompassed by red boundaries.

28 Oct. 2015 ). It contains volcanic ash cloud observations of the Eyjafjallajökull
eruption in April and May 2010. The data is stored in NetCDF (Network Common
Data Form) files. The retrieval area encompasses the very northern part of SEVIRI’s
field of view, which is pictured in Figure 4.2. The red bordered region of the data
set stretches from 40◦N to 70◦N and from 60◦W to 60◦E. The spatial resolution of
the data is given by a grid of 0.1◦× 0.1◦. The data is averaged over hourly intervals.
The retrieved quantities include the total atmospheric volcanic ash column mass
loadings in gm−2 and the corresponding absolute error, as well as the effective
particle radii in µm, and the unitless infrared optical depth of the volcanic particles.
Only pixels containing volcanic ash have retrieval values. This implies that there
is no available information if volcanic ash occurrence could be ruled out as the
observation is performed during clear sky conditions, or if the retrieval failed due to
cloud coverage or similar incidents. This fact proved challenging in data assimilation.

4.1.3 Advantages and disadvantages

Using volcanic ash observations from SEVIRI for assimilation-based distribution
analysis has different advantages and disadvantages. A significant advantage is
the information about the horizontal extension of the volcanic ash cloud, which is
provided by the satellite imagery. SEVIRI gives the unprecedented advantage of
frequently observing the same region every 15 minutes. In this way, the ash transport
and distribution is constantly tracked in detail within the instrument’s field of view.
Even if the data set used for this work is time-averaged to hourly time steps, these
observation intervals are still small compared to observations from polar orbiting
satellite sensors, which often have repeat cycles of one to ten days. Furthermore,
observing in the infrared spectral range allows for volcanic ash detection during
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day and night, while instruments detecting in the ultraviolet or visible range are
restricted to day time observations.
On the downside, observing only the horizontal distribution of volcanic ash leads to
the challenge in inverse modeling of reconstructing the vertical position and structure
of the volcanic cloud. The detection of volcanic ash infrared signatures from space
is limited to pixels clear of water clouds. In particular, if meteorological clouds are
above the volcanic ash, the signal of ash is attenuated. Overshooting cloud tops, high
water vapor burden, instrument noise, and very cold scenes can also lead to negative
brightness temperature differences (Prata and Grant [2001]). On the other hand, very
dense ash clouds or eruption plumes, which often include water or ice, generally result
in positive brightness temperature differences. Observing mineral-based aerosol such
as mineral dust, or even sampling pixels with sandy or silty ground surfaces under
clear sky conditions, can induce false volcanic ash detection.
The numerous assumptions that act as input to the retrieval algorithm, might imply
large uncertainties and lead to significant over- or underestimations of the retrieved
quantities. The detection limit of 0.2 gm−2 and the clear sky requirement cause
a downsizing of the information content, meaning that there is less data available
compared to the number of observed pixels. The missing values of zero volcanic
ash content cause a particular problem to the assimilation and analysis of volcanic
ash dispersion. It is difficult to correct incorrectly emitted ash of the background
simulation, if there is no information about certain ash free areas.

4.2 CALIOP
Observations performed by active remote sensing lidar instruments especially profit
from vertically resolved information about the structure of aerosol layers within the
atmosphere. Therefore, retrievals from the satellite-borne CALIOP are selected for
this study. Here, the objective also regards aerosol detection with a special focus on
the identification of volcanic ash.

4.2.1 Instrumentation and measurement configuration
The Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) is mounted on
board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CA-
LIPSO, Winker et al. [2009]) satellite, which is part of NASA’s (National Aeronautics
and Space Administration) A-train (Afternoon Train, Stephens et al. [2002]). The
A-train describes a constellation of polar orbiting satellites, which circle the Earth
successively flying at an altitude of 705 km. The sun-synchronous orbit has an incli-
nation of 98.2◦ towards the equator, such that global coverage is provided between
82◦N and 82◦S. Successive orbits have a longitudinal offset by 2752 km at the equator.
Each circuit takes about 98.9minutes, meaning that the satellites fly 14.6 orbits per
day. The resulting repeat cycle with less than ±10 km cross-track shift is conducted
every 16 days. During daytime passes the satellites cross the equator northbound at
1:30 p.m. local time, with a relative ground speed of 6.7 km s−1. Due to the special
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flight configuration of the A-train satellites, all observed regions of the atmosphere
and the Earth’s surface are monitored by different instruments within a very short
time frame. Hence, the same areas are observed in different spectral ranges, so
that the information content obtained by the sum of measurements is particularly
comprehensive.

Figure 4.3: Artist’s view of
the CALIPSO satellite in space
(source: NASA [2005]).

The CALIPSO satellite (Figure 4.3) was
launched in April 2006 and was developed in
collaboration with the French space agency
CNES (Centre National d’Études Spatiales).
Besides the active CALIOP instrument,
CALIPSO carries two passive remote sen-
sors: the Imaging Infrared Radiometer (IIR)
is an imager with three channels and the
Wide Field Camera (WFC) is a visible sen-
sor. Both instruments view nadir with
swaths centered on CALIOP’s footprint. In
this way, this satellite provides unique mea-
surements to improve the understanding of
the role of clouds and aerosols in the cli-
mate system (Winker et al. [2003]).
CALIOP (Winker et al. [2007; 2009]; Hunt et al. [2009]) is a continuously operating
LIght Detection And Ranging (lidar) instrument, constructed around a solid-state
neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. It simultaneously
transmits co-aligned pulses of 532 nm and 1064 nm wavelengths nadir pointing with
an angle of 0.3◦ in forward direction. Each laser pulse is about 20 ns long and
comprises 110mJ of energy. The pulse repetition frequency amounts to 20.2Hz. Due
to small angular divergence, the beam has a diameter of approximately 70m at the
Earth’s surface and the footprints are resolved every 333m along CALIPSO’s ground
track.
The laser beams are transmitted as linearly polarized signals into the atmosphere.
Therein, they are scattered and absorbed by molecules, cloud particles, and aerosols.
The receiver detects the part of the signal that is scattered back with an angle of 180◦
towards the satellite. The full backscattered intensity is measured by an avalanche
photodiode at 1064 nm, while at 532 nm, two orthogonally polarized components
(parallel and perpendicular) of the backscattered signal are measured by photomulti-
plier tubes. The vertical distribution of clouds, aerosols and molecules is derived via
the run time t between sending and receiving of the laser pulse. The distance r to
the scattering objects can be obtained by

r = δt · c
2 , (4.6)

where the signal travels with velocity of light c. Depending on the altitude and the
measuring wavelength, the data is resolved differently: regarding the troposphere,
the lidar signal at 532 nm has a vertical resolution of 30m in the lower 8.2 km and
60m between 8.2 km and 20.2 km. The 1064 nm measurements are resolved by 60m
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intervals extending to 20.2 km height.
Thus, CALIOP is able to capture the full range of molecular, aerosol, and cloud
backscattering, which spans five orders of magnitude. In the following section, the
focus is placed on the detection of aerosols with the objective to assimilate the
retrieved quantities.

4.2.2 Aerosol extinction coefficient retrieval
This study aims to assimilate volcanic ash information from CALIOP elastic backscat-
ter measurements. Therefore, the aerosol extinction coefficient is selected, since it
best captures aerosol properties and, at the same time, it is comparable with the
modeled quantities. However, as CALIOP is not capable of measuring the aerosol
extinction coefficient directly, it can be retrieved as follows. The description proceeds
accordant with Young and Vaughan [2009].
The retrieved profiles of particulate extinction coefficients are generated by a fully
automated algorithm including three primary modules (Liu et al. [2009]). First, the
selective, iterated boundary location (SIBYL, Vaughan et al. [2009]) algorithm is
deployed to retrieve attenuated backscatter data acquired by CALIOP. It identifies
the atmospheric layers, which contain clouds and aerosols, and obtains their vertical
and horizontal extent. To improve the signal to noise ratio, varying numbers of
successive single profiles are averaged. The spatial resolution of these averaged
features varies depending on atmospheric regions that are characterized by uniform
optical properties and comparable signal strengths. Moreover, within SIBYL high
resolution cloud clearing is attained, which mainly discriminates cloud from aerosol
layers, and an initial estimate of the 532 nm lidar ratio is accomplished (Young [1995]).
The lidar ratio describes the relation of proportion of the extinction coefficient α
and the backscatter coefficient β within a defined air volume as

S = α

β
. (4.7)

The coefficients express the efficiency of removing photons from the electromagnetic
beam by simple scattering, or by the combination of scattering and absorption,
respectively.
The hybrid extinction retrieval algorithm (HERA, Young and Vaughan [2009]) re-
trieves the particulate extinction and backscatter coefficients frequently interacting
with the scene classification algorithm (SCA, Liu et al. [2009]). The intensity of the
received backscattered signal P (r) at the measurement wavelength is described by
the lidar equation

P (r) = Csys
βm(r) + βa(r)

r2 T 2
m(0, r)T 2

O3(0, r)T 2
a (0, r). (4.8)

Here, the system constant Csys includes different parameters describing characteristics
of the individual lidar instrumentation, such as the laser energy and lidar calibration
coefficients. The backscatter coefficients are dependent on the wavelength and
distance r to the observed object. They are composed of a molecular contribution,
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indicated by the subscript m, and an aerosol contribution, which is denoted by the
subscript a. T 2

m(0, r), T 2
O3(0, r), and T 2

a (0, r) depict the transmission of the probed
volume, which the laser signal passes in two directions, due to molecular, ozone and
aerosol absorption. The two-way transmission is generally defined as

T 2
i (0, r) = exp

(
−2ηi(r)

∫ r

0
αi(r′)dr′

)
, (4.9)

where i denotes the transmission effects of either molecules, ozone, or aerosols.
The multiple scattering parameterization ηi(r) is neglected for molecular and ozone
transmittance, while for aerosols it is calculated by SCA. The ozone absorption
effects and the molecular number density of the observed profiles are obtained and
contributed from the NASA Global Modeling and Assimilation Office (GMAO).
HERA considers multiple scattering by particles, such that the CALIOP aerosol
extinction retrieval proceeds iteratively. Therefore, Equation (4.8) is rearranged to
depict the attenuated backscatter profile

β′(0, r) = (βm(r) + βa(r))T 2
m(0, r)T 2

a (0, r) = P (r)r2

CsysT 2
O3(0, r) , (4.10)

which is only dependent on atmospheric quantities. These profiles are now corrected
for the attenuation between the satellite, where r = 0 and the first atmospheric layer
to be analyzed at rN . Thus, the aerosol backscatter coefficient at range r can be
determined by

βa(r) = β′N(r)
T 2
m(rN , r)T 2

a (rN , r)
− βm(r), (4.11)

with β′N (r) denoting the renormalized attenuated backscatter that can be calculated
by the profile solver within HERA. According to the Equations (4.9) and (4.7), the
aerosol transmittance includes βa(r), since

T 2
a (rN , r) = exp

(
−2ηa(r)Sa

∫ r

rN

βa(r′)dr′
)
. (4.12)

HERA solves Equation (4.11) iteratively with a Newton-Raphson algorithm. If
divergence is detected within this algorithm, the profile solver algorithm is restarted
with a modified lidar ratio, which is selected by the SCA (Omar et al. [2009]). The
extinction coefficient of the first aerosol layer is finally determined using the extinction
to backscatter relation of Equation (4.7). All underlying atmospheric regions are
further analyzed by updating the renormalized attenuated backscatter β′N(r), by
dividing the attenuated backscatter data by the retrieved two-way transmittance
and by rerunning the iterative profile solver. In this way, the analysis of the full laser
path to the ground is performed.
The retrieved profiles of particulate extinction coefficients are included in the CALIOP
level 2 aerosol profile product and available at NASA’s Atmospheric Science Data
Center (CALIPSO Science Team [2016]). Within this work, data products of version
4.1 are applied, while the focus is placed on the retrieval received from the observations
with 532 nm wavelength. The horizontal resolution of the profile data is 5 km, while
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the vertical resolution covers 60m sectors. Besides the extinction coefficient profiles
in km−1, the backscatter coefficients in km−1 sr−1 are used to calculate the lidar
ratio, and consequently identify the aerosol layers that are most likely to contain
volcanic ash. According to Ansmann et al. [2010], the lidar ratio of volcanic ash varies
between 50 sr and 65 sr. Winker et al. [2012] stated that the automatic classification
algorithms often classify volcanic ash as either mineral dust or ice clouds, which are
characterized by lidar ratios of 40 sr or lower (Omar et al. [2009]). Thus for the data
assimilation experiments, all extinction coefficients that are characterized by a lidar
ratio between 40 sr and 60 sr are selected for the analysis. This data selection implies
that non volcanic aerosol layers might impair the analysis, but also that there is
no observational information provided to the assimilation algorithm about missing
observations, clear air conditions, aerosol or cloud layers that do not contain volcanic
ash.

4.2.3 Advantages and disadvantages

Lidar measurements have the unique advantage of resolving the vertical structure
of the atmosphere with full details. Regarding the horizontal direction, CALIOP
also shows good resolution along the flight track. In fact, lidar is the only remote
sensing observation technique that is able to obtain high resolution profiles of aerosols
(Winker et al. [2009]). With its high sensitivity to aerosol, CALIOP can detect
even tenuous aerosol layers (Winker et al. [2012]). Moreover, observations of aerosol
layers above bright surfaces such as bright meteorological clouds, snow or deserts,
are not problematic for CALIOP, but these are very difficult for passive remote
sensing instruments. Lidar signals can penetrate high optically thin clouds and
due to the viewing position from space, CALIOP measurements are less affected by
cloud attenuation, which favorably appears due to optically thick clouds in lower
altitudes. Measuring the depolarization of the backscattered signal, CALIOP is even
able to discriminate between liquid and ice water phase as well as between cloud and
aerosol. As an active remote sensing instrument, lidar provides its own illumination,
such that observations can be taken over the full globe during day and night time.
The data sets provided by the NASA Langley Research Center are generally freely
available in near real time, such that the data would be well applicable for the
analysis of an ongoing volcanic eruption. The utilized CALIOP data of aerosol
extinction coefficients is also easily transferable to other aerosol events, as long there
is certain information about the aerosol species given.
On the other hand, CALIOP has the following disadvantages: CALIOP’s near-nadir,
pencil line viewing field limits the coverage of regional scale significantly. Flying
in an polar orbit reduces the availability of data for a specific region even more.
The European continent counts hardly more than four CALIPSO passes per day.
Further, the lidar signal is affected by noise. Especially during day time, the sunlight
contaminates the return signals of the lidar. In addition, molecular scattering
appears as noise in between the stronger aerosol and cloud signals and therefore
must be filtered out for aerosol analyses. The observation of lower atmospheric
regions can be limited due to the extinction of the transmitted lidar signal by very



4.2 CALIOP 37

dense clouds. All involved retrieval algorithms have the disadvantage of requiring
estimations, assumptions and compromises, that must be made in order to obtain a
fully automatic retrieval sequence. For a discussion of these limitations see Vaughan
et al. [2009], Liu et al. [2009], Young and Vaughan [2009], and Omar et al. [2009].
Winker et al. [2012] investigated the performance of CALIOP at observing the
transported volcanic ash during the Eyjafjallajökull eruption in April 2010. They
discussed the following difficulties of detecting volcanic ash: 1) Most of the ash plumes
were transported in mid-tropospheric regions such that the distinction between ash
layers and cirrus or desert dust was challenging. 2) Both cirrus and desert dust
are typical for these atmospheric regions and they have similar scattering behaviors
to volcanic ash. 3) The volcanic ash acts as CCN and IN. And 4) Close to the
Eyjafjallajökull, the ash plume was mixed with condensate water from the phreatic
eruption. Due to these issues, the identification of volcanic ash is hardly realizable
in these cases.
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For the experiments performed in this study, two data assimilation systems are
applied. The 4D-var version of the EURopean Air pollution Dispersion – Inverse
Model (EURAD-IM) is used to investigate the observability on the basis of initial
value optimization analyses. Additional experiments including the estimation and
improvement of emission factors by the Ensemble for Stochastic Integration of
Atmospheric Simulations (ESIAS-chem) are evaluated in order to examine the
observability with a state of the art ensemble system, regarding a reasonable stochastic
representation of the simulated events. This chapter introduces the model system
and briefly describes the data assimilation features of ESIAS-chem.

5.1 EURAD-IM

The EURopean Air pollution Dispersion model (EURAD, Hass [1991]; Ebel et al.
[1997]) with its Inverse Model (IM, Elbern et al. [1997]; Elbern and Schmidt [2002];
Elbern et al. [2007]) extension is an Eulerian state of the art chemistry transport model
(CTM), including 3D-var and 4D-var data assimilation. It computes the advection,
diffusion, chemical transformation, wet and dry deposition, and sedimentation of
tropospheric trace gases and aerosols. From its beginning, EURAD-IM was applied
in several studies on air pollution. Later examples include Marécal et al. [2015],
Monteiro et al. [2013], and Huijnen et al. [2010].
Figure 5.1 illustrates all principal components of the EURAD-IM in a flow diagram.
At the top, the input information is shown, including the meteorological and chemical
initial and boundary conditions, emission rates, and observations. The meteorological
driver of the model system that provides the meteorological state evolution, is the non-
hydrostatic Weather Research and Forecasting model (WRF, Skamarock et al. [2008])
with the Advanced Research WRF (ARW) solver. The EURAD Emission Model
(EEM, Memmesheimer et al. [1991]) allocates fields with anthropogenic emission data,
based on the TNO (Nederlandse Organisatie voor toegepast-natuurwetenschappelijk
onderzoek) emission inventories. The variability of emissions due to seasonal or daily
cycles is incorporated in the EEM output. However, the emissions of unexpected
events are generated by specific modules, simulating the emissions during volcanic
eruptions, wildfires and mineral dust events. The observations are prepared by
the data preprocessor PREP. It collects all kind of measurements from the original
observational data files and gathers this information in one file with a standard
file format. This is then provided to the assimilation system. All atmospheric
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Figure 5.1: Flow chart of the EURAD-IM model system with a propagation direction
from the top, starting with the model input, to the bottom, where the model output is
depicted. The different model parts and their contributors are illustrated in different colors:
the meteorological driver in cyan, the emission module in yellow, the chemistry and aerosol
part in green, observation affected components in red, and the model output in gray. All
input contributions enclosed in rounded boxes contain input data from external providers,
whereas modules in rectangular boxes represent parts of the model that are controllable by
the user.

chemistry and aerosol related parts of EURAD-IM are illustrated in green. The
4D-var assimilation system consists of the forward CTM and the adjoint model, which
contains adjoint operators for transport and diffusion (Elbern et al. [2000]), adjoint
gas phase mechanisms (Strunk [2006]), and the adjoint scheme of the secondary
inorganic aerosol formation (Nieradzik [2011]). Moreover, there are several observation
operators implemented in a forward and an adjoint representation. For minimization,
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS, Liu and
Nocedal [1989]) is applied. Finally, the model system provides fields of meteorology,
trace gas and aerosol concentrations, as well as observations as output (gray). In the
following paragraphs, the EURAD-IM components, which are of importance to this
thesis, are described in more detail.

The chemistry transport
The CTM computes the transport, diffusion, and reactions of up to 109 gaseous
species. There are approximately 160 chemical reactions implemented in the model.
In order to reduce systematic biases, the state vector is updated to employ a
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symmetric operator splitting method (McRae et al. [1982]), when stepping from one
time step t to the next t + ∆t. With T denoting the transport operator, D being
the diffusion operator, and C describing the chemical transformations including the
parameterizations of emission sources and deposition processes, the integration of
the model state reads

x(t+ ∆t) = ThTvDvCDvTvThx(t). (5.1)

The indices h and v indicate the direction of the computed fluxes, either in the
horizontal or in the vertical orientation. Consequently, transport and diffusion are
processed every half time step. For advection, there are different schemes available,
from which the Walcek scheme (Walcek [2000]) is applied in this thesis. As gas phase
mechanism RACM-MIM (combined Regional Atmospheric Chemistry Mechanism –
Mainz Isoprene Mechanism, Geiger et al. [2003]) is taken.

The aerosol representation in MADE
The Modal Aerosol Dynamics model for Europe (MADE, Ackermann [1997]; Acker-
mann et al. [1998]) simulates the aerosol dynamics for EURAD-IM. The chemical and
physical transformations of altogether 40 independent aerosol variables are processed,
including primary and secondary aerosols. These are, for example, mineral dust, sea
salt and volcanic ash, as well as secondary aerosols. The latter are split in inorganic
particles, including sulfate and ammonium, and organic aerosols, developing from
aromates, alkanes, isoprenes or α-pinene. The formation of secondary organic aerosols
is simulated by the updated version of SORGAM (Secondary Organic Aerosol Model,
Li et al. [2013]).
The integration of the model state including aerosols proceeds according to Equa-
tion (5.1), where C is extended in the way that the full aerosol dynamics can be
calculated. These are described by Friedlander [1977] as

∂

∂t
n(ν) =−∇ · vn(ν)−∇c(ν)n(ν) +∇(D∇n(ν))

+ 1
2

ν∫
0

β(ν̃, ν − ν̃)n(ν̃)n(ν − ν̃)dν̃ −
∞∫
0

β(ν, ν̃)n(ν)n(ν̃)dν̃

+
∣∣∣∣∣ ∂∂tn(ν)

∣∣∣∣∣
g

+ J (ν)δ(ν − ν0) + S(ν)−R(ν),

(5.2)

such that the temporal evolution of the particle size distribution n(ν) is obtained.
Here, ν denotes the particle volume, v represents the wind vector, and c is the
particle drift velocity. Further, D symbolizes the diffusion coefficient, β describes
the coagulation coefficient, and J is the nucleation rate. The last four terms of
Equation (5.2) include particle growth due to chemical reactions, nucleation, and
sources and sinks, respectively.
The aerosol size distribution is represented by three log-normal particle size modes.
The log-normal distribution function is defined as

ni(ln(dp)) = Ni√
2π ln(σi)

exp
(

(ln(dp)− ln(dmediani )2

2 ln2(σi)

)
, (5.3)
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Table 5.1: Standard deviation σi and initial median diameter dmediani for the trimodal
log-normal representation of the aerosols in MADE.

Mode Aitken Accumulation Coarse
σi 1.7 2.0 2.2
dmediani 0.01 0.07 1.0

where the index i characterizes one of the three modes. The number concentration
is given by Ni, while dp indicates the aerosol diameter. The standard deviation of
the particle size distribution σi, which is constant for each mode, and the initial
median diameter dmediani of the distribution are listed for the three modes in Table 5.1.
The temporal changes of the aerosol size distribution emerge from the shifting of
the median diameter along the logarithmic diameter abscissa. The aerosol mass
and number concentrations are derivable from the third and zeroth moment of the
particle size distribution, respectively.
Within each mode, the aerosols are assumed to be internally mixed. Thereby, any
aerosol is characterized by a particle homogeneously assembled of all available mode
specific aerosol species, with a composition depending on the percentage of the aerosol
type’s mass. Consequently, the chemical and physical properties are represented by
the average of all contributing components.

The model domain
EURAD-IM can be operated on different scales, from meso-α to -γ scale, following the
definitions of Orlanski [1975]. It is generally applied to simulate the air quality within
the extended European troposphere and higher resolved subdomains by nesting. Here,
EURAD-IM uses terrain-following σ-coordinates. These are defined as

σ = p− pt
ps − pt

, (5.4)

where p depicts the model layer pressure, ps is the surface pressure, and pt the
pressure at the model top. The model domain, which is selected for this study’s
experiments, is described in detail in Section 6.1.

The volcanic emission module
In EURAD-IM, volcanic emissions are generated in a special volcanic emission
module. Information about eruption parameters has to be provided by the user.
These include the location of the erupting volcano and its height, the eruption date
and time, the plume height as well as the emission strength. The latter information
is subdivided into sulfur dioxide and volcanic ash emissions. By means of the chosen
vertical mass distribution profile, which can be uniform, poisson, umbrella (Webley
et al. [2009]), or topheavy (Webster et al. [2012]), the emissions are distributed over
the model layers between the volcano’s summit and the maximum emission height.

All developments and experiments within this thesis are performed with the EURAD-
IM model version 5.8.1. Thus, the volcanic ash assigned aerosol variable is VSOILA.
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The ash dispersion is accordingly simulated with mineral dust coarse mode particles.
In the meantime developments of new volcanic ash variables took place, such that
with the newest EURAD-IM versions starting from 5.9.1, the simulation of volcanic
ash is possible with a distinct coarse mode variable VASH and an accumulation mode
variable VASHJ.

5.2 ESIAS-Chem
The Ensemble for Stochastic Integration of Atmospheric Simulations (ESIAS) couples
the novel model implementations of ESIAS-met (Berndt [2018]), which is an ensemble
version of WRF, and ESIAS-chem (Franke [2018]), which includes an ensemble setup
of EURAD-IM. The coupling is accomplished by an ensemble of meteorological
field evolution, generated by ESIAS-met, which is input for the chemistry ensemble
produced by ESIAS-chem. In this way, the uncertainties of the driving meteorological
fields can be represented in the atmospheric chemistry forecasts or analyses. ESIAS
is designed to provide short and medium range probabilistic weather forecasts for
renewable energy assessments regarding wind and solar energy, and near real time
probabilistic analysis for emission parameter estimations in case of special aerosol
events.
Within this thesis, only the atmospheric chemistry partition is applied. Thus,
the focus is placed on the system description of ESIAS-chem. ESIAS-chem is an
extension to the EURAD-IM system that acts as an environment enabling the model
to run in stochastic integration mode in large to ultra-large ensemble sizes, and
hence provides the requirements for nonlinear ensemble-based data assimilation. It
remains flexible in integrating different modules or methods. A special focus of
this study is the application of the ESIAS-chem particle smoother data assimilation
algorithm to investigate volcanic ash emission parameters. Therefore, the volcanic
ash dispersion ensemble is initialized with distinct volcanic ash emission packages,
which are characterized by constant mass injections over a defined height and time
interval. Consequently, the cost function that needs to be minimized to find the
optimal combination of the emission packages results in

J(a) =
N∑
i=1

(HM̃i(ai[z]e0)− yi)TR−1(HM̃i(ai[z]e0)− yi) + aTK−1a. (5.5)

Here, M̃i denotes the source receptor model, which maps the a priori emissions
e0 to the model state and transports the resulting concentrations to the place of
observations yi. The profile of emission factors is given by ai[z], where z is the vector
of model level heights. The particle smoother is combined with a discrete ensemble
extension of the Nelder-Mead minimization algorithm (Nelder and Mead [1965]).
This method enables the temporal and vertical resolution of the volcanic emission
strength. The filtering step of the particle smoother is realized by evaluating the
weights w of each ensemble member i that are obtained by

wi = w̃i∑Nem
j=1 w̃j

, w̃i =
(
Nem

J(a)

)0.7

. (5.6)
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With respect to the weights, the particle smoother scales the variance of the ensemble
in the way that the analysis provides the best estimate of emission profiles. Therefore,
the system takes advantage of the separation of the volcanic ash emissions due to the
wind shear. For more information about the ESIAS-chem system see Franke [2018].
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In the framework of this thesis, several new modules are developed in the assimilation
system of EURAD-IM and thoroughly tested. First, this chapter addresses the design
of a new model domain, which aims to make the most efficient use of computational
resources in the selected case studies. Hereafter, this chapter briefly summarizes the
main implementations that are acquired, in order to facilitate the assimilation of the
selected satellite-borne remote sensing data. The contribution of this work to ESIAS
in connection with the question of observability is then resumed.

6.1 Model domain
For the performed experiments simulating ash dispersion related to the Eyjafjalla-
jökull eruption in April 2010, a new model domain is prepared. This development
is necessary because of two reasons: on the one hand, the domain size is optimized
to save computational costs, while on the other hand, the vertical grid is adjusted
to a finer resolution in the main area of interest of the mid troposphere. Figure 6.1
illustrates the horizontal extent of the model domain and the vertical grid structure.
The model domain covers Europe from Southern France, Northern Italy to Roma-
nia at the southern boundary, expanding to Northern Scandinavia at the northern
boundary, and extending from the West Atlantic to Western Russia and Ukraine in
the west to east direction. The location of the Eyjafjallajökull volcano is indicated
by the red triangle.
The projection used for this model domain is the Lambert conformal conic projection,
which is centered at 58.0◦N and 8.5◦W. In total, it contains 213 grid cells in the
longitudinal direction and 185 grid cells in the latitudinal direction, each with a
width of 15 km×15 km.
Vertically, the atmosphere is subdivided in 23 layers, defined by terrain following
sigma coordinates between the surface and 100 hPa, which corresponds to approxi-
mately 16 km altitude. For the volcanic ash event, the levels are distributed so that
mid-tropospheric model layers have a thickness of less than 1 km. Since in nature,
the volcanic ash is usually transported in plumes with small vertical expansion (Schu-
mann et al. [2011]), this setup aims to keep the discretization error and numerical
diffusion preferably low.
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All simulations including both forecasts and analyses, are performed with a temporal
resolution of 300 s. However, all results are written out in hourly values, such that
the evaluation is accomplished on this basis.

Figure 6.1: The selected EURAD-IM model domain (left) including North-West and
Central Europe, has a horizontal resolution of 15 km×15 km. The location of the Eyjafjalla-
jökull is indicated by the red triangle. The mean vertical grid resolution (right) illustrates
the terrain following discretization in 23 layers.

6.2 The SEVIRI observation operator
In order to assimilate ash column mass loading data retrieved from SEVIRI infrared
measurements, the data must be treated to be readable and processable by EURAD-
IM. This is carried out with new implementations in the preprocessing module PREP.
At first, the available SEVIRI data is reduced to a data set including only retrievals
of areas within the model domain. Furthermore, this subset is subject to a quality
control eliminating all retrieval pixels with an ash mass lower than 0.1 gm−2 or
negative error values. This selection is reasonable, since the mass threshold is below
the SEVIRI detection limit and negative values are based on algorithmic inaccuracies
of the retrieval algorithm (F. Prata, personal communication, 20 Jul. 2015 ). The
conversion to the required data format completes the preprocessing of SEVIRI data.
In data assimilation, the comparison between the model state and the observations
is enabled by the observation operator. It maps the 3D distributed model state
variable of volcanic ash concentrations xash in µgm−3 to the observation space at
each observation time. The SEVIRI data is retrieved in the dimension of integrated
column mass loadings yS in gm−2. Therefore, the individual model equivalent
HS(xashi ) for each grid cell i is determined by

HS(xashi ) = 106
Nlev∑
k=1

xashi,k ∆zi,k. (6.1)
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Here, ∆zi,k depicts the vertical layer extent of each level k, where Nlev is the maximum
number of model layers. The factor 106 ensures the mapping of units from µg to
g. To determine the observational costs, all j observations within one model grid
cell are compared with the correspondent model equivalent by taking the individual
difference yS,j −HS(xashi ), which is the observation increment.
The gradient of the cost function with respect to the initial time t0 is obtained by
using the adjoint model. This also implies the necessity of an adjoint observation
operator that maps the weighted observation increments described by δy?(w)

S =
R−1
S (d(t)−HSMtδxash(t)) (see Equation (3.7)) from observation space back to the

model space. Hereby in this work, the superscript ash is omitted for the sake of
convenience. Therefore, the classical derivation of the adjoint (Kalnay [2003]) of
Equation (6.1) results in

δx?i,k = δx?i,k + 106∆zi,kδy?(w)
S;j , k = 1, ..., Nlev

δy?(w)
S;j = 0.

(6.2)

The superscript (w) denotes the weighting through the observation errors by mul-
tiplying the inverse SEVIRI observation error covariance matrix R−1

S . Applying
Equation (6.2) for the conversion from observation space in model space, the multipli-
cation with the layer thickness ∆zi,k provokes a vertical redistribution of the volcanic
ash in the way, that the upper layers with large vertical extent receive high adjoint
changes of ash concentrations, while the low shallow model layers are supplied with
low adjoint changes of ash amounts. This is inconsistent with the natural distribution
of volcanic ash in the atmosphere, which is generally transported within plumes of
low vertical extent, and finally a consequence of an insufficient vertical resolution,
which is dictated by computational limits.
Since the SEVIRI data set does not provide further information about the vertical
distribution of volcanic ash, this information must now be gained from the model
simulations. Therefore, the adjoint observation operator is modified to redistribute
the volcanic ash according to the current modeled ash distribution by adding a
weighting factor ωi,k to the first equation of Equation (6.2) such that

δx?i,k = δx?i,k + 106∆zi,kωi,kδy?(w)
S;j . (6.3)

The weighting factor ωi,k for each level k is determined by a model thickness dependent
Gaussian distribution and the proportion of the modeled ash content of the individual
grid box in relation to the complete vertical ash concentration profile. To sustain
consistency in terms of the order of magnitude, the adjoint increment is normalized
to the column value of the classical adjoint calculations.

6.3 The CALIOP observation operator
Since the assimilation of CALIOP data is newly introduced to EURAD-IM by this
thesis’s project, adequate preprocessing is accomplished. The global CALIOP data
sets include retrievals of satellite paths reaching from ground to 30 km in altitude. The



48 Developments

preprocessor reduces the data set to data, which are included in the 3D extension of
the model domain. Quality assurance is carried out by selecting only those extinction
coefficients that are characterized by positive values, where the related backscatter
coefficients are positive, and as described in Section 4.2.2 where the corresponding
lidar ratios are between 40 sr and 60 sr. The resulting aerosol extinction profiles are
then provided to the EURAD-IM assimilation system.
The design of the observation operator mapping the model state of volcanic ash to
the dimension of the retrieved CALIOP aerosol extinction profiles in km−1 is based
on the statement of Ansmann et al. [2012], that one way to retrieve estimations of
volcanic ash mass concentrations as a function of height is to assume mass specific
extinction coefficients. Their inverse is also known as the mass-extinction conversion
factor. It describes a linear relationship between the extinction coefficient α and the
mass of the observed aerosol m by gm−3 by

η = m

α
, (6.4)

where η denotes the mass-extinction conversion factor in gm−2. During the Eyjafjalla-
jökull eruption in 2010, Gasteiger et al. [2011] obtained a mass-extinction conversion
factor of 1.45 gm−2 using lidar observations at 532 nm detection wavelength. This
appraisal is in good agreement with the corresponding average of other studies
(Ansmann et al. [2012]). The CALIOP observation operator HC(xi,k) is consequently
defined as

HC(xi,k) = 103 xi,k
1.45 , (6.5)

where 103 ensures the conversion of the units from km−1 in m−1. The index i indicates
the grid cell and k denotes the model layer, where extinction coefficient retrievals are
available. Since the vertical and horizontal resolution of the CALIOP retrievals yC
is higher than the model resolution, the observational costs are obtained by adding
the individual differences of each retrieved extinction coefficient compared to the
corresponding model grid cell with ∑j

∑
l yC;j,l −HC(xi,k). Here, j is the index of

the extinction profiles within the grid cell i, and the index l depicts the vertical
extinction profile coordinate within a model layer k.
The adjoint CALIOP observation operator is applied to the observation increments
δy?(w)

C = R−1
C (d(t) − HCMtδx(t)), where the inverse CALIOP background error

covariance matrix R−1
C acts as a weighting. Accordingly, the adjoint of Equation (6.5)

is composed of

δx?i,k = δx?i,k + 103

1.45δy
?(w)
C;j,l and

δy?(w)
C;j,l = 0.

(6.6)

Here, δx?i,k and δy?(w)
C;j,l denote the adjoint variables that are transported backward in

time to determine the gradient of the cost function at the initial time.
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6.4 Observability analysis with ESIAS
ESIAS-chem, the ensemble environment of EURAD-IM computes all simulations
with the selected domain properties. The developments described above for the
forward observation operators are adopted to the particle smoother algorithm of
ESIAS-chem. This data assimilation technique is characterized as adjoint-free, such
that the adjoint observation operator implementations are not needed. Here, the
vertical distribution of the volcanic ash relies only on the information gained by
vertical wind shear of horizontal winds.
This work applies ESIAS-chem in order to analyze the observability of transported
volcanic ash clouds. The observability of such an event is closely related to its pre-
dictability (Lorenz [1963]). In the context of atmospheric applications, predictability
describes the likelihood of a true atmospheric state to be represented in NWP or
CTM modeling and their corresponding ensemble extensions. Since quality con-
trolled observations are considered to be closer to the true atmospheric state, data
assimilation constrains the model calculations to a degree depending on the relative
errors. Accordingly, observations limit the ensemble performance.
Here, this predictability is exploited to identify regions and patterns of high ob-
servability where the volcanic ash concentrations are strongly constrained by any
observations within the analysis period. Therefore, the following analysis strategy is
developed:

• Dense mass isopleths (lines of equal masses) provide information about areas,
where the ensemble predictions coincide, supporting likelihood of reliability.

• The comparison of mass isopleths distributions in the background ensemble
run and the analysis ensemble run offers valuable clues on the constraining
impact of the observations.

• The ensemble spread, which can be quantified in terms of the standard de-
viation, provides additional indication of whether the isopleths converge due
to constraints imposed by high observability, or due to conforming outliers
imposed by high stability (negative Lyapunov exponents).

• The weighted ensemble mean is evaluated with regards to the general qualitative
ensemble prediction skills, and hence is accessible for applications with strong
interest in reliability such as aviation.

In Chapter 7, plots of mass isopleths are also referred to as ’spaghetti plots’. Besides
gaining the pure results of observability, the studies of this work are likewise used
for evidence provision of developments in ESIAS.
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For the present work, the eruption of the Eyjafjallajökull volcano during April and
May 2010 was selected to be analyzed as a prototype study, since it depicts a unique
special aerosol event. The eruption affected nearly the whole of Europe due to a
grounding of air traffic for several days in many countries (e. g. Zehner [2010], or
Schumann et al. [2011] refering to EUROCONTROL1 reports). Moreover, explosive
volcanic eruptions are rather exceptional in Europe. Combined with the prevailing
weather conditions, the volcanic ash was transported from Iceland to Central Europe
and dispersed over the continent (e.g. Langmann et al. [2012]). From an assimilation
viewpoint, the Eyjafjallajökull eruption is particularly interesting as it was well
observed from many different observation platforms. Furthermore, the exemplary
investigation of an explosive volcanic eruption is instructive as it poses the challenge
of determining highly variable emission terms.
This work focuses on the first eruptive phase of the Eyjafjallajökull. The ash disper-
sion within the period of 14 April at 00:00UTC to 00:00UTC on 18 April is analyzed
in detail, since they particularly include the special event characteristics described
beforehand. Thus, the developments in observability assessment methodologies are
validated for this scenario. Therefore, all 4D-var analyses are executed on the Jülich
Research on Exascale Cluster Architectures – JURECA (Jülich Supercomputing
Centre [2016]) applying the software Stage 2016a, while the ESIAS-chem experiments
are computed on the Jülich Blue Gene/Q – JUQUEEN supercomputer (Jülich Su-
percomputing Centre [2015]).
This chapter initially describes the volcanic scenario and the meteorological circum-
stances, which controlled the ash transport as well as the observation opportunities.
Further, the two different ways of ensemble generation are presented and the selected
error assumptions are shortly discussed. In total, three different experiments are
performed to study the observability of the volcanic ash event. These include first,
the analysis of a small ensemble using the EURAD-IM 4D-var algorithm and SEVIRI
column mass loading retrievals as observational data. The second experiment inves-
tigates the value of assimilating CALIOP aerosol extinction coefficient profiles in
addition. Finally, the observability of SEVIRI data within ESIAS-chem is evaluated
in a third experiment. The exercised ensemble runs are described, illustrated and
and analyzed in the sections 7.2, 7.3, and 7.4, respectively.

1European organisation for the safety of air navigation
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7.1 General experiment setup

The investigation of the experiments performed in this work requires a detailed
understanding of the aerosol emissions, the subsequent transport, as well as the
known uncertainties. The following sections describe these conditions and present
the similarities and differences between the particular analysis experiments.

7.1.1 Aerosol scenario

The Eyjafjallajökull volcano is located in a glacial area at the south coast of Iceland,
generally rests below an ice cap with a peak height of 1666m, and is one of the
lesser active Icelandic volcanoes. The previous eruption happened between 1821
and 1823, followed by a long period of rest. Since 1994, enhanced seismic activity
and significant crustal deformation were detected in the area around the volcano
(Sigmundsson et al. [2010]).

Figure 7.1: Explosive eruption of the
Eyjafjallajökull volcano on 16 April 2010
(source: Fulle [2010]).

On 20 March 2010, the Eyjafjallajökull
started to erupt after approximately 190
years of rest. This eruption occurred in
a calmer effusive, alkali-basalt releasing
style, with fountains of liquid lava and
fire that spread hundreds of meters in
the air, as well as lava flows that ran
down the slopes and canyons of the vol-
cano (Zehner [2010]).
In the morning of 14 April 2010, the
phreatomagmatic eruption of the Eyja-
fjallajökull started at the central crater
(Gudmundsson et al. [2012]). The en-
counter of the hot lava with water of the melted ice cap and surrounding glaciers
evoked the immediate expansion and vaporization of the water. An ash plume
reaching several thousand meters high was formed, due to small fragments of magma
that were accelerated skywards together with water vapor and gases. Volcanic ash
was raised in heights of the tropopause and temporarily to altitudes of more than
9 km. Between 14 and 18 April, the explosive eruption phase continued with plume
heights pulsating between 5 km and 10 km (Arason et al. [2011]). Figure 7.1 illustrates
the spatial dimensions such a plume can attain using an example from 16 April 2010.
Volcanic activity and therefore the emission strength and emission height reduced
between 19 April and 3 May 2010, during which time the eruption gathered strength.
Thereafter, a second explosive phase lasted until 20 May, whereupon the emission
plume rose again into atmospheric levels of 4-8.5 km altitude. From 20 May on, the
eruption changed from being phreatomagmatic to purely magmatic and decreased
quite fast (Keiding and Sigmarsson [2012]). On 23 May, the Eyjafjallajökull calmed
again and remained inactive since then.
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7.1.2 Meteorological conditions
During the first explosive phase of the Eyjafjallajökull eruption, a well developed high
pressure system extending from the surface to high levels was located south of Iceland.
Its anticyclonic rotation provoked westerly winds along the south coast of Iceland,
such that the volcanic emissions were transported at first towards Scandinavia. This
meteorological situation is shown in Figure 7.2, which displays the WRF forecast
initialized with the ECMWF analysis on 14 April 2010 (left) and 16 April 2010
(right), both at 12:00UTC. The geopotential height at 500 hPa is displayed in color
map, whereas the sea level surface pressure is indicated by white contours. Above
the North Atlantic, the upper flow persisted in a zonal direction over the considered
period. A major trough remained above North-East Europe, while the local minimum
of the 500 hPa geopotential above Central Europe declined from 14 to 16 April. West
of the Iberian Peninsula, a cyclone rested statically and filled slowly until 18 April.
A detailed meteorological overview of the complete eruption period between 14 April
and 23 May 2010 is given by Petersen [2010].

Figure 7.2: Meteorological situation in Europe during the Eyjafjallajökull eruption,
showing the geopotential height at 500 hPa (color coded) and the sea level surface pressure
(white contours), on 14 and 16 April 2010.

Following the flow along the isohypses, the volcanic ash transport pattern featured a
dispersion from the southern tip of Iceland, at first east bound – to Norway, and then
slightly further south over Scotland and the North Sea towards Central Europe. Two
volcanic ash plume branches were established on 15 April, as the ash cloud hit the
low pressure area in Central Europe: one, stretching from the North Sea to North
Norway, crossed Scandinavia eastwards between 15 and 16 April. The second branch
elongated from the west of Ireland to the North Sea, and drifted southwards crossing
Great Britain, the Benelux countries, Germany, and France. However, both branches
were connected, featuring higher concentrations of volcanic ash in the center and
decreasing concentrations towards the edges. Once the volcanic ash plume arrived
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over Southern Germany, its southbound trajectory was blocked by the Alps such
that the ash was transported around a weak high pressure system above France
during 17 and 18 April. The eastern part of the plume was further advected across
Eastern Europe. Between 16 and 22 April, the aerosol layer subsided continuously
until it descended into the planetary boundary layer, where it mixed with the general
boundary layer aerosols.
When considering the observability of the volcanic ash event, the cloud cover must
be examined because it strongly affects the observation wealth as discussed in the
sections 4.1.3 and 4.2.3. To demonstrate the limitations imposed by the cloud cover
of the episode, Figure 7.3 shows true color images from the Moderate-resolution
Imaging Spectroradiometer (MODIS) on board the Terra satellite. The daily pictures
of the cloud distribution above Europe on 14 to 17 April 2010 (upper left to lower
right panel) clearly indicate the potential that the ash mixed with meteorological
clouds and that ash observations from space may have interfered with water and ice
clouds. The cloud patterns remarkably differ between tenuous and thick, as well as
fragmented and widespread. On 14 April, a large gap in the cloud coverage opened
above Southern Norway and Sweden, Denmark and Northern Germany, as well as
above the North and Baltic Seas. This gap moved eastwards on 15 April arriving at
the Baltic states. However, this cloudless area was not penetrated with volcanic ash.
Within this period, the ash plume was farther west as it is visible in beige on the
image from 15 April, spreading from Iceland towards Southern Norway. Thus, the

14/04/2010 15/04/2010

16/04/2010 17/04/2010

Figure 7.3: Cloud cover above Europe during the Eyjafjallajökull eruption illustrated by
daily MODIS (Terra) natural color images of morning overpasses from 14 to 17 April 2010
(source: NASA [2010]).
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conditions to observe the ash transport above the sea were fairly restricted, due to
the widespread cloud cover. Form 16 April onward, a new cloud clear region formed
over the North Sea and the Bay of Biscay, before enlarging and drifting to England,
France, Benelux and Germany on 17 April. The volcanic ash traversed Germany on
16 April, which is depicted on the MODIS image. It appears that the ash interfered
with a thin cloud band. On 17 April, the thinning volcanic ash should have been
well detectable over West and Central Europe.

7.1.3 Ensemble generation
In this study, all ensembles are generated by assigning different volcanic ash emission
profiles to the ensemble members. The meteorological fields, which are responsible
for the ash dispersion, are assumed to be free of significant errors, such that all
ensemble members are driven by the same meteorological WRF forecast.
The ensemble, which is set up for the 4D-var assimilation, is not designed as a
conventional ensemble in the classical sense. Rather, it is designed to reflect the
highest applicable extent of the eruption scenario. This ensemble consists of nine
ensemble members that are chosen to include the potential extremes of the eruption
strengths and heights, and possible emissions in between. Hereby, the ensemble does
not aim to hold uncertainty representations, which are consistent with the analysis,
but to embrace the largest conceivable uncertainties. In all following discussions,
this ensemble is referred to as 4D-var ensemble.
Figure 7.4 illustrates the time series of volcanic ash emission profiles, where each time
series is assigned to one 4D-var ensemble member and extends from 00:00UTC on
14 April to 00:00UTC on 18 April 2010. The emissions of the first ensemble member
(EM-1, upper time series) are based on the Keflavík radar emission height observation
of Arason et al. [2011], and the correspondent mass eruption rates following Mastin
et al. [2009], who estimate the mass flow Fm in g s−1 by

Fm = fρ

(
h

2000

) 1
0.241

. (7.1)

Here, f = 0.02 denotes the fine ash mass fraction, ρ = 2500 kgm−3 is the volcanic
ash density, and h depicts the maximum plume emission height in m. The emissions
are vertically distributed assuming a Poisson distribution according to Webley et al.
[2009]. The emissions are characterized by a very fine temporal resolution of 5min,
with maximum emission heights up to about 10 km. The emission rates of the
second ensemble member (EM-2) were estimated by the EURAD-IM modelers of
the Rhenish Institute of Environmental Research at University of Cologne in their
real time modeling efforts, based on the poor information base in 2010 during the
Eyjafjallajökull eruption. Here, the emission heights vary between 6–11 km, wherein
the emissions are distributed with a Poisson distribution with a constant total emission
rate of 2.5·106 g s−1. The remaining seven ensemble members (EM-3, EM-4, EM-5,
EM-6, EM-7, EM-8, and EM-9) are generated with constant maximum emission
heights of 14 km, 12 km, 10 km, 8 km, 6 km, 4 km, and 2.5 km. The emission rates are
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Figure 7.4: Volcanic ash emission profiles of all nine ensemble members of the 4D-var
ensemble between 14 April, 00:00UTC to 18 April, 00:00UTC.

derived using Equation (7.1) and the emissions are vertically assigned applying the
Poisson distribution. Here, the small discontinuities in the emission profile time series
of ensemble member 4 and 7 are caused by the changing meteorological conditions,
interacting with the discrete, yet pressure dependent height levels of the model.
For the observability assessment applying the particle smoother algorithm within
ESIAS-chem, the ensemble is generated by selecting an individual a priori emission
package for each ensemble member, which constantly emits a normalized a priori ash
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concentration of 100µg cm−3. The ensemble spans 60 ensemble members in total. In
the following sections, this ensemble is called particle smoother (PS) ensemble.
For each ensemble member, the emission duration is restricted to a specific three hour
interval between 06:00UTC on 14 April and 12:00UTC on 15 April. The emission
period is chosen to include only this epoch of the Eyjafjallajökull eruption, in order
to sustain acceptable computational costs. However, this time span is assured to be
reasonable, since the available observations used in the analysis contain observations
of ash clouds, which were released during this temporal interval. Each emission
package is allocated to one single model layer such that the full ensemble covers all
model layers, except the model top layer, during the total emission period.

7.1.4 Error assessment

For the experiments performed with the 4D-var ensemble, observation errors are
extensively investigated. Testing results indicate that it is mostly favorable to not
rely on the original observation errors, which are included in the data sets. Since
the original observation errors are generally close to the order of magnitude of the
retrieved value, and while the volcanic ash quantities span over several orders of
magnitudes, observations with small observation values and small errors tend to
dominate the corrections in the analysis. This is induced by the modality of obtaining
the gradient. The weighting with the inverse observation error covariance matrix
R−1 leads to higher weights for smaller errors. Selecting the same error value for all
observations revealed the most reliable analysis results.
In the 4D-var ensemble studies, the SEVIRI observation error is estimated to a value
of 0.1 gm−2, which is in the range of the mean retrieved error value. The CALIOP
observation error is estimated to be 0.1 km−1. For the PS ensemble analysis, the
SEVIRI observation error is only slightly adjusted, to observation errors of 0.3 gm−2

for ash column mass loading retrievals smaller than 0.8 gm−2, and observation errors
of 0.1 gm−2 for all observations of values higher than 0.8 gm−2. In this way, slightly
higher weights are assigned to higher observation values. To stay with the expressions
of classical data assimilation, the term retrieval is here taken synonymously with the
term of observation. Two ensemble analyses are performed within the PS ensemble
study; one including all available SEVIRI observations, and a second applying only
SEVIRI retrievals with values larger than 0.45 gm−2. The latter ensemble analysis
additionally includes perturbations of the observations yi with yi = yi + 0.75 · dyi · ri,
where dyi is the observation error and ri depicts a random number.
A background error must be defined for the 4D-var ensemble only, while the cost func-
tion applied in the PS ensemble renounces the use of a background error covariance
matrix. Where needed, the background errors are chosen to include a minimum error
for volcanic ash concentrations of 750µgm−3. For background concentrations larger
than 375µgm−3, their doubled amount is assigned as background errors. However,
for the PS ensemble run using perturbed observations, a background error is applied
in order to reduce the variation in the emission factors.
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7.2 4D-var ensemble using SEVIRI retrievals
This first experiment evaluates the analysis of the Eyjafjallajökull ash dispersion
during the period of 14–18 April 2010. Each model run is initialized at 00:00UTC
with a forecast lead time of 24 hours. Thereby, data assimilation windows of 24 hours
are chosen as a reasonable compromise between acceptable computational expendi-
ture and sufficient observational information. All available SEVIRI retrievals are
incorporated in the 4D-var assimilation algorithm. Since no volcanic ash retrievals
are available on 14 April, for that day only forward model runs are performed with
the selected emissions in order to obtain adequate initial values for the next day. For
the remaining period of 15–17 April, ensemble 4D-var assimilation runs are executed,
whereas each ensemble member is initialized by the corresponding analysis of the
previous day, taken as first guess. The 4D-var ensemble is restricted to initial value
optimization, because emission factor optimization is not computationally feasible
due to the long lasting adjoint transport exceeding the defined assimilation window.
Hence, under prevailing restrictions, the observational information cannot be used to
estimate the true emissions by using the adjoint model.

Figure 7.5: MSG-SEVIRI volcanic ash column mass loading retrievals of the Eyjafjalla-
jökull 2010 ash plume on 15 April at 12UTC, 16 April at 12UTC, and 17 April at 04UTC
(cf. Prata and Prata [2012]).

Figure 7.5 illustrates the dispersion of volcanic ash over the European continent as
detected by SEVIRI. Retrievals of vertically integrated volcanic ash concentrations
are displayed at 12:00UTC on 15 and 16 April, and at 04:00UTC on 17 April 2010.
During the evaluated period, volcanic ash is generally retrieved within narrow bands
of clouds, being transported south-east bound from Iceland to the North Sea and
from thereon transversely shifted across Central Europe. Maximum concentrations
in volcanic ash column mass of approximately 4.6 gm−2 are retrieved above the
German-Polish boarder region on 16 April around 12:00UTC. When the volcanic
ash reached the Alps in the late evening of 16 April, the observed ash clouds started
to break up in steadily thinning cloud patches, which further drifted in west and east
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Figure 7.6: Comparison of PM10 time series of the 4D-var ensemble first guesses (frw)
and analyses (ana) with independent observations (OBS) at Schneefernerhaus (Zugspitze)
on 17 April 2010. The analyses are based on the use of SEVIRI retrieval data to optimize
the volcanic ash dispersion between 15 and 18 April.

direction. The three graphs of Figure 7.5 are representative of the very limited data
available for assimilation, due to the extended cloud cover. Hence, the observability of
the first days of the Eyjafjallajökull eruption in 2010 can be considered as constricted.
At first, the performance of the different ensemble members and the benefit of data
assimilation is investigated. Therefore, validation is performed with independent in
situ observations of PM10 concentrations, measured at the environmental research
station Schneefernerhaus at 47.42◦N, 10.98◦E, with an elevation of 2650m a. s. l.
at Zugspitze. PM10 refers to all particulate mass contained in aerosols with a di-
ameter of less than 10µm. Figure 7.6 shows the temporal evolution of measured
PM10 concentrations in comparison with PM10 of first guess and analysis for all
nine ensemble members on 17 April. The observations depict a distinct increase of
PM10 at 11:00UTC, which is associated with the volcanic ash arrival at Zugspitze.
The observations reach a maximum concentration of 50µgm−3 at 21:00UTC. In
contrast, the modeled PM10 concentrations start to increase at 18:00UTC for both
the first guesses and the analyses. All simulations feature maximum values between
20:00UTC and 21:00UTC, followed by a concentration decline until the end of the
day. The assimilation of SEVIRI volcanic ash column mass loadings indicates the
discrepancies between first guesses and analyses. While the PM10 concentrations of
EM-3, EM-4 and EM-5, which consider the highest and strongest volcanic emissions,
are corrected to lower concentrations, the remaining ensemble members are corrected
to higher concentrations. Considering the skill of forward modeling only, EM-4
proceeds closest to the maximum values of the observations. However, examining
the analyses, EM-1 agrees best with the PM10 measurements.
The assimilation rests on observational information obtained by SEVIRI total column



60 Observability Analyses

retrievals, which strongly differ in the spatio-temporal and quantitative volcanic ash
assessment from in situ PM10 measurements. The temporal disagreement in the
ash arrival between the analysis and the reference observations at Zugspitze reveals
the insufficient information content provided by the SEVIRI retrieval. The leading
part of the ash cloud that was detected at Schneefernerhaus between 12:00UTC and
18:00UTC could either not be observed by SEVIRI due to the prevailing cloud cover
or could not be identified as volcanic ash in the retrieval algorithm. An inadequate
vertical redistribution of volcanic ash to the model layers by the adjoint observation
operator is unlikely. The vertical realignment of the ash is carried out according to
the vertical background distribution, whereas the ensemble background includes all
possible height levels, such that a compliance with the late ash arrival of all ensemble
members is inconsistent. Yet, the assimilation of SEVIRI data reduces the spread
among the ensemble members significantly, when regarding the PM10 concentrations.
Consequently, a certain constraining impact of the SEVIRI data to the model state
is identified.
The impact of the assimilation of SEVIRI data on the horizontal dispersion of vol-

Figure 7.7: Horizontal volcanic ash distribution above Europe on 16 April at 13UTC,
as retrieved from SEVIRI observations (upper left), EM-1 background field (upper right),
EM-1 analysis field applying 4D-var assimilation of SEVIRI data (lower left), and the
analysis increment given by the difference between analysis and background field (lower
right). The small circles indicate the location of EARLINET lidar in Leipzig.
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canic ash varies significantly among the ensemble members. Figure 7.7 illustrates
the horizontal ash distribution above Europe on 16 April at 13:00UTC. Retrieved
volcanic ash column mass loadings from SEVIRI observations depict an ash cloud
extending from Central Germany to the southern German-Polish boarder, thinning
over Central Poland, the Kaliningrad Oblast to Lithuania. Three tenuous ash signals
are retrieved in Western Germany, Western Czech Republic, and Eastern Finland.
The analysis results are evaluated by means of EM-1, as it characterizes a suitable
representative of all ensemble members. The volcanic ash background distribution
of EM-1, also displayed in ash column mass loadings, stretches from the West At-
lantic and Southern Great Britain to Poland and northwards to Northern Finland
and North-Eastern Russia. Here, the volcanic ash column mass loadings reach at
most values of 1.0 gm−2. Additionally, a volcanic ash plume is transported from
the Eyjafjallajökull across the North Atlantic towards the coast of Norway, where
maximum values exceed 4.0 gm−2 at regions nearby the erupting volcano. The EM-1
volcanic ash mass loading analysis shows a similar ash distribution as described
by the background. By data assimilation, the model state is corrected to values
between 1.5 gm−2 and 2.5 gm−2 in the region of highest observation values. However,
the analysis increments allow for a better identification of the areas affected by the
assimilation. Positive values of the analysis increments are clearly in compliance
with SEVIRI observations of volcanic ash at the considered time. However, obser-
vations achieved earlier and later in the assimilation window induce changes in the
analysis field in positive as well as negative direction, such as the ash reduction
above Northern France. Apparently, the deficient observability of the ash plume
above the North Atlantic during the entire day results in uncorrected background
knowledge only. Analogous results can be achieved by the corresponding analysis of
all other ensemble members (see Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, and A.8
of AppendixA).
On 16 April, the transit of the Eyjafjallajökull ash plume was well observed by
the EARLINET lidar station in Leipzig, Germany (Ansmann et al. [2010]). The
location of this lidar system at 51.35◦N and 12.43◦E is indicated by the small circle
in the images of Figure 7.7. The plume’s observability allows for further evaluation
of the ensemble and assimilation results. Figure 7.8 shows the modeled vertical ash
concentration profiles of the 4D-var ensemble’s background and analysis fields at
13:00UTC. The background simulations of EM-3 and EM-4 contain two elevated
ash layers between 2–6 km and 9–13 km, while the formation of the upper ash layer
is suppressed in the analysis. Regarding the background states, all nine ensemble
members feature ash layers at altitudes varying between 1 km and 6 km and differing
in ash concentrations between 43µgm−3 to 996µgm−3. In the analysis, the ensemble
spread decreases, such that eight ensemble members approximately concur that the
ash cloud contains its highest concentration at about 2–3 km height. Solely EM-3
exhibits the maximum concentration at 4 km altitude. Furthermore, the range of
maximum ash concentrations of all nine ensemble members is reduced to values
of 260µgm−3 to 688µgm−3 in the analysis. In addition, Figure 7.8 displays the
lidar derived mean backscatter coefficient profiles at 532 nm and 1064 nm, which
are averaged over the period from 12:34UTC to 13:28UTC. In the case of both
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Figure 7.8: Vertical volcanic ash distribution over Leipzig on 16 April at 13UTC:
Concentration profiles of the background (left) and analysis (center) fields of the 4D-var
ensemble, as well as the lidar retrieved mean backscatter coefficient profiles at 532 nm and
1064 nm of the Leipzig EARLINET station (right). The analyses are based on the use of
SEVIRI retrieval data.

wavelengths, two elevated volcanic ash layers are observed at heights of about 3 km
and 5 km. The increased signals below 2 km are most likely due to scattering effects
of the planetary boundary layer. The comparison of the analysis and lidar profiles
supports the conclusion that all nine ensemble members represent the volcanic ash
layers in the correct vertical range. Among all ensemble members, EM-4 is in best
compliance with the lidar observations, as it exclusively resolves two ash layers at
3 km and 4.4 km altitude.
Figure 7.9 combines the mass column loadings obtained from ensemble forecasts,
analyses, three SEVIRI pixels, and lidar measurements for the EARLINET station
in Leipzig on 16 April at 13:00UTC. The bar chart includes the column values from
the background and analysis simulations of all nine 4D-var ensemble members, as
well as the ensemble mean analysis, the mean of SEVIRI observations, and the mass
loading equivalent derived from the EARLINET lidar observations. The latter is
computed by transforming the 532 nm lidar backscatter coefficients into the SEVIRI
observation space. The background simulations reveal large differences in the column
value between the ensemble members. The maximum value of 3.27 gm−2 corresponds
to EM-3, while EM-9 shows the minimum value of 0.09 gm−2. The analysis column
mass loadings illustrate much better agreement laying between 0.77 gm−2 (EM-7)
and 1.26 gm−2 (EM-3). The mean column mass loading of all nine ensemble analyses
accounts for 0.89 gm−2, associated with a standard deviation of ±0.15 gm−2. For
comparison with observational data, the column mass loading of the SEVIRI retrievals
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Figure 7.9: Volcanic ash column mass loadings at the EARLINET station in Leipzig
on 16 April at 13UTC: background (shaded bars – left) and analysis (clear bars – right)
of the 4D-var ensemble, the analysis ensemble mean (Ens Mean, cyan dotted) including
the standard deviation (error bar), SEVIRI observation mean (light gray) calculated from
three retrieved pixels included in the considered model grid cell (dashed clear bars), and
lidar derived mass loading equivalent (dark gray). The analyses are based on the use of
SEVIRI retrieval data.

and the column mass loading equivalent of the lidar observations of Figure 7.8 are
illustrated. In the EURAD-IM numerical grid cell of 15 km horizontal width, which
includes the lidar measurement site, there are three SEVIRI retrieved ash columns.
The limited comparability of gridded model data with observations is accounted for
in the assimilation by equal weighting. All three SEVIRI retrieved column values
are depicted as dashed bars in Figure 7.9 in addition to their mean value. The lidar
equivalent volcanic ash column mass loading is calculated by vertically integrating
all backscatter coefficients at 532 nm wavelength and following Groß et al. [2010], by
further converting the integral applying the mass conversion factor of 1.45 gm−2 and
a lidar ratio of 49 sr.
An ideal ensemble prediction system shows a perfect relationship between ensemble
spread and ensemble mean error (Grimit and Mass [2007]). Regarding the ensemble
analysis of volcanic ash column mass loadings, this objective is well fulfilled at
least for the evaluation at Leipzig. Here, SEVIRI and lidar derived column values
of 0.76 gm−2 and 0.92 gm−2, respectively, lie within the ensemble spread of the
4D-var ensemble analysis. Thereby, the deviations between the mean analysis and
observations remain small.
The skill of the assimilation performance depends on three main criteria: Firstly, the
tangent linear model must approximate the leading processes, describing the dynam-
ics and transformations in the model sufficiently well. Secondly, the discrepancies
between observations and modeled background influence the assimilation achieve-
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ments significantly, and thirdly, the minimization of the cost function is notably
controlled by the quantity of observational information. Accordingly, the identifi-
cation of weak ensemble members is not straightforward. This can be explained
by the evaluation of the cost function during proceeding iterations. Figure 7.10
illustrates the normalized costs, determined by the ratio of iteration dependent
costs and initial costs for the analyses of 15–17 April. The ensemble analysis is
satisfactory if the costs are significantly reduced, unless background model states are
close to the observations. Comparing the cost evaluation of the three assimilation
windows, the ensemble analysis on 16 April appears to be most efficient, as the costs
of all ensemble members are reduced by more than 60%. On 15 and 17 April, the
minimization algorithms of many ensemble members attain a minimum in less than
20 iterations. Hereby, the costs only decrease by 7–61% of the initial costs. The
explicitly successful minimization on 16 April might be linked to the large number
of 36 662 column mass loading retrievals. Comparing the ensemble members among
each other, EM-3 and EM-4 seem to perform best. However, EM-3 and EM-4 include
extremely strong volcanic emissions, such that the disagreement of background state
and observations might be particularly strong, which evokes the significant reduction
of costs.

Figure 7.10: Iterative evolution of normalized cost function (costs J divided by the
initial background costs J0) for the nine members of the 4D-var ensemble. The observation
quantity applied in the analyses on 15 April (left), 16 April (center), and 17 April (right)
differ markedly, counting 19 038, 36 662, and 5 768 SEVIRI retrievals within the 24-hours
assimilation windows, respectively.

The uncertainty of the volcanic ash cloud position as analyzed by the ensemble
spread can be illustrated in spaghetti plots. Figure 7.11 displays spaghetti plots of
1.0 gm−2 column mass isopleths on 15 April at 12:00UTC, 16 April at 12:00UTC,
and 17 April at 04:00UTC, matching the times of the observations illustrated in
Figure 7.5. The isopleths of all nine ensemble members are depicted for the first
guess and the analysis. The isopleth value is selected, such that a concentration
threshold of 2.0mgm−3 is exceeded assuming a realistic volcanic ash layer thickness of
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Figure 7.11: Spaghetti plots of 1.0 gm−2 mass isopleths for all nine 4D-var ensemble
members: first guess (left column) and analysis (right column) are depicted on 15 April at
12UTC, 16 April at 12UTC, and 17 April at 04UTC. The ensemble analysis is based on
the assimilation of SEVIRI data.
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500m (Schumann et al. [2011]). The right graphics column of Figure 7.11 shows the
corresponding assimilation-based adjustment of the ensemble members towards the
observational data. The more the mass isopleths of the different ensemble members
conform in their position, the more likely is the exceedance of the threshold. This is
the essential fact for the provision of a skillful probabilistic prediction.
All first guess graphics have in common that the mass isopleths spread relatively
strong. This originates from the differing emission assumptions of the ensemble
members. The graphics are dominated by the spaghettis of EM-3, EM-4, EM-5,
and EM-6, while all other ensemble members rarely exceed the threshold value.
Assimilating SEVIRI observations, the ensemble analysis reflects the convergence of
the ensemble members in regions of high observability. On 15 April at 12:00UTC,
concentrated isopleths are noticed over the North Atlantic, north of Scotland. Above
the southern west coast of Norway, a similar effect is visible locally. In contrast to
the first guess, the surrounding area is devoid of all ensemble members’ isopleths in
the analysis. The illustrations for 16 April at 12:00UTC show a reduction of the
EM-3, EM-4, and EM-5 volcanic ash concentrations in the regions of Central to
Northern Europe. The area extending from Eastern Germany over Poland towards
Latvia is characterized by concentrated mass isopleths of all nine ensemble members,
revealing excellent observability. Comparing first guess and analysis ensemble on 17
April at 04:00UTC, the decrease of areas, where EM-3 and EM-4 include column
ash loadings higher than 1.0mgm−3, is predominant over France and Switzerland,
as well as in the eastern regions of the model domain. However, there are two local
spots of conforming, dense spaghetti occurrence over Western Ukraine, the threshold
is not reached by all ensemble members though. All regions without changes between
first guess and analysis ensemble are characterized by poor observability and remain
uncertain.
Even if the horizontal illustration of spaghetti plots is already beneficial for air
traffic advice, the vertical position of dense ash clouds and the position of danger-
ous ash concentrations are even more essential. The vertical cross section along a
path reaching from the north western corner of the domain to Southern Romania
is presented in Figure 7.12 for the ensemble first guess and the ensemble analysis
on 16 April at 12:00UTC (also cf. FigureA.18 for the analysis using SEVIRI and
CALIOP data). Here, the ash concentration isopleths of 0.2mgm−3 and 2.0mgm−3

are plotted, corresponding to the limits of the enhanced procedures zone. Volcanic
ash concentrations of 2.0mgm−3 are solely exceeded by EM-4 and EM-5 and are
hardly corrected during the assimilation of SEVIRI data. These high concentrations
appear close to the volcano between 1.5 km and 12 km in altitude at about 63◦N,
and further south only in altitudes between 10 km and 15 km. Since the 2.0mgm−3

threshold is only exceeded by very few ensemble members, and since the analysis
does not reveal corrections towards better agreement of the isopleths, it is rather
unlikely that the selected threshold value is exceeded. The spaghettis presenting
the 0.2mgm−3 threshold show strong adjustments due to the assimilation in the
region between 50◦N and 53◦N, which corresponds to the German-Polish boarder
region. While the first guess ensemble only exhibits the isopleths of five ensemble
members between 1.5 km and 7 km, the analysis reveals isopleths of all nine ensemble
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Figure 7.12: Spaghetti plots of 0.2mgm−3 (solid lines) and 2.0mgm−3 (dashed lines)
volcanic ash concentration isopleths as vertical cross section for all nine 4D-var ensemble
members: first guess (top) and analysis (bottom) on 16 April at 12UTC are depicted along
the red line illustrated in the map inlay of the top panel. The ensemble analysis is based
on the assimilation of SEVIRI data.

members in the altitude range of 0.5–7 km. All other regions depicted in these
plots demonstrate low observability for increased volcanic ash concentrations, as the
spaghettis are not in good agreement.
To conclude the findings of this section, it is emphasized that the assimilation of
SEVIRI volcanic ash column mass loadings well imposes constraints to the ensemble.
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Despite missing height information in the observational data, the vertical distribution
of volcanic ash is forced to height levels in reasonable agreement with lidar based
validation data. The agreement of all ensemble members in specific ash concentration
values is manifested by good observability of the volcanic ash scenario by the SEVIRI
instrument. Consequently, observability determines areas of low uncertainty in the
ensemble analysis that are often locally limited to those regions where the volcanic
ash retrieval actually provides column mass loading data. More observational infor-
mation is still desirable for the assimilation, as the analysis remains uncertain in
large areas of the model domain. Explicit observational information from SEVIRI
on volcanic ash free regions could be especially beneficial for this purpose.

7.3 4D-var ensemble using SEVIRI and CALIOP
retrievals

The second experiment investigates how the information source of CALIOP aerosol
extinction profile data impacts the volcanic ash dispersion ensemble analysis and to
what extent it contributes to the observability of the special aerosol event. Therefore,
the same scenario is evaluated utilizing the identical first guess ensemble setup
and presuming the same analysis condition. The 4D-var assimilation is performed
applying SEVIRI and CALIOP data though. In the considered period, there are five
CALIPSO overpasses available crossing the model domain. Winker et al. [2012] iden-
tified all five overpasses to include observations of volcanic ash. Figure 7.13 shows the
locations of the CALIPSO ground track under specification of the observation times.
Thus, CALIOP observations of one overpass is additionally assimilated within the
assimilation window of 15 April, and observations of two overpasses are assimilated
for the analyses of 16–17 April, respectively.
The new ensemble analysis is evaluated in terms of the PM10 concentrations at
Schneefernerhaus. Primarily, Figure 7.14 shows the same temporal PM10 evolution
graphs as pictured in Figure 7.6. However here, the 4D-var ensemble analysis ad-
ditionally includes the observational information of CALIOP retrievals. Regarding
the comparison with the independent observations at Zugspitze, the amplitudes
of the analyzed volcanic ash arrival are not improved compared to the ensemble
analysis using SEVIRI data only. Generally, the temporal evolution of the ensemble
analysis PM10 concentrations remains unsatisfying. The PM10 concentrations of the
ensemble analysis is slightly increased compared to the ensemble first guess between
00:00UTC and 18:00UTC. However, the assimilated CALIOP aerosol extinction
profiles did not observe the leading part of the ash cloud, apparently. Two aspects
might be responsible: firstly, the CALIPSO overpasses did not cross this volcanic ash
cloud, or secondly, the identification of the ash layer was impossible by reasons of the
prevailing cloud cover. Nevertheless, the spread of the ensemble analysis decreases.
This is traced back to an intensified constraining impact of the additionally exploited
CALIOP data and consequently to an enhanced observability using CALIOP and
SEVIRI data.
Figure 7.15 depicts the volcanic ash column mass loading background, analysis, and
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Figure 7.13: CALIPSO ground tracks of all available overpasses in the model domain
between 15 and 17 April 2010. The aerosol extinction profiles of these observations are
assimilated in the second 4D-var ensemble experiment.

Figure 7.14: Comparison of PM10 time series of the 4D-var ensemble first guesses and
analyses with independent observations at Schneefernerhaus (Zugspitze) on 17 April 2010.
The analyses are based on the use of SEVIRI and CALIOP retrieval data to optimize the
volcanic ash dispersion between 15 and 18 April.

analysis increment of EM-1 on 16 April at 13:00UTC (cf. Figures A.9, A.10, A.11,
A.12, A.13, A.14, A.15, and A.16 of Appendix A for ensemble members EM-2 to
EM-9), comparably to Figure 7.7. For both experiments, the background distribution
of volcanic ash remains unchanged. Thus, the analysis of 15 April, which is used for
the initial states of the background simulations on 16 April, is independent of the
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Figure 7.15: Horizontal volcanic ash distribution above Europe on 16 April at 13UTC:
EM-1 background field (left), EM-1 analysis field applying 4D-var assimilation of SEVIRI
and CALIOP data (center), and the analysis increment given by the difference between
analysis and background field (right). The small circles indicate the location of EARLINET
lidar in Leipzig.

additional assimilation of the CALIOP retrievals on 15 April. The analysis and the
analysis increments present significant corrections of the volcanic ash concentration
above the German-Polish boarder region. In relation to Figure 7.7, which reveals
a maximum increment of volcanic ash of about 1.7 gm−2, here it only accounts for
approximately 1.2 gm−2. Furthermore, tenuous volcanic ash clouds additionally arise
in the analysis, north and south of the main ash cloud.
For the same time, the vertical ash distribution of the two 4D-var ensemble expe-
riments are pictured in Figure 7.16, in addition to an independent lidar equivalent
profile at the EARLINET station of Leipzig. The comparison of both analyses allows
for the identification of the impact of the assimilated CALIOP data on the volcanic
ash distribution. In altitudes of 10–13 km, a low concentrated ash layer is simulated
by four ensemble members. Between 3.5 km and 5.8 km, EM-3 and EM-4 both show
a single ash layer, with maximum concentration below 200µgm−3. The peak of
the volcanic ash layers represented by EM-5 and EM-6 are also slightly shifted to
4 km heights. The remaining ensemble members only include insignificant changes.
The discrepancies among the ensemble members appear to be slightly increased in
contrast to the first experiment. The third graphic of Figure 7.16 illustrates the lidar
mass equivalent, calculated from the 532 nm backscatter coefficients, using the same
lidar ratio and mass conversion factor as described in the previous section. This
mass equivalent depicts a maximum ash concentration of approximately 780µgm−3

at 3.2 km altitude. None of the ensemble members of both experiments captures
this quantity in the analysis. A possible reason is the coarseness of vertical model
grid discretization that prevents the formation of very thin ash layers such as it is
captured by the high resolution lidar measurements. On the basis of these results,
it is not possible to evaluate the influence of the supplementary observational data
source on the analysis skill or the observability.
Figure 7.17 illustrates the mean volcanic ash mass column values of both 4D-var



7.3 4D-var ensemble using SEVIRI and CALIOP retrievals 71

Figure 7.16: Vertical volcanic ash distribution over Leipzig on 16 April at 13UTC:
Concentration profiles of the analysis shown in Figure 7.8 (left) and of the analysis (center)
applying combined SEVIRI and CALIOP retrievals, as well as the mass equivalent derived
from the lidar backscatter coefficient profile at 532 nm of the Leipzig EARLINET station
(right).

Figure 7.17: Volcanic ash column mass loadings at the EARLINET station in Leipzig
on 16 April at 13UTC: analysis ensemble mean applying only SEVIRI retrievals for the
assimilation (Ens Mean SEVIRI, cyan dotted), analysis ensemble mean applying SEVIRI
and CALIOP retrievals for the assimilation (Ens Mean SEVIRI+CALIOP, violet dotted),
both including the standard deviation (error bars), SEVIRI observation mean (light gray)
and lidar derived mass loading equivalent (dark gray).
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ensemble experiments in comparison the observationally derived values from SEVIRI
and the EARLINET lidar in Leipzig on 16 April at 13:00UTC (cf. Figure 7.9). The
ensemble mean of the analysis, which combines the information obtained by SEVIRI
and CALIOP, features the lowest concentration of 0.61 gm−2. In contrast to the anal-
ysis ensemble mean when ingesting SEVIRI retrievals only, the standard deviation of
the second experiment does hardly reach the SEVIRI mean value and, at the same
time, underestimates the lidar derived ash column mass loading markedly. However,
the ensemble spread of both ensemble mean values is approximately equal. The
graphic indicates that at least for the location of Leipzig, the assimilated CALIOP
retrieved aerosol extinction coefficients induce a significant reduction of the vertically
integrated ash concentration. This appears to be rather unfavorable, when comparing
to the observations.
A detailed discussion of the cost function reductions for the investigated experiment
is omitted here, since it is fairly speculative to draw conclusions in terms of the
analysis skill and observability. However, it should be mentioned that the relative
cost reduction turns out to perform less efficient compared to the first experiment
(also cf. FigureA.17 of AppendixA). This might be caused either by an inadequate
number of observations, or by a poor tangent linear approximation within the model.
To reveal the influence of CALIOP data assimilation on the uncertainty of the ash
cloud position, Figure 7.18 shows the same graphics as displayed in Figure 7.11, but
for the 4D-var ensemble analysis applying SEVIRI and CALIOP retrievals. On 15
April at 12:00UTC, all ensemble members feature elevated volcanic ash column mass
loadings over the Atlantic, at about 61◦N and 4◦W. There, the elliptically shaped
isopleths agree fairly well on their local position, while their lengthwise extension
over the North Atlantic varies moderately. Here, the locally enhanced volcanic ash
concentration at the Norwegian coast is also represented by all ensemble members.
However, only EM-3 depicts volcanic ash concentrations above Brittany and the
Irish Sea, which are introduced by the CALIOP retrievals obtained from the satellite
overpass on 15 April at 13:30UTC. The spaghetti plot of the analysis on 16 April at
12:00UTC shows a reduced spatial extent of the concentrated mass isopleths over
Central Europe, just capturing the area from Eastern Germany to Central Poland.
South of this region, the area surrounded by the mass isopleths of EM-3 and EM-4
is slightly enlarged, as well as over the Gulf of Finland. In contrast to the analysis
of the first experiment, the spaghetti plot of 17 April at 04:00UTC depicts less
changes of the isopleths in comparison with the first guess. The area characterized by
concentrations higher than 1.0 gm−2 in the analysis of EM-3 and EM-4 over France
and Switzerland is less reduced, while the locally increased ash concentrations above
the Western Ukraine diminish.
On the basis of these spaghetti plots, the following conclusions can be drawn: Regions,
where the spaghettis of all nine ensemble members densely coincide, are characterized
by good observability. Strengthened observability due to CALIOP observations is
solely given over the North Atlantic and the Norwegian West coast on 15 April.
The confined localization of enhanced ash concentrations above the German-Polish
boarder region on 16 April is either induced by increased observability, or by incon-
sistent ash retrievals of SEVIRI and CALIOP. The latter also explains that the high
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Figure 7.18: Spaghetti plots of 1.0 gm−2 mass isopleths for all nine 4D-var ensemble
members: first guess (left column) and analysis (right column) are depicted on 15 April at
12UTC, 16 April at 12UTC, and 17 April at 04UTC. The ensemble analysis is based on
the assimilation of SEVIRI and CALIOP data.
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Figure 7.19: Comparison of assimilated CALIOP particle extinction retrievals (cf. Winker
et al. [2012], top panel) with spaghetti plots of 0.2mgm−3 volcanic ash concentration
isopleths as vertical cross section along the 16 April 01:20UTC CALIPSO overpass (cf.
Figure 7.13). The mass isopleths of all nine 4D-var ensemble members are depicted for the
first guess (second panel from top), the analysis using SEVIRI observations only (third
panel form top), and the analysis using SEVIRI and CALIOP data (bottom panel) on 16
April at 01UTC.
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concentrations, emitted from EM-3 and EM-4 eruption patterns, are less reduced in
the ensemble analysis.
Since the additional information source of CALIOP particle extinction coefficients
in the 4D-var assimilation does not introduce significant impacts on the Europe-
wide observability of the volcanic ash event, the local influence is now investigated.
Figure 7.19 displays the volcanic ash extinction coefficient retrievals of CALIOP
measurements taken on 16 April at 01:20UTC in the top graphic. A moderate
number of spatially narrow volcanic ash induced patterns is visible along this satellite
path, which is illustrated in Figure 7.13 (yellow line). The retrievals at latitudes
south of 55◦N are rather not caused by volcanic ash, but assimilated. According to
Winker et al. [2012], a well defined ash layer is visible between 4 km and 5 km in
altitude and at latitudes of 58–62◦N, where extinction coefficients increase towards
higher latitudes. Since the model output is only available at full clock hours, the
ensemble results are presented at 01:00UTC. The vertical cross section of 0.2mgm−3

isopleths along the satellite path are illustrated for the ensemble first guess, and the
ensemble analyses of the first and second experiment, respectively. Comparing the
spaghetti plots, it can be seen that the extent of the high ash cloud represented in the
EM-3 and EM-4 first guess runs in height levels between 8 km and 14 km in altitude
and 58–69◦N in latitude is strongly reduced in both analyses. Also the underlying
ash layer at 2–6 km altitude featured by EM-3, EM-4, and EM-5 is significantly
corrected to very small ash cloud patches. However, these patches are not in good
agreement among the ensemble members. Solely the analysis applying SEVIRI and
CALIOP retrievals exhibits dense spaghettis of all nine ensemble members at 62◦N
and at 5 km altitude. At about 47◦N, another punctual ash cloud is reflected by all
ensemble members of the second experiment. This is induced by the locally restricted
but intense extinction coefficient profiles of the CALIOP observations at about 4 km
altitude.
To summarize the results of this section, it is concluded that the additionally as-
similated CALIOP volcanic ash extinction coefficient retrievals do not impact the
ensemble analysis significantly. Only within very restricted areas, the CALIOP ob-
servations induce enhanced observability of the volcanic ash dispersion above Europe.
This is certainly caused by the dense cloud cover above Europe, which impeded the
retrieval of volcanic ash significantly. Moreover, it seems that CALIOP and SEVIRI
retrievals are sometimes inconsistent in terms of the location and quantity of volcanic
ash. The CALIOP retrieval includes much more assumptions and consequently larger
uncertainties in contrast to the SEVIRI retrieval. Hence, the uncertainties of the
CALIOP data prevent the constraining effects on the ensemble analysis of both the
horizontal as well as the vertical distribution of volcanic ash.

7.4 ESIAS-chem ensemble using SEVIRI
retrievals

In this third experiment, the volcanic ash dispersion following the eruption of
the Eyjafjallajökull volcano and its observability is analyzed by means of the PS
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ensemble analyses by ESIAS-chem. The focus is placed on the application of SEVIRI
column mass loading retrievals for emission factor optimization using the particle
smoother algorithm. The skill of the analysis and the evaluation of the observability
is investigated, examining the analysis of the horizontal ash distribution.
Figure 7.20 depicts the resulting spaghetti plots of the full 60 members PS ensemble
on 15 April at 12:00UTC, 16 April at 12:00UTC, 17 April at 04:00UTC, respectively.
Here, the complete SEVIRI observational data set is applied, allowing for the
comparability with the 4D-var ensemble experiments. All graphics illustrate that
the isopleths of the 60 ensemble members mostly concur. Only above Northern
Scandinavia and North-West Russia, the mass isopleths differ significantly on 15 April
at 12:00UTC. In the analyses of 16 and 17 April, there are no ash concentrations
visible above the European continent, which exceed the threshold of 1.0 gm−2. Fairly
small areas of enhanced ash concentrations are only depicted west of Brittany and
in North-West Russia, respectively. Consequently, it can be concluded, that the
PS ensemble analysis is characterized by a weak skill regarding the long range
transport from Iceland to Europe. It is not reasonable to further investigate the
ESIAS results in terms of observability, later than two days after the initial eruption
of the Eyjafjallajökull. Therefore, the comparability with the 4D-var ensemble is not
presented in terms of the temporal evolution of the ash dispersion.

Figure 7.20: Spaghetti plots of 1.0 gm−2 volcanic ash column mass loadings for the PS
ensemble analysis with 60 ensemble members on 15 April at 12UTC, 16 April at 12UTC,
and 17 April at 04UTC. The PS ensemble analysis is based on the assimilation of all
available SEVIRI data.

Instead, the focus is placed on the investigation of the volcanic ash distribution on
16 April at 00:00UTC. Figure 7.21 shows the SEVIRI volcanic ash column mass
loading retrievals at this time. A dense ash cloud extends from the North Sea west of
Denmark to Southern Sweden. The maximum ash column mass loading of 2.17 gm−2

is retrieved over the North Sea close to the Western Danish coast. Another small
and tenuous volcanic ash cloud is located off-shore to South-West Finland.
To increase the impact of observational information in terms of enhanced volcanic
ash concentration values, a second particle smoother experiment is performed. Here,
the SEVIRI data set is confined to all retrieval values higher than 0.45 gm−2 (see
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Figure 7.21: MSG-SEVIRI volcanic ash column mass loading retrievals on 16 April at
00UTC (cf. Prata and Prata [2012]).

FigureA.19). In the following discussions, the PS ensemble analysis using all available
SEVIRI data is referred to as SEVIRI-1 analysis, while the PS ensemble analysis using
the reduced number of SEVIRI retrievals is called SEVIRI-2 analysis. Figure 7.22
presents the spaghetti plots of 1.0 gm−2 volcanic ash column mass loadings for both
ESIAS-chem PS ensemble analyses on 16 April at 00:00UTC. Comparing the two
graphics, the impact of using a reduced number of observations becomes visible. The
SEVIRI-1 analysis features a wide stretching ash cloud from south of Ireland to
North-East Scandinavia. Here, the isopleths conform precisely. North of Scotland and
at the western coast of Denmark, there are two ash clouds exceeding the threshold
value of 1.0 gm−2. Both indicate a compliance of all ensemble members, though
the isopleths are not exactly at the same position. The major ash cloud is also
depicted in the SEVIRI-2 analysis, whereas the spaghetties include a smaller area
above North-West Russia. Here, the isopleths show less compliance, albeit they are
not significantly diverging. The SEVIRI-2 analysis reveals an ash cloud between
Scotland and Norway and another west of Denmark. The latter appears to be much
larger in contrast to its shape in the SEVIRI-1 analysis. The spaghettis are fairly
dense, but not perfectly overlapping. For both analyses, the ash cloud above the
Kattegat and South-West Sweden as well as the ash patch at the Finish coast seem
to be slightly displaced in contrast to the SEVIRI retrievals.
By means of these spaghetti plots, it is rather problematic to identify concentration
patterns, which are controlled by the assimilated observations. Additional information
on the constraining impacts can be gained by examining the ensemble mean and the
ensemble spread. Both are illustrated in Figure 7.23 at the same analysis time for
the SEVIRI-1 and the SEVIRI-2 analyses. The ensemble mean analyses generally
reproduce the volcanic ash distribution as they were depicted in the spaghetti plots,
whereas the areas of low ash concentrations appear close to the contours and over
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Figure 7.22: Spaghetti plots of 1.0 gm−2 volcanic ash column mass loadings of with
60 ensemble members on 16 April at 00UTC: the PS ensemble analysis based on the
assimilation of all available SEVIRI data (SEVIRI-1 analysis, left panel) and the PS
ensemble analysis based on the assimilation of SEVIRI retrievals higher than 0.45 gm−2

(SEVIRI-2 analysis, right panel).

Figure 7.23: Ensemble mean (top panels) and ensemble spread (bottom panels) for the
PS ensemble analyses SEVIRI-1 (left panels) and SEVIRI-2 (right panels) on 16 April at
00UTC. The inserted maps (in the upper panels) enlarges the ensemble mean in the area
of highest SEVIRI retrieval values.
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the North Sea. The highest volcanic ash column mass loadings are located over the
south coast of England in both ensemble mean analyses. The comparison of the
ensemble means with the ensemble spreads reveals that the areas of highest mean
ash column mass loadings represent the areas of increased ensemble spreads. Since
it is assumed that observations constrain the model states, the ensemble spread is
typically reduced, when observations of the considered air masses are available for
the assimilation. This implies that the part of volcanic ash cloud extending from
south of Ireland to Southern Sweden is not observable. The same can be concluded
for the higher concentrated volcanic ash in Northern Scandinavia.
To evaluate the predictive skill of the ensemble, the ensemble mean analyses are
compared with the SEVIRI observations at this time. Therefore, the inlay maps in
Figure 7.23 illustrate the ensemble mean column mass loadings of the PS analyses in
the region of highest SEVIRI retrieval column mass loadings. Here, the color bar is
chosen to include the same dimensions as displayed in Figure 7.21. It appears that
SEVIRI-2 analysis represents the observations better than the SEVIRI-1 analysis. The
SEVIRI-2 analysis provides maximum volcanic ash column mass loadings of 1.4 gm−2,
while the SEVIRI-1 analysis obtains maximum values of 1.1 gm−2. As maximum
volcanic ash loads are especially important for aviation control and guidance, the
SEVIRI-2 analysis is now investigated in more depth.

Figure 7.24: Comparison of PM10 observations (black line) with the PS ensemble
analysis SEVIRI-2 of volcanic ash concentrations (60 ensemble members in colored lines)
at Schneefernerhaus (Zugspitze) on 17 April 2010. The ensemble mean of the SEVIRI-2
analysis is depicted as red dashed line.

Figure 7.24 shows the time series of volcanic ash concentrations of all 60 ensemble
members at Schneefernerhaus in Southern Germany on 17 April 2010 (cf. FigureA.20
for the SEVIRI-1 analysis). In comparison, their ensemble mean is illustrated as well
as the observed PM10 concentrations. All ensemble members depict a similar temporal
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evolution of the volcanic ash concentration at Zugspitze: Here, the volcanic ash cloud
arrives past 16:00UTC. The maximum ash concentrations are reached after about
five hours. During the following 4–5 hours all concentrations decrease to zero level.
As seen in Figure 7.6 and Figure 7.14, the measured PM10 concentration increases
more than 5 hours earlier compared to the ensemble analysis. Between 19:00UTC
and 22:00UTC, the observed concentration is well included in the ensemble spread
of the PS ensemble analysis. The ensemble mean shows higher ash concentrations.
Here, it must be considered that the measured concentrations are not directly
comparable with the ensemble analysis, since the plotted quantities differ. The
ensemble results include concentrations of pure volcanic ash of all particle sizes,
whereas the measurements contain concentrations of all aerosol species of particles
smaller than 10µm in diameter. However, both depict the ash arrival and evolution
at Zugspitze with sufficient precision. As already discussed in previous sections, the
assimilated SEVIRI retrievals do not provide satisfying observability of the volcanic
ash arriving at Schneefernerhaus on 17 April. Thus, also the particle smoother
analysis cannot adequately represent the volcanic ash dispersion.
In the PS ensemble analysis, emission factors are optimized to find the best estimate
of the emission source parameters, volcanic ash emission height and strength, which
strongly control the volcanic ash dispersion. Figure 7.25 illustrates the analyzed
volcanic ash emission profiles of ensemble member 30 in the atmospheric column
above the Eyjafjallajökull. Ensemble member 30 is randomly chosen and acts here as
example of possible emission estimates. Compared to the other ensemble members,

Figure 7.25: Analyzed volcanic ash emission profiles of PS ensemble member 30 between
14 April at 06UTC to 15 April at 12UTC.
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member 30 shows slightly stronger emissions, whereas the emission pattern are similar
for the full ensemble. The emission factor correction in the analysis is restricted to
the period between 14 April at 06:00UTC and 15 April at 12UTC. The optimized
emission packages are representative for one model layer and a time interval of three
hours. The temporal evolution of volcanic ash emissions reveals that emissions are
strongest between 09:00UTC on 14 April and 03:00UTC on 15 April at heights of
2.5–9.0 km above the volcano’s summit. The emitted mass, containing the maximum
emission rate of 17.85 t s−1 is analyzed at 21:00–00:00UTC at 8.2–9.0 km altitude.
Besides the strong and connected emission plume, several separated emission patches
are visible. To some extend, this complies with the natural behavior of emission
plumes. Compared to other studies such as performed for example by Stohl et al.
[2011], the analyzed emission rates are estimated in the same order of magnitude.
However, the observability of the volcanic ash dispersion above Europe does not
sufficiently constrain the volcanic emissions of the Eyjafjallajökull eruption in 2010
accessing SEVIRI retrievals only. This conclusion does not only rest upon the
analysis of the emission profiles (Figure 7.25), but predominantly on the analysis of
the volcanic ash dispersion as described in this section before.
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The observability of sudden aerosol injections in the Earth’s atmosphere has been
investigated, analyzing the aerosol scenario of the Eyjafjallajökull eruption in April
2010. The volcanic eruption is selected as a prototype aerosol event without validity
of traditional assumptions of data assimilation like the tangent linear approxima-
tion. Decision making with respect to air traffic safety during a volcanic eruption is
challenging. Aerosol dispersion predictions are generally based on numerical models.
These predictions can be improved by applying data assimilation or inverse modeling,
which allow for the supplemental inclusion of information obtained by observations.
However, the resulting model analysis should be carefully evaluated with regard to
uncertainties and in consideration of the applied knowledge. Here, the degree of
observability of the volcanic ash dispersion scenario plays a major role. The combina-
tion of modeled and observed ash concentrations allows for the qualified identification
of regions with critical threshold exceedance. During the Eyjafjallajökull eruption
2010, the air traffic regulatory responsibilities, and aircraft and engine manufacturers
decided to define three flight zones (Prata and Rose [2015]): In any area where
volcanic ash concentrations were higher than 4.0mgm−3, air traffic was prohibited
(no fly zone). Aircraft were permitted to fly in volcanic ash concentrations between
0.2mgm−3 and 2.0mgm−3 (enhanced procedures zone), while aircraft engines were
only permitted to be exposed to concentrations between 2.0mgm−3 and 4.0mgm−3

for a very limited time.
To identify, which volcanic ash concentration patterns of the prediction are con-
trolled by modeled and observed knowledge, two ensemble-based data assimilation
approaches have been implemented and their potential and limits have been val-
idated: First, an EURAD-IM 4D-var ensemble including nine ensemble members
was evaluated. The ensemble members were chosen to incorporate the extremes of
the volcanic event in terms of minimum and maximum eruption plume heights and
volcanic ash mass eruption rates, as well as different realizations in between. For each
ensemble member, initial values were optimized independently within daily 24-hours
assimilation windows. Secondly, a 60 member particle smoother ensemble analysis
was performed with the ESIAS-chem system, which also integrates the EURAD-IM
as kernel. Here, resampling is performed utilizing the ensemble members’ individual
weights that rely on the cost function. Thus, emission factor optimization is realized
by scaling the ensembles variance to achieve the best estimate of emission profiles.
Both analysis techniques pursue different optimization strategies, such that a di-
rect comparison of their skills is difficult. However, a novel concept to analyze the
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observability of unexpected aerosol events has been realized. It is applicable to
any ensemble-based spatio-temporal analysis. The density of mass concentration
isopleths by spaghetti plots is interpreted in terms of ensemble mean and ensemble
spread. The following conclusions can be drawn within the limits of the selected case
study: The 4D-var ensemble analysis sustains the long-range transport of volcanic
ash from Iceland beyond Central Europe. In contrast, the PS ensemble does not
sufficiently resolve increased volcanic ash concentrations later than two days after the
initial eruption. Regarding the observability of the aerosol dispersion above Europe,
the 4D-var ensemble performs well to determine the impact of the observational
information. The PS ensemble analysis demonstrates compliance of all ensemble
members regarding the position of threshold exceedance at least for vertically inte-
grated ash concentrations. The appraisal of the strong observation values appears to
be better matching for the 4D-var ensemble, whereas the PS ensemble analysis can
be improved by assimilating only increased observations.
In addition, volcanic ash retrieval data from two completely different remote sensing
observation principles have been assimilated. The main focus was placed on SEVIRI
volcanic ash column mass loadings. For this purpose, the theoretical approach of
the Kolmogorov-Sinai entropy emphasizes that vertically integrated column mass
loadings can provide valuable information on the vertical distribution of volcanic ash
by exploiting the dynamics of the system such as wind shear. The 4D-var and PS
analyses proved this and revealed that the vertical position of the volcanic ash cloud
could be well constrained with the SEVIRI retrievals. The information gain due to
additionally assimilated particle extinction coefficients from CALIOP was assessed
with the 4D-var ensemble. The CALIOP retrievals did neither improve the volcanic
ash dispersion prediction significantly nor demonstrated enhanced observability. This
might be caused by the processed error estimations, where SEVIRI retrievals were
assigned less uncertainties compared to CALIOP retrievals.
A major issue in aerosol dispersion modeling is the constraining effect of properly sim-
ulated meteorological transport. Inverse modeling or data assimilation are negatively
affected, if the applied observations cannot be reproduced in the model due to a
misleading transport. Hence, temporally successive observations of the same volcanic
ash cloud can be mutually exclusive for the assimilation system. This might be a
reason, why the long-range transport could not be maintained in the PS ensemble
analysis. Likewise, this explains that the PS ensemble mean better represents the
maximum concentrations applying only increased observation values.
A final judgment, whether the 4D-var ensemble or the PS ensemble performs better, is
not feasible based on this single case study. It is most likely that the large fragmented
cloud cover above Europe impaired both SEVIRI and CALIOP observational data
sets and hence, affected the observability analyses. Other factors might also hamper
a final conclusion and are further discussed in the outlook. Yet, both algorithms
may perform well in a less cloudy environment and may show potential for skillful
ensemble predictions and decision making in the context of hazardous sudden aerosol
injections.
For future research on the observability of sudden aerosol injections with ensemble-
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based data assimilation techniques the following amendment activities are suggested.
The ensemble setup should include the uncertainties of the prevailing meteorological
conditions. Therefore, the combination with ESIAS-met is desirable for both assimi-
lation techniques. Similarly, the influence of the ensemble size on the observability
analysis could be further investigated. For the 4D-var ensemble analysis, it should
be considered to allow the interaction between the different ensemble members. This
interaction could be realized in terms of resampling as it is done within the particle
smoother method. Thus, ensemble members describing unrealistic or unlikely atmo-
spheric conditions can be rejected to influence the analysis. These conditions likewise
include the meteorology as well as the emission characteristics and their consequences.
To that effect, the aerosol dispersion could be constrained more specifically. For
the ESIAS-chem emission factor optimization, it is recommended to increase the
temporal resolution of constant emission profiles. The temporal evolution of the
emission plume at the volcano appears much more dynamical compared to three-
hourly estimates. This is emphasized by the radar observations of the Eyjafjallajökull
emission plume described by Arason et al. [2011].
The observational information provided by SEVIRI and CALIOP retrievals is limited
in case of the Eyjafjallajökull eruption 2010. On the one hand, this is owed to
the prevailing cloud cover above Europe during the eruption. On the other hand,
the measurements and retrievals are restricted by optical limitations and several
assumptions used in the retrieval algorithms. To gain more information from obser-
vations additional satellite missions could be consulted. For example, these could
be observations obtained by infrared sounders such as IASI (e. g. Newman et al.
[2012]), spectroradiometers such as MODIS (e. g. Picchiani et al. [2011]), or other
lidar instruments such as CATS (e. g. Hughes et al. [2016]). For future aerosol
scenarios, the information content gained from forthcoming Sentinel-4, Sentinel-5
and Sentinel-5P (already launched in Oct. 2017) as well as from the EarthCARE
(Earth Clouds, Aerosols and Radiation Explorer) mission should be investigated.
The assimilation of SO2 observations might contribute useful information. According
to Thomas and Prata [2011], SO2 can serve as a proxy for volcanic ash. Hence, the
assimilation of OMI (Ozone Monitoring Instrument) or GOME-2 (Global Ozone
Monitoring Experiment-2) data might be beneficial also regarding the prediction
of gaseous emissions and sulfate. Observations provided by ground-based networks,
such as EARLINET or obtained during research aircraft flights, allow for a different
perspective and insight to the transported aerosol. Another improvement towards
better observability might be realized by adapting the observation operators from re-
trieval assimilation towards radiance data assimilation. However, this requires special
algorithmic features. The radiative transport of aerosol signatures or lidar signals
must be described sufficiently well. Especially scattering effects are challenging to
resolve. Mie scattering algorithms often ignore the complex shape of the particulates
as well as multiple scattering. This can be respected to a certain extent by the
T-matrix method (Mishchenko et al. [1996]) or by a data base approach, resting
upon combinatory radiative transport methods as performed by Meng et al. [2010].
Finally, the current and new developments should be applied to different unexpected
aerosol scenarios. Considering former volcanic eruptions, the Grímsvötn eruption in
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2011 and the Holuhraun fissure eruption during 2014–2015 characterize scenarios
with appropriate potential to be studied with an European chemistry transport
model such as EURAD-IM. The developed system can also be tested on a near real
time basis during future eruptions. Here, the needed observational data availability
might be the most critical component of the prediction and analysis skill. Also for
other aerosol emission events, the particle dispersion analysis and observability study
can provide valuable information for decision making. Moreover, the investigation of
numerical simulations of tropospheric transport of mineral dust (e. g. Klose and
Shao [2013]), biomass burning aerosol (e. g. Freitas et al. [2007]; Rio et al. [2010])
or accidentally released substances (e. g. Winiarek et al. [2012]) with respect to
observability might provide particular understanding of the emission parameters as
well as the aerosols’ properties, dynamics and chemical transformation processes.
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This appendix is designed to give further insight into the experiments studied
in Chapter 7. Therefore, the SectionA.1 includes graphics related to the 4D-var
ensemble analysis, applying SEVIRI retrievals only. SectionA.2 provides additional
plots to the 4D-var ensemble analysis using SEVIRI and CALIOP retrievals. Finally,
SectionA.3 presents contributing results to the ESIAS-chem PS analysis assimilating
SEVIRI data in the context of emission factor optimization. All figures are related
to the aerosol scenario of the Eyjafjallajökull eruption in 2010.

A.1 Supplements to the 4D-var ensemble analysis
using SEVIRI retrievals

Figure A.1: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.7 but for EM-2. The 4D-var analysis applies SEVIRI retrieval data.
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Figure A.2: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.7 but for EM-3. The 4D-var analysis applies SEVIRI retrieval data.

Figure A.3: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.7 but for EM-4. The 4D-var analysis applies SEVIRI retrieval data.
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Figure A.4: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.7 but for EM-5. The 4D-var analysis applies SEVIRI retrieval data.

Figure A.5: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.7 but for EM-6. The 4D-var analysis applies SEVIRI retrieval data.
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Figure A.6: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.7 but for EM-7. The 4D-var analysis applies SEVIRI retrieval data.

Figure A.7: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.7 but for EM-8. The 4D-var analysis applies SEVIRI retrieval data.
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Figure A.8: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.7 but for EM-9. The 4D-var analysis applies SEVIRI retrieval data.

A.2 Supplements to the 4D-var ensemble analysis
using SEVIRI and CALIOP retrievals

Figure A.9: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.15 but for EM-2. The 4D-var analysis applies SEVIRI and CALIOP retrievals.
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Figure A.10: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.15 but for EM-3. The 4D-var analysis applies SEVIRI and CALIOP retrievals.

Figure A.11: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.15 but for EM-4. The 4D-var analysis applies SEVIRI and CALIOP retrievals.

Figure A.12: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.15 but for EM-5. The 4D-var analysis applies SEVIRI and CALIOP retrievals.
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Figure A.13: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.15 but for EM-6. The 4D-var analysis applies SEVIRI and CALIOP retrievals.

Figure A.14: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.15 but for EM-7. The 4D-var analysis applies SEVIRI and CALIOP retrievals.

Figure A.15: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.15 but for EM-8. The 4D-var analysis applies SEVIRI and CALIOP retrievals.
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Figure A.16: Horizontal ash distribution above Europe on 16 April at 13UTC as displayed
in Figure 7.15 but for EM-9. The 4D-var analysis applies SEVIRI and CALIOP retrievals.

Figure A.17: Iterative evolution of normalized cost function (costs J divided by the
initial background costs J0) for the nine members of the 4D-var ensemble. The observation
quantity applied in the analyses on 15 April (left), 16 April (center), and 17 April (right)
differ markedly, counting 20 308, 44 475, and 12 832 SEVIRI and CALIOP retrievals within
the 24-hours assimilation windows, respectively.
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Figure A.18: Spaghetti plots of 0.2mgm−3 (solid lines) and 2.0mgm−3 (dashed lines)
volcanic ash concentration isopleths as vertical cross section for all nine 4D-var ensemble
members: first guess (top) and analysis (bottom) on 16 April at 12UTC are depicted along
the red line illustrated in the map inlay of the top panel. The ensemble analysis is based
on the assimilation of SEVIRI and CALIOP data.
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A.3 Supplements to the ESIAS-chem ensemble
analysis using SEVIRI retrievals

Figure A.19: Spaghetti plots of 1.0 gm−2 volcanic ash column mass loadings for the PS
ensemble analysis SEVIRI-2 with 60 ensemble members on 15 April at 12UTC, 16 April at
12UTC, and 17 April at 04UTC. The PS ensemble analysis is based on the assimilation of
SEVIRI data > 0.45 gm−2.

Figure A.20: Comparison of PM10 observations (black line) with the PS ensemble
analysis SEVIRI-1 of volcanic ash concentrations (60 ensemble members in colored lines)
at Schneefernerhaus (Zugspitze) on 17 April 2010. The ensemble mean of the SEVIRI-1
analysis is depicted as red dashed line.



Bibliography

Abida, R. and M. Bocquet, Targeting of observations for accidental atmospheric release
monitoring, Atmos. Environ., 43, (40), 6312 – 6327, 2009.

Ackermann, I. J., MADE: Entwicklung und Anwendung eines Aerosol-Dynamikmodells
für dreidimensionale Chemie-Transport-Simulationen in der Troposphäre, Ph.D. Thesis,
Institut für Geophysik und Meteorologie der Universität zu Köln, 1997.

Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski and
U. Shankar, Modal Aerosol Dynamics model for Europe: Development and first
applications, Atmos. Environ., 32, 2981–2999, 1998.

Adachi, K., M. Kajino, Y. Zaizen and Y. Igarashi, Emission of spherical cesium-
bearing particles from an early stage of the Fukushima nuclear accident, Scient. Reports,
3, 2013.

Aminou, D. M. A., MSG’s SEVIRI instrument, ESA Bulletin, 111, 15–17, 2002.

Andreae, M. O. and P. Merlet, Emission of trace gases and aerosols from biomass
burning, Global Biogeochem. Cycles, 15, (4), 955–966, 2001.

Ansmann, A., M. Tesche, S. Gross, V. Freudenthaler, P. Seifert, A. Hiebsch,
J. Schmidt, U. Wandinger, I. Mattis, M. D. and M. Wiegner, The 16 April
2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET
photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, 2010.

Ansmann, A., M. Tesche, P. Seifert, S. Groß, V. Freudenthaler, A. Apituley,
K. M. Wilson, I. Serikov, H. Linné, B. Heinold, A. Hiebsch, F. Schnell,
J. Schmidt, I. Mattis, U. Wandinger and M. Wiegner, Ash and fine-mode
particle mass profiles from EARLINET–AERONET observations over central Europe
after the eruptions of the Eyjafjallajökull volcano in 2010, J. Geophys. Res.: Atmos.,
116, (D20), 2011.

Ansmann, A., P. Seifert, M. Tesche and U. Wandinger, Profiling of fine and coarse
particle mass: case studies of saharan dust and Eyjafjallajökull/Grimsvötn volcanic
plumes, Atmos. Chem. Phys., 12, (20), 9399–9415, 2012.

Arason, P., G. N. Petersen and H. Bjornsson, Observations of the altitude of the vol-
canic plume during the eruption of Eyjafjallajökull, April-May 2010, Earth Sys. Sci. Data,
3, (1), 9–17, 2011.



100 Bibliography

Argyris, J., G. Faust, M. Haase and R. Friedrich, Die Erforschung des Chaos -
Eine Einführung in die Theorie nichtlinearer Systeme, Springer-Verlag Berlin Heidelberg,
2010.

Baker, N. L. and R. Daley, Observation and background adjoint sensitivity in the
adaptive observation-targeting problem, Q. J. Royal Meteorol. Soc., 126, (565), 1431–
1454, 2000.

Banks, J. and H. Brindley, Evaluation of MSG-SEVIRI mineral dust retrieval products
over North Africa and the Middle East, Remote Sens. Environ., 128, (Supplement C),
58 – 73, 2013.

Batista, P., C. Silvestre and P. Oliveira, On the observability of linear motion
quantities in navigation systems, Systems Control Lett., 60, (2), 101 – 110, 2011.

Bauer, S. E., Y. Balkanski, M. Schulz, D. A. Hauglustaine and F. Dentener,
Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on
tropospheric ozone chemistry and comparison to observations, J. Geophys. Res.: Atmos.,
109, (D2), 2004.

Benedetti, A., J. W. Kaiser, J.-J. Morcrette, R. Eresmaa and S. Lu, Simulations
of volcanic plumes with the ECMWF/MACC aerosol system, ECMWF Techn. Memo.,
653, 2011.

Berndt, J., On the predictability of exceptional error events in wind power forecasting – an
ultra large ensemble approach –, Ph.D. Thesis, Institut für Geophysik und Meteorologie
der Universität zu Köln, 2018.

Bielli, S., M. Grzeschik, E. Richard, C. Flamant, C. Champollion, C. Kiemle,
M. Dorninger and P. Brousseau, Assimilation of water-vapour airborne lidar obser-
vations: impact study on the COPS precipitation forecasts, Q. J. Royal Meteorol. Soc.,
138, (667), 1652–1667, 2012.

Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-
M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S. K. Satheesh,
S. Sherwood, B. Stevens and X. Y. Zhang, Clouds and Aerosols, in Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by
T. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia,
V. Bex, and P. Midgley, Cambridge Univ. Press, Cambridge, UK and New York, USA,
2013.

Bouttier, F. and P. Courtier, Data assimilation concepts and methods, ECMWF
Meteorological Training Course Lecture Series, 1999.

Bouttier, F. and G. Kelly, Observing-system experiments in the ECMWF 4D-var data
assimilation system, Q. J. Royal Meteorol. Soc., 127, (574), 1469–1488, 2001.

Brewer, J., Z. Huang, A. K. Singh, M. Misra and J. Hahn, Sensor network design
via observability analysis and principal component analysis, Ind. Eng. Chem. Res., 46,
(24), 8026–8032, 2007.



Bibliography 101

Buizza, R., P. L. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu and M. Wei,
A comparison of the ecmwf, msc, and ncep global ensemble prediction systems,
Month. Weath. Rev., 133, (5), 1076–1097, 2005.

Buizza, R., C. Cardinali, G. Kelly and J.-N. Thépaut, The value of observa-
tions part II: The value of observations located in singular-vector-based target areas,
Q. J. Royal Meteorol. Soc., 133, (628), 1817–1832, 2007.

Burton, M., Chapter 10 - Quantitative ground-based imaging of volcanic ash, in Volcanic
Ash, edited by S. Mackie, K. Cashman, H. Ricketts, A. Rust, and M. Watson, 175 – 185,
Elsevier, 2016.

Burton, M., F. Prata and U. Platt, Volcanological applications of so2 cameras,
J. Volcanol. Geotherm. Res., 300, (Supplement C), 2 – 6, 2015.

CALIPSO Science Team, CALIPSO/CALIOP Level 2, Lidar Aerosol Profile Data,
version 4.10, NASA Atmospheric Science Data Center (ASDC), Accessed 14 July 2017,
Hampton, VA, USA, 2016.

Cardinali, C., Monitoring the observation impact on the short-range forecast,
Q. J. Royal Meteorol. Soc., 135, (638), 239–250, 2009.

Cashman, K. and A. Rust, Volcanic ash: Generation and spatial variations, in Volcanic
Ash, edited by S. Mackie, K. Cashman, H. Ricketts, A. Rust, and M. Watson, 5 – 22,
Elsevier, 2016.

Chester, D. K., Volcanoes, society, and culture, in Volcanoes and the Environment,
404–439, Cambridge Univ. Press, 2005.

Clarisse, L., F. Prata, J.-L. Lacour, D. Hurtmans, C. Clerbaux and P.-F. Co-
heur, A correlation method for volcanic ash detection using hyperspectral infrared
measurements, Geophys. Res. Lett., 37, (19), 2010.

Courtier, P., J.-N. Thépaut and A. Hollingsworth, A strategy for operational
implementation of 4D-Var, using an incremental approach, Q. J. Royal Meteorol. Soc.,
120, (519), 1367–1387, 1994.

Daley, R., Atmospheric data analysis, Cambridge Univ. Press, 1991.

Denlinger, R. P., M. Pavolonis and J. Sieglaff, A robust method to forecast volcanic
ash clouds, J. Geophys. Res.: Atmos., 117, (D13), 2012.

Dubuisson, P., H. Herbin, F. Minvielle, M. Compiègne, F. Thieuleux, F. Parol
and J. Pelon, Remote sensing of volcanic ash plumes from thermal infrared: a case
study analysis from SEVIRI, MODIS and IASI instruments, Atmos. Meas. Tech., 7, (2),
359–371, 2014.

Ebel, A., H. Elbern, H. Feldmann, H. J. Jakobs, C. Kessler, M. Mem-
mesheimer, A. Oberreuter and G. Piekorz, Air pollution studies with the EURAD
model system (3), vol 120, Mitteilungen aus dem Institut für Geophysik und Meteorologie
der Universität zu Köln, 1997.



102 Bibliography

Eckhardt, S., A. J. Prata, P. Seibert, K. Stebel and A. Stohl, Estimation of the
vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using
satellite column measurements and inverse transport modeling, Atmos. Chem. Phys., 8,
(14), 3881–3897, 2008.

Elbern, H. and H. Schmidt, Ozone episode analysis by four-dimensional variational
chemistry data assimilation, J. Geophys. Res.: Atmos., 106, (D4), 3569–3590, 2001.

Elbern, H. and H. Schmidt, Chemical 4D variational data assimilation and its numerical
implications for case study analyses, in IMA volumes in Mathematics and its Applications,
Atmospheric Modeling, edited by D. P. Chock and G. R. Carmichael, vol 130, 165–184,
2002.

Elbern, H., H. Schmidt and A. Ebel, Variational data assimilation for tropospheric
chemistry modeling, J. Geophys. Res., 102, (D13), 15,967–15,985, 1997.

Elbern, H., H. Schmidt, O. Talagrand and A. Ebel, 4D-variational data assimilation
with an adjoint air quality model for emission analysis, Environ. Model. and Software,
15, (6), 539–548, 2000.

Elbern, H., A. Strunk, H. Schmidt and O. Talagrand, Emission rate and chemical
state estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, (14),
3749–3769, 2007.

Engelen, R. J. and A. P. McNally, Estimating atmospheric CO2 from advanced
infrared satellite radiances within an operational four-dimensional variational (4D-Var)
data assimilation system: Results and validation, J. Geophys. Res.: Atmos., 110, (D18),
2005.

ESA, Artist’s view of Meteosat Second Generation (MSG), http://www.esa.int/
spaceinimages/ Images/2002/07/Meteosat_Second_Generation, accessed 29 Sep 2017,
2002.

Evensen, G., Data assimilation: the ensemble Kalman filter, Springer Science & Business
Media, 2009.

Flemming, J. and A. Inness, Volcanic sulfur dioxide plume forecasts based on UV
satellite retrievals for the 2011 Grímsvötn and the 2010 Eyjafjallajökull eruption, J. Geo-
phys. Res.: Atmos., 118, (17), 10,172–10,189, 2013.

Flentje, H., H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer,
W. Steinbrecht, W. Thomas, A. Werner and W. Fricke, The Eyjafjallajökull
eruption in April 2010 - detection of volcanic plume using in-situ measurements, ozone
sondes and lidar-ceilometer profiles, Academic Press, 10, 10085–10092, 2010.

Folch, A., A. Costa and G. Macedonio, FPLUME-1.0: an integral volcanic plume
model accounting for ash aggregation, Geosci. Model Dev., 9, (1), 431–450, 2016.

Formenti, P., W. Elbert, W. Maenhaut, J. Haywood and M. O. Andreae, Chem-
ical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE)
airborne campaign in the Cape Verde region, September 2000, J. Geophys. Res.: Atmos.,
108, (D18), 2003.



Bibliography 103

Fourrié, N., D. Marchal, F. Rabier, B. Chapnik and G. Desroziers, Impact study
of the 2003 North Atlantic THORPEX Regional Campaign, Q. J. Royal Meteorol. Soc.,
132, (615), 275–295, 2006.

Francis, P. N., M. C. Cooke and R. W. Saunders, Retrieval of physical properties
of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajökull eruption,
J. Geophys. Res.: Atmos., 117, (D20), 2012.

Franke, P., Quantitative estimation of unexpected emissions in the atmosphere by stochas-
tic inversion techniques, Ph.D. Thesis, Institut für Geophysik und Meteorologie der
Universität zu Köln, 2018.

Freitas, S. R., K. M. Longo, R. Chatfield, D. Latham, M. A. F. Silva Dias,
M. O. Andreae, E. Prins, J. C. Santos, R. Gielow and J. A. Carvalho Jr.,
Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric
transport models, Atmos. Chem. Phys., 7, (13), 3385–3398, 2007.

Friedlander, S. K., Smoke, Dust and Haze, John Wiley and Sons, New York, 1977.

Fu, G., A. Heemink, S. Lu, A. Segers, K. Weber and H.-X. Lin, Model-based
aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements,
Atmos. Chem. Phys., 16, (14), 9189–9200, 2016.

Fu, G., F. Prata, H. X. Lin, A. Heemink, A. Segers and S. Lu, Data assimilation
for volcanic ash plumes using a satellite observational operator: a case study on the
2010 Eyjafjallajökull volcanic eruption, Atmos. Chem. Phys., 17, (2), 1187–1205, 2017.

Fulle, M., Massive ash emission from the Eyjafjallajökull eruption, http://www.swisseduc.
ch/stromboli/perm/iceland/eyafallajokull_20100416-en.html?id=1 , accessed 24 Oct
2017, 2010.

Galmarini, S., R. Bianconi, R. Bellasio and G. Graziani, Forecasting the conse-
quences of accidental releases of radionuclides in the atmosphere from ensemble dispersion
modelling, J. Environ. Radioact., 57, (3), 203 – 219, 2001.

Gasteiger, J., S. Gross, V. Freudenthaler and M. Wiegner, Volcanic ash from
Iceland over Munich: mass concentration retrieved from ground-based remote sensing
measurements, Atmos. Chem. Phys., 11, (5), 2209–2223, 2011.

Geiger, H., I. Barnes, I. Bejan, T. Benter and M. Spittler, The tropospheric
degradation of isoprene: an updated module for the regional atmospheric chemistry
mechanism, Atmos. Environ., 37, (11), 1503 – 1519, 2003.

Gelaro, R., R. H. Langland, S. Pellerin and R. Todling, The THORPEX obser-
vation impact intercomparison experiment, Month. Weath. Rev., 138, (11), 4009–4025,
2010.

Goris, N. and H. Elbern, Singular vector decomposition for sensitivity analyses of
tropospheric chemical scenarios, Atmos. Chem. Phys., 13, (9), 5063–5087, 2013.

Goris, N. and H. Elbern, Singular vector-based targeted observations of chem-
ical constituents: description and first application of the EURAD-IM-SVA v1.0,
Geosci. Model Dev., 8, (12), 3929–3945, 2015.



104 Bibliography

Grattan, J. P. and F. B. Pyatt, Acid damage to vegetation following the Laki fissure
eruption in 1783 – an historical review, Sci. Total Environ., 151, (3), 241–247, 1994.

Griffin, D. W. and C. A. Kellogg, Dust storms and their impact on ocean and human
health: Dust in Earth’s atmosphere, EcoHealth, 1, (3), 284–295, 2004.

Grimit, E. P. and C. F. Mass, Measuring the ensemble spread-error relationship with
a probabilistic approach: Stochastic ensemble results, Month. Weath. Rev., 135, (1),
203–221, 2007.

Groß S., J. Gasteiger, V. Freudenthaler, F. Schnell and M. Wiegner, Charac-
terization of the Eyjafjallajökull ash-plume by means of lidar measurements over the
Munich EARLINET-site, vol 7832, 2010.

Gudmundsson, M. T., T. Thordarson, A. Höskuldsson, G. Larsen, H. Björns-
son, F. J. Prata, B. Oddsson, E. Magnùsson, T. Högnadòttir, G. N. Pert-
ersen, C. L. Hayward, J. A. Stevenson and I. Jònsdòttir, Ash generation and
distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland, Scient. Re-
ports, 2, (572), 2012.

Hansell, A. L., C. J. Horwell and C. Oppenheimer, The health hazards of volcanoes
and geothermal areas, Occup. Environ. Med., 63, (2), 149–156, 2006.

Hass, H., Description of the EURAD Chemistry–Transport–Model Version 2 (CTM2),
vol 83, Mitteilungen aus dem Institut für Geophysik und Meteorologie der Universität
zu Köln, 1991.

Hendricks, J., M. Righi and V. Aquila, Global atmospheric aerosol modeling, in
Atmospheric Physics: Background – Methods – Trends, edited by U. Schumann, 561–576,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

Hoffman, R. N. and R. Atlas, Future observing system simulation experiments,
Bull. Amer. Meteor. Soc., 97, (9), 1601–1616, 2016.

Hughes, E. J., J. Yorks, N. A. Krotkov, A. M. da Silva and M. McGill, Using
CATS near-real-time lidar observations to monitor and constrain volcanic sulfur dioxide
(SO2) forecasts, Geophys. Res. Lett., 43, (20), 11,089–11,097, 2016.

Huijnen, V., H. J. Eskes, A. Poupkou, H. Elbern, K. F. Boersma, G. Foret,
M. Sofiev, A. Valdebenito, J. Flemming, O. Stein, A. Gross, L. Robert-
son, M. D’Isidoro, I. Kioutsioukis, E. Friese, B. Amstrup, R. Bergstrom,
A. Strunk, J. Vira, D. Zyryanov, A. Maurizi, D. Melas, V.-H. Peuch and
C. Zerefos, Comparison of OMI NO2 tropospheric columns with an ensemble of global
and European regional air quality models, Atmos. Chem. Phys., 10, (7), 3273–3296,
2010.

Hunt, B. R., E. J. Kostelich and I. Szunyogh, Efficient data assimilation for spa-
tiotemporal chaos: A local ensemble transform Kalman filter, Physica D: Nonlinear
Phenomena, 230, (1), 112 – 126, 2007.



Bibliography 105

Hunt, W. H., D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker
and C. Weimer, CALIPSO Lidar description and performance assessment, J. At-
mos. Ocean. Technol., 26, (7), 1214–1228, 2009.

Joly, A., K. A. Browning, P. Bessemoulin, J.-P. Cammas, G. Caniaux, J.-P.
Chalon, S. A. Clough, R. Dirks, K. A. Emanuel, L. Eymard, R. Gall, T. D.
Hewson, P. H. Hildebrand, D. Jorgensen, F. Lalaurette, R. H. Langland,
Y. Lemaître, P. Mascart, J. A. Moore, P. O. Persson, F. Roux, M. A. Shapiro,
C. Snyder, Z. Toth and R. M. Wakimoto, Overview of the field phase of the fronts
and Atlantic Storm-Track EXperiment (FASTEX) project, Q. J. Royal Meteorol. Soc.,
125, (561), 3131–3163, 1999.

Jülich Supercomputing Centre, JUQUEEN: IBM Blue Gene/Q Supercomputer System
at the Jülich Supercomputing Centre, Journal of large-scale research facilities, 1, (A1),
2015.

Jülich Supercomputing Centre, JURECA: General-purpose supercomputer at Jülich
Supercomputing Centre, Journal of large-scale research facilities, 2, (A62), 2016.

Kahn, R. A. and J. Limbacher, Eyjafjallajökull volcano plume particle-type character-
ization from space-based multi-angle imaging, Atmos. Chem. Phys., 12, (20), 9459–9477,
2012.

Kahnert, M., On the observability of chemical and physical aerosol properties by optical
observations: inverse modelling with variational data assimilation, Tellus, 61, (5), 2009.

Kalnay, E., Atmospheric modeling, data assimilation, and predictability, Cam-
bridge Univ. Press, 2003.

Kalnay, E., Y. Ota, T. Miyoshi and J. Liu, A simpler formulation of forecast
sensitivity to observations: application to ensemble Kalman filters, Tellus A, 64, (0),
2012.

Keiding, J. K. and O. Sigmarsson, Geothermobarometry of the 2010 Eyjafjalla-
jökull eruption: New constraints on Icelandic magma plumbing systems, J. Geo-
phys. Res.: Sol. Earth, 117, (B9), 2012.

Khattatov, B. V., J. C. Gille, L. V. Lyjak, G. P. Brasseur, V. L. Dvortsov,
A. E. Roche and J. W. Waters, Assimilation of photochemically active species and
a case analysis of UARS data, J. Geophys. Res.: Atmos., 104, (D15), 18715–18737, 1999.

Kim, Y. H., H. Tong, M. Daniels, E. Boykin, Q. T. Krantz, J. McGee, M. Hays,
K. Kovalcik, J. A. Dye and M. I. Gilmour, Cardiopulmonary toxicity of peat
wildfire particulate matter and the predictive utility of precision cut lung slices, Part. Fi-
bre Toxicol., 11, (1), 29, 2014.

King, S., W. Kang and L. Xu, Observability for optimal sensor locations in data
assimilation, Int. J. Dynam. Control, 3, (4), 416–424, 2015.

Klose, M. and Y. Shao, Large-eddy simulation of turbulent dust emission, Aeolian Res.,
8, (Supplement C), 49 – 58, 2013.



106 Bibliography

König, M. and E. de Coning, The MSG global instability indices product and its use
as a nowcasting tool, Weather Forecast., 24, (1), 272–285, 2009.

Kristiansen, N. I., A. Stohl, A. J. Prata, A. Richter, S. Eckhardt, P. Seib-
ert, A. Hoffmann, C. Ritter, L. Bitar, T. J. Duck and K. Stebel, Remote
sensing and inverse transport modeling of the Kasatochi eruption sulfur dioxide cloud,
J. Geophys. Res.: Atmos., 115, (D2), 2010.

Kristiansen, N. I., A. Stohl, A. J. Prata, N. Bukowiecki, H. Dacre, S. Eck-
hardt, S. Henne, M. C. Hort, B. T. Johnson, F. Marenco, B. Neininger,
O. Reitebuch, P. Seibert, D. J. Thomson, H. N. Webster and B. Weinzierl,
Performance assessment of a volcanic ash transport model mini-ensemble used for inverse
modeling of the 2010 Eyjafjallajökull eruption, J. Geophys. Res.: Atmos., 117, (D20),
2012.

Kylling, A., M. Kahnert, H. Lindqvist and T. Nousiainen, Volcanic ash infrared
signature: porous non-spherical ash particle shapes compared to homogeneous spherical
ash particles, Atmos. Meas. Tech., 7, (4), 919–929, 2014.

Kylling, A., N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde and
J. Gasteiger, A model sensitivity study of the impact of clouds on satellite detec-
tion and retrieval of volcanic ash, Atmos. Meas. Tech., 8, (5), 1935–1949, 2015.

Lahoz, W. A., B. Khattatov and R. Mâenard, Data assimilation: making sense of
observations, Springer, 2010.

Lahoz, W. A., V.-H. Peuch, J. Orphal, J.-L. Attié, K. Chance, X. Liu, D. Ed-
wards, H. Elbern, J.-M. Flaud, M. Claeyman and L. E. Amraoui, Monitoring
air quality from space: The case for the geostationary platform, Bull. Amer. Meteor. Soc.,
93, (2), 221–233, 2012.

Langland, R. H., Issues in targeted observing, Q. J. Royal Meteorol. Soc., 131, (613),
3409–3425, 2005.

Langland, R. H. and N. L. Baker, Estimation of observation impact using the NRL
atmospheric variational data assimilation adjoint system, Tellus A, 56, (3), 189–201,
2004.

Langland, R. H., Z. Toth, R. Gelaro, I. Szunyogh, M. A. Shapiro, S. J. Majum-
dar, R. E. Morss, G. D. Rohaly, C. Velden, N. Bond and C. H. Bishop, The
North Pacific Experiment (NORPEX-98): Targeted observations for improved North
American weather forecasts, Bull. Amer. Meteor. Soc., 80, (7), 1363–1384, 1999.

Langmann, B., B. Duncan, C. Textor, J. Trentmann and G. R. van der Werf,
Vegetation fire emissions and their impact on air pollution and climate, Atmos. Environ.,
43, (1), 107 – 116, 2009.

Langmann, B., A. Folch, M. Hensch and V. Matthias, Volcanic ash over Europe
during the eruption of Eyjafjallajökull on Iceland, April-May 2010, Atmos. Environ., 48,
(Supplement C), 1 – 8, 2012.



Bibliography 107

Lee, K. H., Z. Li, Y. J. Kim and A. Kokhanovsky, Atmospheric aerosol monitoring
from satellite observations: A history of three decades, in Atmospheric and Biological
Environmental Monitoring, edited by Y. J. Kim, U. Platt, M. B. Gu, and H. Iwahashi,
13–38, Springer Netherlands, Dordrecht, 2009.

Liao, W., A. Sandu, G. R. Carmichael and T. Chai, Singular vector analysis for
atmospheric chemical transport models, Month. Weath. Rev., 134, (9), 2443–2465, 2006.

Li, Y. P., H. Elbern, K. D. Lu, E. Friese, A. Kiendler-Scharr, T. F. Mentel,
X. S. Wang, A. Wahner and Y. H. Zhang, Updated aerosol module and its
application to simulate secondary organic aerosols during impact campaign may 2008,
Atmos. Chem. Phys., 13, (13), 6289–6304, 2013.

Li, T., S. Sun, T. P. Sattar and J. M. Corchado, Fight sample degeneracy and
impoverishment in particle filters: A review of intelligent approaches, Expert Syst. Appl.,
41, (8), 3944 – 3954, 2014.

Liu, D. C. and J. Nocedal, On the limited memory BFGS method for large scale
optimization, Math. Programming, 45, 503–528, 1989.

Liu, Z., M. Vaughan, D. Winker, C. Kittaka, B. Getzewich, R. Kuehn,
A. Omar, K. Powell, C. Trepte and C. Hostetler, The CALIPSO lidar cloud
and aerosol discrimination: Version 2 algorithm and initial assessment of performance,
J. Atmos. Ocean. Technol., 26, (7), 1198–1213, 2009.

Lorenc, A. C., Modelling of error covariances by 4d-var data assimilation, Q. J. Royal Me-
teorol. Soc., 129, (595), 3167–3182, 2003.

Lorenz, E. N., Deterministic nonperiodic flow, J. Atmospheric Sci., 20, 130–141, 1963.

Lorenz, E. N., A study of the predictability of a 28-variable atmospheric model, Tellus,
17, (3), 321–333, 1965.

Lu, S., H. X. Lin, A. W. Heemink, G. Fu and A. J. Segers, Estimation of volcanic
ash emissions using trajectory-based 4D-var data assimilation, Month. Weath. Rev., 144,
(2), 575–589, 2016.

Mackie, S. and M. Watson, Probabilistic detection of volcanic ash using a Bayesian
approach, J. Geophys. Res.: Atmos., 119, (5), 2409–2428, 2014.

Majumdar, S. J., A review of targeted observations, Bull. Amer. Meteor. Soc., 97, (12),
2287–2303, 2016.

Majumdar, S. J., S. Aberson, C. Bishop, C. Cardinali, J. Caughey, A. Doe-
renbecher, P. Gauthier, R. Gelaro, T. Hamill, R. Langland et al., Targeted
observations for improving numerical weather prediction: an overview, World Weath.
Res. Programme/THORPEX Pub., 15, 37, 2011.

Marécal, V., V.-H. Peuch, C. Andersson, S. Andersson, J. Arteta, M. Beek-
mann, A. Benedictow, R. Bergström, B. Bessagnet, A. Cansado, F. Chéroux,
A. Colette, A. Coman, R. L. Curier, H. A. C. Denier van der Gon, A. Drouin,
H. Elbern, E. Emili, R. J. Engelen, H. J. Eskes, G. Foret, E. Friese, M. Gauss,



108 Bibliography

C. Giannaros, J. Guth, M. Joly, E. Jaumouillé, B. Josse, N. Kadygrov, J. W.
Kaiser, K. Krajsek, J. Kuenen, U. Kumar, N. Liora, E. Lopez, L. Malherbe,
I. Martinez, D. Melas, F. Meleux, L. Menut, P. Moinat, T. Morales, J. Par-
mentier, A. Piacentini, M. Plu, A. Poupkou, S. Queguiner, L. Robertson,
L. Rouïl, M. Schaap, A. Segers, M. Sofiev, L. Tarasson, M. Thomas, R. Tim-
mermans, A. Valdebenito, P. van Velthoven, R. van Versendaal, J. Vira and
A. Ung, A regional air quality forecasting system over Europe: the MACC-II daily
ensemble production, Geosci. Model Dev., 8, (9), 2777–2813, 2015.

Martin, J. H. and S. E. Fitzwater, Iron deficiency limits phytoplankton growth in the
north-east Pacific subarctic, Nature, 331, (6154), 341–343, 1988.

Mastin, L., M. Guffanti, R. Servranckx, P. Webley, S. Barsotti, K. Dean,
A. Durant, J. Ewert, A. Neri, W. Rose, D. Schneider, L. Siebert, B. Stunder,
G. Swanson, A. Tupper, A. Volentik and C. Waythomas, A multidisciplinary
effort to assign realistic source parameters to models of volcanic ash-cloud transport and
dispersion during eruptions, J. Volcanol. Geotherm. Res., 186, (1), 10 – 21, 2009.

McRae, G. J., W. R. Goodin and J. H. Seinfeld, Numerical solution of the atmo-
spheric diffusion equation for chemically reacting flows, J. Comp. Phys., 45, (1), 1 – 42,
1982.

Memmesheimer, M., J. Tippke, A. Ebel, H. Hass, H. J. Jakobs and M. Laube,
On the use of EMEP emission inventories for European scale air pollution modelling with
the EURAD model, in Proceedings of the EMEP workshop on photooxidant modelling for
long range transport in relation to abatement strategies, edited by J. Pankrath, 307–324,
UBA, Berlin, 1991.

Meng, Z., P. Yang, G. W. Kattawar, L. Bi, K. Liou and I. Laszlo, Single-scattering
properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to
radiative transfer calculations, J. Aerosol Sci., 41, (5), 501 – 512, 2010.

Millington, S. C., R. W. Saunders, P. N. Francis and H. N. Webster, Simulated
volcanic ash imagery: A method to compare NAME ash concentration forecasts with
SEVIRI imagery for the Eyjafjallajökull eruption in 2010, J. Geophys. Res.: Atmos.,
117, (D20), 2012.

Minikin, A., A. Petzold, B. Weinzierl and J.-F. Gayet, In situ measurement
methods for atmospheric aerosol particles and cloud elements, in Atmospheric Physics:
Background – Methods – Trends, edited by U. Schumann, 297–315, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

Mishchenko, M. I., L. D. Travis and D. W. Mackowski, T–matrix computations
of light scattering by nonspherical particles: A review, J. Quant. Spectr. Radiat. Transf.,
55, (5), 535–575, 1996.

Monteiro, A., I. Ribeiro, O. Tchepel, E. Sá, J. Ferreira, A. Carvalho, V. Mar-
tins, A. Strunk, S. Galmarini, H. Elbern, M. Schaap, P. Builtjes, A. I. Mi-
randa and C. Borrego, Bias correction techniques to improve air quality ensemble
predictions: Focus on O3 and PM Over Portugal, Environ. Model. Assess., 18, (5),
533–546, 2013.



Bibliography 109

Morcrette, J.-J., O. Boucher, L. Jones, D. Salmond, P. Bechtold, A. Beljaars,
A. Benedetti, A. Bonet, J. W. Kaiser, M. Razinger, M. Schulz, S. Serrar,
A. J. Simmons, M. Sofiev, M. Suttie, A. M. Tompkins and A. Untch, Aerosol
analysis and forecast in the European Centre for Medium-Range Weather Forecasts
Integrated Forecast System: Forward modeling, J. Geophys. Res.: Atmos., 114, (D6),
2009.

Murphy, J. M., D. M. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb,
M. Collins and D. A. Stainforth, Quantification of modelling uncertainties in
a large ensemble of climate change simulations, Nature, 430, (7001), 768–772, 2004.

Nakamura, G. and R. Potthast, Inverse Modeling, 2053-2563, IOP Publishing, 2015.

NASA, CALIPSO satellite image, https://www.nasa.gov/ images/content/133388main_
Calipso4_print.tif , accessed 02 Oct 2017, 2005.

NASA, MODIS (Terra) Corrected Reflectance (True Color), https://worldview.earthdata.
nasa.gov/?p=geographic&l=VIIRS_SNPP_CorrectedReflectance_TrueColor(hidden)
,MODIS_Aqua_CorrectedReflectance_TrueColor(hidden),MODIS_Terra_
CorrectedReflectance_TrueColor,Reference_Labels(hidden),Reference_Features,
Coastlines&t=2010-04-17&z=3&v=-61.923096976016666,14.619427789363897,73.
07690302398333,82.0491152893639 , accessed 23 Oct 2017, 2010.

Navon, I. M., Data assimilation for numerical weather prediction: A review, in Data
Assimilation for Atmospheric, Oceanic and Hydrologic Applications, edited by S. K. Park
and L. Xu, 21–65, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Nelder, J. A. and R. Mead, A simplex method for function minimization, Comput. J.,
7, (4), 308–313, 1965.

Newman, S. M., L. Clarisse, D. Hurtmans, F. Marenco, B. Johnson, K. Turn-
bull, S. Havemann, A. J. Baran, D. O’Sullivan and J. Haywood, A case study
of observations of volcanic ash from the Eyjafjallajökull eruption: 2. Airborne and
satellite radiative measurements, J. Geophys. Res.: Atmos., 117, (D20), 2012.

Nieradzik, L. P., Four-Dimensional Variational Assimilation of Aerosol Data From
In-Situ and Remote Sensing Platforms, Ph.D. Thesis, Institut für Geophysik und Meteo-
rologie der Universität zu Köln, 2011.

Omar, A. H., D. M. Winker, C. Kittaka, M. A. Vaughan, Z. Liu, Y. Hu, C. R.
Trepte, R. R. Rogers, R. A. Ferrare, K.-P. Lee, R. E. Kuehn and C. A.
Hostetler, The CALIPSO automated aerosol classification and lidar ratio selection
algorithm, J. Atmos. Ocean. Technol., 26, (10), 1994–2014, 2009.

Orlanski, I., A rational subdivision of scales for atmospheric processes, Bull. Amer. Me-
teor. Soc., 56, 527–530, 1975.

Oxford Economics, The economic impacts of air travel restrictions due to volcanic ash,
A report prepared for Airbus, 2010.



110 Bibliography

Pappalardo, G., L. Mona, G. D’Amico, U. Wandinger, M. Adam, A. Amodeo,
A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A.
Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi,
V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Gri-
gorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné,
F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev,
F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone,
C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A.
Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov,
N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wieg-
ner and K. M. Wilson, Four-dimensional distribution of the 2010 Eyjafjallajökull
volcanic cloud over Europe observed by EARLINET, Atmos. Chem. Phys., 13, (8),
4429–4450, 2013.

Pavolonis, M. J., W. F. Feltz, A. K. Heidinger and G. M. Gallina, A daytime
complement to the reverse absorption technique for improved automated detection of
volcanic ash, J. Atmos. Ocean. Technol., 23, (11), 1422–1444, 2006.

Pavolonis, M. J., A. K. Heidinger and J. Sieglaff, Automated retrievals of vol-
canic ash and dust cloud properties from upwelling infrared measurements, J. Geo-
phys. Res.: Atmos., 118, (3), 1436–1458, 2013.

Pesin, Y. B., Characteristic Lyapunov exponents and smooth ergodic theory,
Russ. Math. Surv., 32, 55, 1977.

Petersen, G. N., A short meteorological overview of the Eyjafjallajökull eruption 14
April-23 May 2010, Weather, 65, (8), 203–207, 2010.

Petzold, A., V. Thouret, C. Gerbig, A. Zahn, C. A. M. Brenninkmeijer, M. Gal-
lagher, M. Hermann, M. Pontaud, H. Ziereis, D. Boulanger, J. Marshall,
P. Nédélec, H. G. J. Smit, U. Friess, J.-M. Flaud, A. Wahner, J.-P. Cam-
mas, A. Volz-Thomas and IAGOS TEAM, Global-scale atmosphere monitoring by
in-service aircraft - current achievements and future prospects of the european research
infrastructure IAGOS, Tellus B, 67, (1), 28452, 2015.

Picchiani, M., M. Chini, S. Corradini, L. Merucci, P. Sellitto, F. Del Frate and
S. Stramondo, Volcanic ash detection and retrievals using MODIS data by means of
neural networks, Atmos. Meas. Tech., 4, (12), 2619, 2011.

Prata, A. J., Observations of volcanic ash clouds in the 10-12 µm window using AVHRR/2
data, Int. J. Remote. Sens., 10, (4-5), 751–761, 1989.

Prata, A. and C. Bernardo, Retrieval of volcanic ash particle size, mass and optical
depth from a ground-based thermal infrared camera, J. Volcanol. Geotherm. Res., 186,
(1), 91 – 107, 2009.

Prata, A. J. and I. F. Grant, Retrieval of microphysical and morphological properties
of volcanic ash plumes from satellite data: Application to Mt Ruapehu, New Zealand,
Q. J. Royal Meteorol. Soc., 127, (576), 2153–2179, 2001.

Prata, A. J. and J. Kerkmann, Simultaneous retrieval of volcanic ash and SO2 using
MSG-SEVIRI measurements, Geophys. Res. Lett., 34, (5), 2007.



Bibliography 111

Prata, A. J. and A. T. Prata, Eyjafjallajökull volcanic ash concentrations determined
using spin enhanced visible and infrared imager measurements, J. Geophys. Res.: Atmos.,
117, (D20), 2012.

Prata, F. and B. Rose, Chapter 52 - Volcanic ash hazards to aviation, in The Encyclo-
pedia of Volcanoes (Second Edition), edited by H. Sigurdsson, 911 – 934, Academic Press,
Amsterdam, second edition Auflage, 2015.

Prospero, J. M., Long-term measurements of the transport of African mineral dust to the
southeastern United States: Implications for regional air quality, J. Geophys. Res.: At-
mos., 104, (D13), 15917–15927, 1999.

Pöschl, U., Atmospheric aerosols: Composition, transformation, climate and health
effects, Angew. Chem. Int. Ed., 44, (46), 7520–7540, 2005.

Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf and A. Simmons, The
ECMWF operational implementation of four-dimensional variational assimilation. I:
Experimental results with simplified physics, Q. J. Royal Meteorol. Soc., 126, (564),
1143–1170, 2000.

Rio, C., F. Hourdin and A. Chédin, Numerical simulation of tropospheric injection
of biomass burning products by pyro-thermal plumes, Atmos. Chem. Phys., 10, (8),
3463–3478, 2010.

Robock, A., Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, 2000.

Sandu, A., Targeted observations for atmospheric chemistry and transport models, in
Computational Science – ICCS 2006: 6th International Conference, Reading, UK, May
28-31, 2006, Proceedings, Part I, edited by V. N. Alexandrov, G. D. van Albada, P. M. A.
Sloot, and J. Dongarra, 712–719, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota and A. Ratier,
An Introduction to Meteosat Second Generation (MSG), Bull. Amer. Meteor. Soc., 83,
(7), 977–992, 2002.

Schmetz, J., Y. Govaerts, M. König, H.-J. Lutz, A. Ratier and S. Tjemkes, A
Short Introduction to Meteosat Second Generation (MSG), CIRA, Colorado State Univ.:
Fort Collins, CO, USA, 2005.

Schumann, U., B. Weinzierl, O. Reitebuch, H. Schlager, A. Minikin, C. Forster,
R. Baumann, T. Sailer, k. Graf, H. Mannstein, C. Voigt, S. Rahm,
R. Simmet, M. Scheibe, M. Lichtenstern, P. Stock, H. Rüba, D. Schäu-
ble, A. Tafferner, M. Rautenhaus, T. Gerz, H. Ziereis, M. Krautstrunk,
C. Mallaun, J.-F. Gayet, K. Lieke, K. Kandler, M. Ebert, S. Weinbruch,
A. Stohl, J. Gasteiger, S. Gross, V. Freudenthaler, M. Wiegner, A. Ans-
mann, A. Tesche, H. Olafsson and K. Sturm, Airborne observations of the Ey-
jafjalla volcano ash cloud over Europe during air space closure in April and May 2010,
Atmos. Chem. Phys., 11, 2245–2279, 2011.

Senf, F., F. Dietzsch, A. Hünerbein and H. Deneke, Characterization of initiation
and growth of selected severe convective storms over central Europe with MSG-SEVIRI,
J. Appl. Meteor. Climatol., 54, (1), 207–224, 2015.



112 Bibliography

Shao, Y., K.-H. Wyrwoll, A. Chappell, J. Huang, Z. Lin, G. H. McTainsh,
M. Mikami, T. Y. Tanaka, X. Wang and S. Yoon, Dust cycle: An emerging core
theme in earth system science, Aeolian Res., 2, (4), 181 – 204, 2011.

Shiraiwa, M., K. Selzle and U. Pöschl, Hazardous components and health effects
of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic
compounds and allergenic proteins, Free Radic. Res., 46, (8), 927–939, 2012.

Sigmundsson, F., S. Hreinsdóttir, A. Hooper, T. Árnadóttir, R. Pedersen,
M. J. Roberts, N. Óskarsson, A. Auriac, J. Decriem, P. Einarsson et al.,
Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption, Nature, 468, (7322),
426–430, 2010.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G.
Duda, X.-Y. Huang, W. Wang and J. G. Powers, A description of the advanced
research WRF version 3. NCAR Tech, technical report, Note NCAR/TN-4751STR,
2008.

Snyder, C., T. Bengtsson, P. Bickel and J. Anderson, Obstacles to high-dimensional
particle filtering, Month. Weath. Rev., 136, (12), 4629–4640, 2008.

Sokolik, I. N. and O. B. Toon, Incorporation of mineralogical composition into models of
the radiative properties of mineral aerosol from uv to ir wavelengths, J. Geophys. Res.: At-
mos., 104, (D8), 9423–9444, 1999.

Sommer, M. and M. Weissmann, Ensemble-based approximation of observation impact
using an observation-based verification metric, Tellus A, 68, (1), 27885, 2016.

Steensen, B. M., A. Kylling, N. I. Kristiansen and M. Schulz, Uncertainty as-
sessment and applicability of an inversion method for volcanic ash forecasting, At-
mos. Chem. Phys., 17, (14), 9205–9222, 2017.

Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang,
A. J. Illingworth, E. J. O’Connor, W. B. Rossow, S. L. Durden, S. D. Miller,
R. T. Austin, A. Benedetti, C. Mitrescu and T. C. S. Team, The CloudSat
mission and the A-Train, Bull. Amer. Meteor. Soc., 83, (12), 1771–1790, 2002.

Stohl, A., A. J. Prata, S. Eckhardt, L. Clarisse, A. Durant, S. Henne, N. I.
Kristiansen, A. Minikin, U. Schumann, P. Seibert, K. Stebel, H. E. Thomas,
T. Thorsteinsson, K. Tørseth and B. Weinzierl, Determination of time- and
height-resolved volcanic ash emissions and their use for quantitative ash dispersion
modeling: the 2010 Eyjafjallajökull eruption, Atmos. Chem. Phys., 11, (9), 4333–4351,
2011.

Strunk, A., Tropospheric Chemical State Estimation by Four-Dimensional Variational
Data Assimilation on Nested Grids, Ph.D. Thesis, Institut für Geophysik und Meteorolo-
gie der Universität zu Köln, 2006.

Suzuki, T. et al., A theoretical model for dispersion of tephra, in Arc volcanism: physics
and tectonics, vol 95, 113, Terra Scientific Publishing Company (TERRAPUB), 1983.



Bibliography 113

Szunyogh, I., Z. Toth, A. V. Zimin, S. J. Majumdar and A. Persson, Propagation
of the effect of targeted observations: The 2000 Winter Storm Reconnaissance Program,
Month. Weath. Rev., 130, (5), 1144–1165, 2002.

Talagrand, O., Assimilation of observations, an introduction, J. Meteor. Soc. Japan, 75,
(1B), 191–209, 1997.

Tegen, I. and I. Fung, Modeling of mineral dust in the atmosphere: Sources, transport,
and optical thickness, J. Geophys. Res.: Atmos., 99, (D11), 22897–22914, 1994.

Thomas, H. E. and A. J. Prata, Sulphur dioxide as a volcanic ash proxy during the
April-May 2010 eruption of Eyjafjallajökull volcano, Iceland, Atmos. Chem. Phys., 11,
(14), 6871–6880, 2011.

Thomas, H. E. and I. M. Watson, Observations of volcanic emissions from space:
current and future perspectives, Natural Hazards, 54, (2), 323–354, 2010.

Thordarson, T. and S. Self, Atmospheric and environmental effects of the 1783-1784
laki eruption: A review and reassessment, J. Geophys. Res.: Atmos., 108, (D1), AAC
7–1–AAC 7–29, 2003.

Toth, Z. and E. Kalnay, Ensemble forecasting at nmc: The generation of perturbations,
Bull. Amer. Meteor. Soc., 74, (12), 2317–2330, 1993.

Tracton, M. S. and E. Kalnay, Operational ensemble prediction at the national
meteorological center: Practical aspects, Weather Forecast., 8, (3), 379–398, 1993.

van Leeuwen, P. J., Particle filtering in geophysical systems, Month. Weath. Rev., 137,
(12), 4089–4114, 2009.

van Leeuwen, P. J., Nonlinear Data Assimilation for high-dimensional systems, 1–73,
Springer International Publishing, Cham, 2015.

Vaughan, M. A., K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn,
W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu and M. J. McGill, Fully
automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,
J. Atmos. Ocean. Technol., 26, (10), 2034–2050, 2009.

Walcek, C. J., Minor flux adjustment near mixing ratio extremes for simplified yet highly
accurate monotonic calculation of tracer advection, J. Geophys. Res.: Atmos., 105, (D7),
9335–9348, 2000.

Wang, K.-Y., D. J. Lary, D. E. Shallcross, S. M. Hall and J. A. Pyle, A review
on the use of the adjoint method in four-dimensional atmospheric-chemistry data
assimilation, Q. J. Royal Meteorol. Soc., 127, (576), 2181–2204, 2001.

Weaver, A. and P. Courtier, Correlation modelling on the sphere using a generalized
diffusion equation, Q. J. Royal Meteorol. Soc., 127, 1815–1846, 2001.

Webley, P., B. Stunder and K. Dean, Preliminary sensitivity study of eruption source
parameters for operational volcanic ash cloud transport and dispersion models – A
case study of the August 1992 eruption of the Crater Peak vent, Mount Spurr, Alaska,
J. Volcanol. Geotherm. Res., 186, (1), 108 – 119, 2009.



114 Bibliography

Webley, P. W., T. Steensen, M. Stuefer, G. Grell, S. Freitas and M. Pavolonis,
Analyzing the Eyjafjallajökull 2010 eruption using satellite remote sensing, lidar and
WRF-Chem dispersion and tracking model, J. Geophys. Res.: Atmos., 117, (D20), 2012.

Webster, H. N., D. J. Thomson, B. T. Johnson, I. P. C. Heard, K. Turnbull,
F. Marenco, N. I. Kristiansen, J. Dorsey, A. Minikin, B. Weinzierl, U. Schu-
mann, R. S. J. Sparks, S. C. Loughlin, M. C. Hort, S. J. Leadbetter, B. J.
Devenish, A. J. Manning, C. S. Witham, J. M. Haywood and B. W. Golding,
Operational prediction of ash concentrations in the distal volcanic cloud from the 2010
Eyjafjallajökull eruption, J. Geophys. Res.: Atmos., 117, (D20), 2012.

Wen, S. and W. I. Rose, Retrieval of sizes and total masses of particles in volcanic
clouds using AVHRR bands 4 and 5, J. Geophys. Res.: Atmos., 99, (D3), 5421–5431,
1994.

Wilkins, K. L., S. Mackie, M. Watson, H. Webster, D. Thomson and H. Dacre,
Data insertion in volcanic ash cloud forecasting, Ann. Geophys., 57, (0), 2014.

Wilkins, K. L., A. Benedetti, N. I. Kristiansen and A. C. Lange, Chapter 13 –
Applications of satellite observations of volcanic ash in atmospheric dispersion modeling,
in Volcanic Ash, edited by S. Mackie, K. Cashman, H. Ricketts, A. Rust, and M. Watson,
233 – 246, Elsevier, 2016a.

Wilkins, K. L., I. M. Watson, N. I. Kristiansen, H. N. Webster, D. J. Thomson,
H. F. Dacre and A. J. Prata, Using data insertion with the NAME model to simulate
the 8 May 2010 Eyjafjallajökull volcanic ash cloud, J. Geophys. Res.: Atmos., 121, (1),
306–323, 2016b.

Wilkins, K., L. Western and I. Watson, Simulating atmospheric transport of the
2011 Grímsvötn ash cloud using a data insertion update scheme, Atmos. Environ., 141,
(Supplement C), 48 – 59, 2016c.

Winiarek, V., M. Bocquet, O. Saunier and A. Mathieu, Estimation of errors in
the inverse modeling of accidental release of atmospheric pollutant: Application to
the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima
Daiichi power plant, J. Geophys. Res.: Atmos., 117, (D5), 2012.

Winker, D. M., J. Pelon and M. P. McCormick, The CALIPSO mission: Spaceborne
lidar for observation of aerosols and clouds, in Proc. Spie, vol 4893, 11, 2003.

Winker, D. M., W. H. Hunt and M. J. McGill, Initial performance assessment of
CALIOP, Geophys. Res. Lett., 34, (19), 2007.

Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H.
Hunt and S. A. Young, Overview of the CALIPSO mission and CALIOP data
processing algorithms, J. Atmos. Ocean. Technol., 26, (11), 2310–2323, 2009.

Winker, D. M., Z. Liu, A. Omar, J. Tackett and D. Fairlie, CALIOP observations
of the transport of ash from the Eyjafjallajökull volcano in April 2010, J. Geophys. Res.,
117, 2012.



Bibliography 115

Woodhouse, M. J., A. J. Hogg, J. C. Phillips and R. S. J. Sparks, Interaction
between volcanic plumes and wind during the 2010 Eyjafjallajökull eruption, Iceland,
J. Geophys. Res.: Sol. Earth, 118, (1), 92–109, 2013.

Wu, X., B. Jacob and H. Elbern, Optimal control and observation locations for time-
varying systems on a finite-time horizon, SIAM J. Control Optim., 54, (1), 291–316,
2016.

Wu, X., H. Elbern and B. Jacob, The degree of freedom for signal assessment of
measurement networks for joint chemical state and emission analysis, Geosci. Model Dev.,
2017, 1–29, 2017.

Xun-Gui, L., W. Xia and H. Qiang, Comprehensive entropy weight observability-
controllability risk analysis and its application to water resource decision-making, Water
SA, 38, (4), 573–580, 2012.

Young, S. A., Analysis of lidar backscatter profiles in optically thin clouds, Appl. Opt.,
34, (30), 7019–7031, 1995.

Young, S. A. and M. A. Vaughan, The retrieval of profiles of particulate extinction
from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data:
Algorithm description, J. Atmos. Ocean. Technol., 26, (6), 1105–1119, 2009.

Yu, T., W. I. Rose and A. J. Prata, Atmospheric correction for satellite-based volcanic
ash mapping and retrievals using ”split window” IR data from GOES and AVHRR,
J. Geophys. Res.: Atmos., 107, (D16), AAC 10–1–AAC 10–19, 2002.

Zehner, C., Montoring volcanic ash from space, in Proceedings of the ESA-EUMET-SAT
workshop on the 14 April to 23 May 2010 eruption at the Eyjafjöll volcano, South Iceland.
Frascati, Italy, 26–27 May 2010, 2010.





Personal Acknowledgments

First of all, I would like to particularly thank my adviser PD Dr. Hendrik Elbern,
who gave me the opportunity to work on this thesis with a topic that extensively
coincided with my personal scientific interest. He supported me with productive
discussions and ideas that I could always request due to his ”open door” strategy.
During the full course of this work, I very much profited from his exceptional knowl-
edge and his steady scientific encouragement.
I am also grateful to Prof. Dr. Yaping Shao for his particular interest in my thesis,
for his acceptance to act as referee, and for the evaluation of the results of this work.
For the funding of this work and for multiple supports I would gratefully acknowl-
edge the Institute for Energy and Climate Research – Troposphere (IEK-8) at
Forschungszentrum Jülich, notably Prof. Dr. Andreas Wahner and Prof. Dr. Astrid
Kiendler-Scharr. Being given the opportunity to experience a research stay in Norway,
was most beneficial for my work and my professional career.
Further, I appreciate the financial support of the graduate schools HITEC (Helmholtz
Interdisciplinary Doctoral Training in Energy and Climate Research of Forschungszen-
trum Jülich) and GSGS (Graduate School of Geoscience of University of Cologne),
who enabled my participation at instructive summer schools.
I kindly thank my external mentor Dr. Fred Prata, who cleared the way for me
to visit the Norsk Institutt for Luftforskning (NILU) and Nicarnica Aviation AS in
Kjeller, Norway, and to work there as a guest scientist. I learned a lot about infrared
imaging and volcanic ash hazards to aviation thanks to some fruitful discussions.
I am very grateful to the ATMOS (Department of Atmosphere and Climate) research
group at NILU for welcoming me as temporary part of this team. I enjoyed this
experience a lot. Likewise, I acknowledge the respective colleagues of Nicarnica
Aviation.
I want to express my thanks to Dr. Angela Benedetti and Dr. Holger Baars for
efficient cooperation beyond the ACTRIS-2 project.
Philipp Franke deserves my appreciation for many years of exceptional collaboration.
Thanks for all discussions, for always paying attention to my questions, and for the
great support.
In the last months my colleague Jonas Berndt shared the same final phase of PhD
studies. In many hours in the institute, he was always supportive for short discussions,
arranging ideas, and finding optimized formulations. Many thanks!
Dr. Elmar Friese, who knows the EURAD-IM like barely someone else, helped with



118 Personal Acknowledgments

his profound modeling knowledge in many cases. Regarding computer technical
problems at the Rhenish Institute for Environmental Research (RIU), Georg Piekorz
was always supportive to find a quick solution. To both I would like to express my
gratitude.
Dr. Luise Fröhlich, Tamari Janelidze, and Paraskevi Vourlioti assisted among other
things by proofreading this thesis. Working in the same office, Dr. Isabel Ribeiro
and Dr. Johannes Klimpt, both were open for exchanging knowledge. Many thanks
to all these personalities and likewise to all other present and former colleagues,
which could not be specifically mentioned here, for the great time together.
Thanks a million to Dr. Rebecca Jayne Thorne for passing the written thesis through
a final English revision and for all your motivating words.
At the end, a very special appreciation is donated to my family. Many thanks to
my siblings Cathrin and Timo for always believing in me and my skills. I am deeply
grateful to my dear parents Ute and Joachim for their love, all encouragements, their
endless care and support. Thank you so much!



Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt,
die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im
Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung
kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder
Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen
Teilpublikationen – noch nicht veröffentlicht worden ist, sowie, dass ich eine solche
Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.
Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte
Dissertation ist von PD Dr. Hendrik Elbern betreut worden.

Teilpublikation:

Wilkins, K. L., Benedetti, A., Kristiansen, N. I. und Lange, A. C. (2016). Chapter
13 – Applications of satellite observations of volcanic ash in atmospheric dispersion
modeling. In S. Mackie, K. Cashman, H. Ricketts, A. Rust, und M. Watson (Hrsg.),
Volcanic Ash (233 – 246), Elsevier.

Datum, Anne Caroline Lange




