
Review Article

J Innate Immun

Functions of the Microbiota for the 
Physiology of Animal Metaorganisms

Daniela Esser 

a    Janina Lange 

b    Georgios Marinos 

a    Michael Sieber 

c    

Lena Best 

a    Daniela Prasse 

d    Jay Bathia 

b    Malte C. Rühlemann 

e    

Kathrin Boersch 

e    Cornelia Jaspers 

f, g    Felix Sommer 

e    
a

 Institute of Experimental Medicine, Christian Albrecht University Kiel, Kiel, Germany; b Zoological Institute, 
 Christian Albrecht University Kiel, Kiel, Germany; c Department of Evolutionary Theory, Max Planck Institute  
for Evolutionary Biology, Plön, Germany; d Institute of General Microbiology, Christian Albrecht University Kiel,  
Kiel, Germany; e Institute of Clinical Molecular Biology, Christian Albrecht University Kiel, Kiel, Germany; 
f

 Evolutionary Ecology of Marine Fishes, GEOMAR – Helmholtz Center for Ocean Research, Kiel, Germany;  
g

 National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark

Received: September 10, 2018
Accepted after revision: October 30, 2018
Published online: December 19, 2018

Journal of Innate
Immunity

Dr. Felix Sommer
Institute of Clinical Molecular Biology, Christian Albrecht University Kiel
Rosalind-Franklin-Strasse 12
DE–24105 Kiel (Germany)
E-Mail f.sommer @ ikmb.uni-kiel.de

© 2018 The Author(s)
Published by S. Karger AG, Basel

E-Mail karger@karger.com
www.karger.com/jin

DOI: 10.1159/000495115

Keywords
Metaorganism · Host · Microbiota · Microbiome · Physiology

Abstract
Animals are usually regarded as independent entities within 
their respective environments. However, within an organ-
ism, eukaryotes and prokaryotes interact dynamically to 
form the so-called metaorganism or holobiont, where each 
partner fulfils its versatile and crucial role. This review focus-
es on the interplay between microorganisms and multicel-
lular eukaryotes in the context of host physiology, in particu-
lar aging and mucus-associated crosstalk. In addition to the 
interactions between bacteria and the host, we highlight the 
importance of viruses and nonmodel organisms. Moreover, 
we discuss current culturing and computational methodolo-
gies that allow a deeper understanding of underlying mech-
anisms controlling the physiology of metaorganisms.

© 2018 The Author(s) 
Published by S. Karger AG, Basel

Introduction

Virtually all multicellular organisms are character-
ized by synergism with microbes and eukaryotic spe-
cies. Already in 1877, the importance of these relation-
ships was made evident by Karl Möbius by acknowledg-
ing that organisms form a unit with surrounding species 
in the habitat, which he termed “biocenosis” or “living 
community.” Nowadays, the close interactions between 
a host and its associated microbial community are in-
creasingly recognized as one functional unit defined as 
metaorganism or holobiont, a biocenosis on the indi-
vidual level [1]. Investigating this interdependence be-
came increasingly important. Thus, the collaborative 
research center (CRC) 1182 “Origin and Function of 
Metaorganisms” was funded in 2016 by the German Re-
search Foundation. In 2018 the CRC 1182 organized 
the Young Investigator Research Day conference to dis-
cuss the current state of this research field. The Young 
Investigator Research Day motivated us to summarize 
recent advances in metaorganism research in this re-
view.D. Esser, J. Lange, and G. Marinos contributed equally to this work.
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Why Does Metaorganism Research Matter?

Metaorganisms are outstanding when one considers 
that even human individuals consist of roughly the same 
amount of bacteria and host cells [2]. The highest micro-
bial density can be found in the gastrointestinal tract fol-
lowed by the skin [2]. Especially in the intestine many 
metabolic interactions between the host and its microbi-
ota are closely intertwined. These interactions potentially 
have long-term effects, as for example the bacterial colo-
nization during infancy seems to play a pivotal role for 
the structure of the microbial community and therefore 
the health status throughout life [3]. Thus, the microbial 
community influences the host’s immune system and 
contributes to many aspects of host physiology (Fig. 1), 
including aging and diseases [4].

Taking into account the importance of this crosstalk, 
researchers have developed multiple approaches to study 
them. Based on the outcome of wet lab experiments, com-
putational methodologies have become determinative for 
the advancement of the biomedical field. Systems biology 
has the potential to predict exchanged metabolites and 
thus identify key players in host-microbiome interac-
tions. These predictions require metabolic networks and 
pathways, which are for example annotated in the Vir-
tual Metabolic Human database [5].

Viruses are mostly neglected in metaorganism studies, 
but possibly just as important as bacteria. Healthy hu-
mans are constantly infected with several different viral 
species at any given time, and while viruses are still most-
ly considered pathogens, recent studies show that they 
can also act as mutualistic symbionts. Those symbionts 
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Fig. 1. Functional interactions in metaorganisms. All eukaryotic 
organisms live in a close and interdependent relationship with 
their microbiome, including bacteria, viruses, and other small eu-
karyotes, and are therefore regarded as metaorganisms. Members 
of the microbiome have various functions within the metaorgan-
ism. Microorganisms contribute to host development, organ mor-

phogenesis, metabolism, aging, behavior, colonization resistance, 
pathogen protection, and maturation of the immune system. Dys-
biosis or imbalances in these homeostatic host-microbiome inter-
actions are associated with various diseases including anxiety, de-
pression, diabetes, cancer, obesity, and chronic inflammation.
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can be eukaryotic viruses or bacteriophages, which are 
viruses that infect and kill eukaryotes or bacteria, respec-
tively. Both types play an important role in metaorganism 
homeostasis by enhancing the host’s immune system or 
shaping the bacterial community composition [6].

Most host-microbiome research is carried out in mod-
el organisms because methods and protocols are estab-
lished. Yet, to gain a complete picture including environ-
mental factors and other natural influences as well, it is 
also important to include nonmodel organisms. These 
include organisms from marine environments such as 
sponges or corals, which are at risk due to dramatic envi-
ronmental perturbations associated with climate change 
such as global warming. Microorganisms play an impor-
tant role in health and disease in these holobionts. Thus, 
understanding the underlying mechanisms of coral-mi-
crobe interactions can be crucial to prevent the world-
wide destruction of coral reefs [7].

Taken together, metaorganism or holobiont research 
is an uprising and rapidly developing research field. Here, 
we summarize recent studies of bacteria-host interaction 
or symbiosis and link them to the new emerging fields like 
the role of mucus, aging, mutualistic viruses, nonmodel 
organisms, and computational modeling approaches. 
The microbiota are crucial for many physiological pro-
cesses metaorganisms, and for the functional analysis of 
host-microbiome interactions different systems and in 
particular nonmodel organisms are required. With this 
review, we therefore aim to provide a comprehensive 
overview of the metaorganism concept by covering a 
range of metaorganisms and by providing examples why 
these are useful model systems for host-microbiome re-
search.
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Fig. 2. Interactions between the intestinal mucus and the microbi-
ome. The intestinal mucus layer serves as an interface of the host 
with the microbiota and also represents a specific niche. The spe-
cies composition differs between intestinal lumen and mucus. Mu-
cus-consuming bacteria colonize the mucus layer and use mucins 

as an energy source. Products of these metabolic activities, such as 
tryptophan or its metabolites, are then provided to the host and 
widely affect its physiology. Microorganisms can also influence 
mucus production or host immune responses and thereby shape 
the intestinal habitat.
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Mucus: A Special Home of Our Microbes

The gastrointestinal tract is a special environment as 
microorganisms and host interact closely and are in addi-
tion constantly exposed to varying environmental and nu-
tritional perturbations. The mammalian intestinal muco-
sa is a renowned model for studying such interactions, and 
numerous human or rodent samples have been explored 
with numerous techniques to this end [8]. A mucus layer 
covers the intestinal epithelium. The main components of 
the mucus are mucins – glycoproteins secreted by intesti-
nal goblet cells [8, 9]. These mucins form a mucus sheath 
that separates the luminal contents of the tract, including 
the microorganisms, from the epithelium, while simulta-
neously acting as a lubricant and protecting the host from 
damage [8, 9]. The colonic mucus is considered to be com-
prised of two layers, an inner layer adherent to the epithe-
lium and an outer loose layer [9]. However, this “layer” 
structure has been questioned recently [8]. Irrespective of 
the actual structure of the mucus layers, this interface 
seems to be crucial for both the microorganisms and the 
host (Fig. 2). On the one hand, bacteria may trigger host 
immunity if they are in too close proximity to the mucosa. 
Therefore, the majority of bacteria reside in the lumen or 
outer mucus layer [8, 9], and structure and metabolic 
function differ greatly between bacteria residing in the lu-
men and the outer layer, which is rich in mucus-related 
sugars [9, 10]. On the other hand, the production of mu-
cus is stimulated by the microbiome, as various microbial 
molecules (e.g., lipopolysaccharides) trigger mucus pro-
duction [8, 9]. Additionally, tryptophan-related com-
pounds, which are derived from the utilization of mucus 
by microorganisms, influence the immunological profile 
of the host. Disbalances in this microorganism-mucus-
host crosstalk are therefore associated with disease, for ex-
ample inflammatory bowel disease (IBD) [10]. Taken to-
gether, the mucus promotes interactions between host 
and microbiome and thus serves as a connecting interface 
not only in the mammalian gastrointestinal tract, but also 
in the lung and other organisms such as basal metazoans. 
This host-microbiome axis therefore plays a major role in 
health and disease of metaorganisms [10].

The Role of the Microbiome in Aging and Health of 
Metaorganisms

The gut microbiota constantly develops throughout a 
host’s lifespan (Fig. 3). In mammals, clear differences in 
the structure and composition of the microbiome are ap-

parent between infants, adults, and elderly. The microbi-
omes of newborns are characterized by a high interindi-
vidual variation but a low diversity within one organism. 
Maternal contact and other environmental factors have a 
strong influence on the microbial composition at that 
early stage of life. In this period, neonatal priming takes 
place, which contributes to the microbiota composition 
for a whole lifetime [3], and several studies reported that 
this period is tightly time-restricted during development 
(window of opportunity). For example, only during this 
time window can exposure to environmental microor-
ganisms correctly instruct the host immune system to 
prevent the development of allergies [11]. During child-
hood, the microbiome diversifies and stabilizes in adult-
hood. In elderly individuals, the overall diversity further 
increases until the centenarian stage, but it becomes less 
resilient and is characterized by changed species compo-
sition and microbiome function. For example, microbi-
ome functions such as DNA repair or cobalamin and bio-
tin biosynthesis decrease with age [12, 13]. Furthermore, 
the production of β-glucuronidases, which trigger drug-
induced epithelial cell toxicity, is reduced in the micro-
biome of older individuals. In contrast, the ability to de-
grade creatine, which is associated with muscle wasting, 
and the ratio between utilization of monosaccharide 
compared to di-, oligo-, and polysaccharides are in-
creased in old mice [12].

Changes in the microbiome due to environmental fac-
tors such as lifestyle and diet can destroy the gut homeo-
stasis and thus influence the host’s immune system and 
its disease susceptibility [3, 12]. In particular, microbial 
dysbiosis, an abnormal microbiome state typically associ-
ated with disease, in elderly humans correlates with over-
all poorer health. The susceptibility of a host to frailty 
correlates with its microbiome diversity, which in turn is 
shaped by dietary habits [14]. The microbiome composi-
tion was significantly correlated with inflammation, the 
ability of independent living, sarcopenia, as well as geri-
atric depression. On a metabolic level the microbiota of 
less frail and more independent individuals produced 
higher levels of short-chain fatty acids (SCFAs) [14]. In 
conclusion, our microbiome impacts not only life expec-
tancy but also health status, especially late in life.

Several studies investigated the effect of microbiome 
manipulation on health or lifespan in a variety of meta-
organisms. Sonowal et al. [15] observed that indoles, 
which are molecules produced by the commensal micro-
biome, cannot extent the lifespan of worms, flies, and 
mice, but improve health with a longer reproductive span 
and increased fertility. The African turquoise killifish is a 
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very short-lived organism with an approximately ten 
times more diverse microbiome than that of invertebrate 
model organisms. Aged killifish harbor a microbiome 
with reduced diversity, which is linked to loss of meta-
bolic function in carbohydrate, amino acid, and nucleo-
tide pathways. This demonstrates that not only the spe-
cies composition, but also the metabolic capabilities of 
the microbiome contribute to the host’s phenotype. Sim-
ilar findings were reported for aging in mouse and hu-
man. In a microbiome transfer experiment from young 
fish to middle-aged individuals, a lifespan-extending ef-
fect was observed. Importantly, the fish also aged more 
healthily, which was observed by increased motility, a 
sign of being healthy [16].

In mammals, age-related changes in the microbial 
composition can also affect inflammaging (basal inflam-
mation in elderlies) and thus contribute to aging-associ-

ated diseases [17]. Transferring the microbiome of old 
mice to young germ-free mice led to upregulation of the 
proinflammatory cytokine tumor necrosis factor alpha 
(TNF-α), dysregulation of pathways involved in the im-
mune response such as T cell differentiation and B cell 
development, and recognition of microbes by pattern rec-
ognition receptors. Additionally, levels of Akkermansia, 
TM7 bacteria, and Proteobacteria, all of which support 
inflammaging, were increased after microbiome transfer 
[16]. Even cohousing of germ-free with old mice resulted 
in an increased level of proinflammatory cytokines in the 
blood [18]. In line with these data, many indicators for 
inflammaging, such as circulating proinflammatory cyto-
kines, are not detectable in germ-free mice [18]. Interest-
ingly, the immune-related dysbiosis of the microbiome of 
old mice can be antagonized by the application of anti-
TNF [18]. However, although mice colonized with old or 
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Fig. 3. Molecular changes of intestinal host-microbiome interac-
tions during aging. Upon birth the newborn is colonized by envi-
ronmental microorganisms. Microbial diversity increases and sta-
bilizes until adulthood. In the elderly, microbiome diversity in-
creases further, presumably due to loss of regulatory processes. 
Moreover, bacterial composition and microbiome functions 
change in the elderly. The relative abundance of bacteria that trig-
ger inflammatory responses increases, whereas functional process-

es involved in DNA repair as well as production of cobalamin, 
biotin, and β-glucuronidases decrease in the elderly microbiome. 
In contrast, bacteria which are involved in creatine degradation 
and polysaccharide utilization increase in the elderly. These chang-
es in the microbiome over the course of an individual’s life there-
fore impact on metabolism and inflammatory processes, which in 
turn affect disease susceptibility and development.
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young microbiota were clearly distinguishable after a 
short time period, they became more similar over time 
[17].

In summary, the microbiome of a metaorganism con-
stantly evolves and reshapes throughout the course of life. 
The microbiome largely influences host physiology, life-
span, as well as the extent of healthy aging and diseases, 
including age-related disorders of the host. In return, the 
host shapes its microbiome through diet and lifestyle 
choices as well as immune system functions.

Commensal Bacteria and Their Positive Influence on 
Health

The human body harbors a diverse and dynamic pop-
ulation of microorganisms, composed of bacteria, ar-
chaea, fungi, unicellular eukaryotes, and viruses [4]. In 
this section we will highlight selected core species that 
play central roles in the complex network of interactions 
in the human gut and provide specific benefits for host 
health. Further, we will discuss up-to-date culture-based 
approaches to functionally study the physiology and in-
teractions of those microbes with the host and other 
members of the gut ecosystem.

Bacteria belonging to the genus Bacteroides (phylum: 
Bacteroidetes) are among the most dominant commen-
sals because they are characterized by a high flexibility to 
nutritional conditions and can thus quickly adapt to 
changes in the intestinal environment [19]. They play 
central roles in modulating host health, for example by 
providing important metabolites such as SCFAs, which 
improve glucose and lipid metabolism and tone down in-
flammatory reactions [20]. Dysbiosis including changes 
in abundance of Bacteroides is linked to an altered me-
tabolite profile and illness. For example, lower levels of 
Bacteroides are associated with IBD [21]. The most prom-
inent and best-characterized Bacteroides species are B. 
fragilis and B. thetaiotaomicron. B. fragilis produces poly-
saccharide A, a symbiosis factor which modulates the in-
nate immune system by inducing regulatory T cell growth 
and cytokine expression, ultimately protecting against 
colitis and inducing host-microbe symbiosis [22]. A re-
cent study reported that the abundance of B. thetaiotao-
micron is inversely correlated with obesity in Chinese 
subjects [23]. Importantly, in a mouse obesity model, 
supplementation of B. thetaiotaomicron improved meta-
bolic parameters, thus demonstrating that B. thetaiotao-
micron is functionally involved in tuning host metabo-
lism in a beneficial manner.

The genus Faecalibacterium of the phylum Firmicutes 
has only one known representative: Faecalibacterium 
prausnitzii [24]. In addition to Bacteroides, it is a highly 
abundant gut commensal with a variety of beneficial 
functions for host health. F. prausnitzii is one of the main 
SCFA producers, mainly butyrate, by fermentation of di-
etary fiber. Butyrate has anti-inflammatory functions and 
contributes to a healthy intestine by providing energy to 
the epithelial cells and functioning as a signal molecule. 
A community shift characterized by a loss of butyrate 
producers, in particular loss of F. prausnitzii, is linked to 
IBD [25]. Thus, F. prausnitzii is being developed as a pro-
biotic to maintain gut health [24].

Segmented filamentous bacteria (SFB) or Candidatus 
Savagella are prominent members of the gut microbiome 
of many vertebrates and most extensively studied in the 
mouse [26]. SFB have potent immune-stimulatory ef-
fects. They induce the maturation of B and T cell com-
partments and drive Th17 cell inflammatory responses, 
which are protective against pathogens [26]. SFB being 
potent immune modulators, their abundance has to be 
tightly regulated. Increased SFB levels are associated with 
enhanced disease severity in a number of autoimmune 
disorders. SFB are also found in humans, but only in an 
age-dependent manner [27] and in low abundance. In 
humans, SFB enhance immune responses, including 
sIgA production and Th17 induction, and activate T and 
B cell signaling. This indicates that SFB play an impor-
tant role in modulating the immune system in early life 
[27].

Cultivation Methods Facilitate Functional 
Microbiome Analyses

Microbial cultivation bloomed in the 1960s and 1970s. 
Due to advances in sequencing technologies, molecular 
high-throughput methods are nowadays preferred to an-
alyze complex microbial ecosystems [28]. These culture-
independent sequencing approaches have many advan-
tages, such as the identification of microbes that cannot 
be cultured and the generation of large datasets from en-
tire ecosystems, thus revealing a broader picture of the 
whole network [28]. Thereby, currently underestimated 
but potentially important microorganisms may be identi-
fied. For example, archaea were for a long time mostly 
overlooked due to methodological restrictions, yet in the 
last years, using sequencing approaches it became evident 
that archaea are a crucial part of almost all microbiomes 
[29]. However, there are critical shortfalls that can only 
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be overcome using culturing approaches. Functional pre-
dictions based on sequencing data largely depend on the 
availability and quality of reference databases, which are 
based on pure isolates. Thus, downstream functional 
studies absolutely require culture of the candidate organ-
ism. Due to recent methodological advances, a large por-
tion of the mammalian microbiome, including “difficult” 
microorganisms, can now be cultured, thus enabling 
functional tests. This even led to the introduction of cul-
turomics to cultivate a huge number of microbes from the 
human gut. Briefly, various culture conditions are used in 
combination with mass spectrometry (MALDI-TOF MS) 
to identify enriched isolates [30]. Browne et al. [31] de-
scribed a novel workflow based on targeted phenotypic 
culturing with additional whole-genome sequencing to 
culture novel intestinal bacteria, which were formerly 
considered to be uncultivable. Even demanding key 
members of the microbiome can now be cultured in vitro. 
Until recently, SFB could only be propagated using gno-
tobiotic mice, but in 2015 a coculture system was estab-
lished which uses mouse and human cell lines to success-
fully culture and study SFB in vitro [32].

Taken together, an increasing percentage of the micro-
biome can now be cultured and is thus available for func-
tional analyses, which will greatly advance our under-
standing of the host-microbiome interplay in health and 
disease.

Impact of Viruses on Host Physiology: More than 
Just Pathogens

Viruses have mostly been considered as pathogens or 
disregarded in metaorganism studies due to their size and 
their low percentage of the biomass [33]. However, meta-
organisms are constantly reinfected with low-virulent vi-
ruses that can function as mutualistic symbionts, provide 
fitness advantages for their hosts [6], and even build a 
stable and species-specific virome [34]. There is evidence 
that eukaryotic virus infections can alter and enhance 
host immunity and make the host more resistant to 
pathogens and diseases. Chronic infections of mice with 
gamma-herpesvirus increase their resistance to patho-
gens such as Listeria monocytogenes and Yersinia pestis by 
triggering elevated levels of interferon-c and TNF-α [35]. 
Herpesvirus infection activates natural killer cells, which 
enhances tumor resistance [36]. In HIV-infected patients, 
coinfection with hepatitis G virus does not lead to hepa-
titis but a reduced HIV viral load, enhanced innate im-
mune response, and reduced mortality [37].

Viral infections can also lead to a changed phenotype. 
Infection of aphid nymphs with the Dysaphis plantaginea 
densovirus promotes differentiation from a nonwinged 
to a winged form. This allows the aphid to colonize neigh-
boring plants when food availability in its current habitat 
is low, but comes with the fitness cost of a reduced repro-
duction rate [38]. A similar phenomenon where virus in-
fection can be both costly and beneficial can be observed 
in mammals. On the one hand, murine norovirus infec-
tion induces intestinal pathologies in a susceptible host 
[39], but on the other hand protects from pathogenic in-
fection by boosting immune responses, in particular lym-
phocyte function [40].

Bacteriophages or phages are viruses that solely infect 
bacteria. Lytic phages attach to the bacterial cell and even-
tually kill their host. Since phages are often obligate killers 
of their bacterial hosts, they can shape bacterial commu-
nities. Following the “kill-the-winner” hypothesis, phages 
prey on the most abundant or most active population of 
bacteria and keep their abundance on a steady level [41]. 
Thus, phages ensure the coexistence of several prokary-
otic species. Moreover, coevolution between lytic phages 
and bacteria drives genetic divergence and a diverse bac-
terial community composition [42], which positively af-
fects health [43]. In conclusion, phages indirectly con-
tribute to eukaryotic health by diversifying and shaping 
the bacterial community composition.

Lysogenic phages integrate their genomes (prophage) 
into the bacterial host genome and can alter the bacterial 
genotype and phenotype. These phages can also indirect-
ly influence eukaryotes by contributing to bacterial popu-
lation dynamics, where they serve as weapons against sus-
ceptible bacteria and benefit their host bacterium [44]. 
Prophages are also able to directly influence eukaryotes. 
In the aphid Acyrthosiphon pisum, the bacterial symbiont 
Hamiltonella defensa protects its host against its natural 
enemy Aphidius ervi, but only when H. defensa is associ-
ated with its prophage APSE-3. This indicates that impor-
tant defense factors are encoded on the prophage chro-
mosome [45]. Phages are also well-known transmitters of 
virulence genes. Several bacterial toxins are encoded by 
phages, for example the Shiga toxins of E. coli, the cholera 
toxin of Vibrio cholerae, or the toxins of Pseudomonas 
aeruginosa [46]. These toxins are the reason for the path-
ogenicity of their bacterial hosts and can cause serious 
diseases in eukaryotes [46]. Whether phages interact di-
rectly with eukaryotes is still highly discussed, but an in-
dication stems from the phage adherence to mucus. Bac-
teriophages bind to mucin glycoproteins of eukaryotes 
via Ig-like protein domains presented on phage capsids. 
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Thereby, phages act as a non-host-derived immunity 
[47]. This is beneficial for the eukaryotic host because 
phages limit mucosal bacteria. In turn, it is also advanta-
geous for the phage since it ensures frequent interactions 
with bacterial hosts (see Barr et al. [47] for a graphical 
summary).

Computational Modeling Approaches

Transcriptomics, genomics, metabolomics, and pro-
teomics, the so-called “omics” technologies, contributed 
to the elucidation of the functions and capabilities of mi-
croorganisms and host systems. However, the key to un-
derstanding host-microbe and microbe-microbe interac-
tions requires shifting from descriptive or correlative to 
functional analyses and data-driven modeling. Current 
computational methods employing high-resolution pre-
dictions complement wet lab experiments and expand our 
current knowledge, which can be used to generate hypoth-
eses for follow-up experiments [48]. Such systems biology 
approaches include modeling of ecological characteristics 
or the metabolism of cell communities [49]. In particular, 
functional pathways and modules of the microbiome can 
nowadays be annotated using sequence data from meta-
genomes or from the genomes of single microbial species 
[50]. For example, this approach was applied to create 
metabolic reconstructions and functional characteriza-
tions of the microbial communities of seven human body 
sites within the Human Microbiome Project [51] or of 773 
human gut bacteria within the Virtual Metabolic Human 
database [5]. This knowledge can be used to model the 
metabolism, growth, and reproduction of microbes or cell 
communities, but also to predict the consumed and pro-
duced metabolites. Based on these predictions, it is pos-
sible to draw conclusions about interactions within the 
microbial community and between microbiome and host. 
Changes in this interplay can be associated with diseases 
and lifestyle factors of the host [4]. Vice versa, it is possible 
to simulate the effect of environmental factors such as nu-
trition or drugs on the host-microbiome crosstalk and 
thus on molecular features of the host. This can for ex-
ample be applied to personalized medicine [48].

Cells or microorganisms are mostly members of com-
munities. Under this prism, cells can be considered as in-
dependent entities that interact with their environment 
(e.g., nutrients) and other entities (e.g., other cells). This 
way of representation of community organization is 
called agent-based modeling and has been used together 
with the metabolic models [48]. For instance, BacArena 

is such an application that combines all these features to 
simulate communities in computational space and time. 
Researchers use BacArena to study biofilms and in the 
biomedical field [48]. For IBD in humans, this method 
allowed to not only associate the levels of microbe-de-
rived SCFAs with the disease, but also to provide person-
alized dietary suggestions to restore SCFA levels [48].

Additionally, hosts can be viewed as ecosystems, and 
the resident microbial community has the potential to 
greatly affect the state of this ecosystem. Ecological the- 
ory has a long history in describing such complex eco- 
systems and is increasingly recognized as an important 
tool in understanding the human microbiome and that of 
other organisms. An important framework to describe 
networks of interacting species is based on generalized 
Lotka-Volterra equations. Coyte et al. [52] used this  
approach to explicitly address the stability of the micro-
biota as a function of the prevalence of different interac-
tion types, e.g., competition and cooperation, within the 
interaction network. They found that an increase in the 
proportion of cooperative interactions, while usually 
deemed beneficial, has the tendency to destabilize the 
ecological community. Cooperation creates positive feed-
backs between species and thus increases the likelihood 
that disturbances to one species propagate throughout 
the network. Competitive and exploitative interactions 
dampen such positive feedback loops and thereby in-
crease microbiota stability. Such dampening interactions 
can either be internal, e.g., resource competition between 
microbes or exploitation by phages, or they can be exter-
nally imposed, e.g., by the host through immune regula-
tion. In contrast to this view of networks of interacting 
species, ecological neutral theory takes a step back by pro-
posing that communities assemble through purely ran-
dom dispersal and population dynamics [53]. In particu-
lar, it does not invoke selection of or interactions between 
species and thus provides a null expectation of commu-
nity structure against which microbiota composition data 
can be compared. A wide-ranging test of neutral predic-
tions revealed that microbiota compositions from animal 
hosts across the tree of life are often surprisingly consis-
tent with the neutral null expectation [53]. The hosts in 
this study included animals of very different complexity 
and with very different lifestyles, indicating that neutral 
processes are generally important in microbiota assem-
bly. While this does not preclude a vital role of the micro-
biota in host physiology, it suggests that the specific spe-
cies composition of the bulk of the microbial community 
may play a lesser role than previously thought for func-
tional composition.
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In summary, computational modeling is an important 
methodology to investigate the composition and function 
of a metaorganism complementing wet lab experiments. 
Besides interaction-directed approaches such as metabolic 
or agent-based modeling, these methods can also account 
for random dispersal and population dynamics. However, 
these approaches are still limited because they depend on 
so far limited information about, for example, molecular 
processes in bacteria. Another drawback is that most simu-
lations and predictions of microbiomes are based on 16S 
rRNA or metagenome data, which do not reflect the ac-
tual process activities and only show a snapshot of species 
composition. Nevertheless, metabolic and ecological mod-
eling are very promising methods which have already 
proved valuable in many studies. Further research and re-
sources using this approach are required to improve our 
understanding of the function of metaorganisms.

Endosymbiosis: The Most Extreme Host-Microbiome 
Interaction

Host-microbiome interactions within the metaorgan-
ism range from parasitism, where the symbiont benefits 
at the cost of host fitness, to mutualism, where both of  
the partners mutually profit. Endosymbiosis imposes the 
strongest interdependence between host and symbiont. 
Evolution of the eukaryotic cell began when endosymbi-
otic proteobacteria or cyanobacteria were taken up, but 
instead of being digested evolved to form mitochondria 
or plastids, respectively. Extensive gene transfer accom-
panied organelle endosymbiosis over the course of evolu-
tion. Similar yet less extensive phenomena can be ob-
served in other cases of endosymbiosis including Aphid-
Buchnera, Hydra-Chlorella, and Coral-Symbiodinium 
symbiosis [54–56]. In all these cases, nitrogen and carbon 
are exchanged in the form of amino acids in one or both 
directions. For example, in case of the Aphid-Buchnera 
symbiosis, the symbiont Buchnera underwent severe ge-
nome reduction resulting in loss of capability to produce 
certain amino acids by itself. Therefore, Buchnera de-
pends on the Aphid host. In turn, it provides other essen-
tial amino acids to the host, indicating complementarity 
and syntrophy [56]. In the case of Hydra viridissima, the 
endosymbiotic Chlorella algae lost essential genes for ni-
trate and ammonium fixation and assimilation, render-
ing them dependent on the host for nitrogen supply. This 
nitrogen is provided in the form of glutamine. In ex-
change for glutamine, the algae provide photosyntheti-
cally fixed carbon in the form of maltose [54].

Only few molecular symbiosis regulators have al- 
ready been identified. Couzigou et al. [57] identified the 
miRNA mir171b, a member of mir171 family expressed 
specifically in root cells of Panax quinquefolius, that de-
termines success of the mycorrhizal symbiosis. More-
over, primary mir171b and other primary miRNAs en-
code a regulatory micropeptide that positively regulates 
the expression of its own miRNA, thus stabilizing the 
symbiotic signature [58]. Taken together, symbiosis is 
tightly regulated by mechanisms acting in both the host 
and symbiont. Yet, the molecular framework of symbiosis 
largely remains elusive and thus requires further exten-
sive research.

The Importance of Nonmodel Organisms in 
Metaorganism Research

The investigation of model organisms has led to major 
advances in our mechanistic understanding of microbio-
ta-host interactions [59]. However, the study of nonmod-
el organisms revealed important discoveries as well. For 
example, the study of choanoflagellates, which are flag-
ellated single-celled eukaryotic organisms and the clos- 
est living relatives to animals, revealed that bacterial  
exudates trigger aggregation behavior. Thus, microor-
ganisms potentially contributed to the development of 
multicellularity [60]. In detail, morphogenesis of the  
choanoflagellate Salpingoeca rosetta is controlled by a  
sulfonolipid called rosette-inducing factor, which is pro-
duced by the bacterium Algoriphagus machipongonensis. 
At environmentally relevant concentrations the presence 
of the bacterium induces rosette colony development, in-
dicating the importance of bacteria for life history transi-
tions [60]. An additional example from S. rosetta suggests 
that bacteria regulate eukaryotic sexual reproduction. 
Vibrio fischeri secretes chondroitin lyase, which in S. ro-
setta initiates the switch from asexual to sexual reproduc-
tion by inducing swarming [61].

As life evolved in the oceans, basal marine metazoans 
are of primary importance to gain a holistic understand-
ing about the evolution and functional relationships 
within metaorganisms. Ctenophores and true jellyfish of 
the phylum Cnidaria secrete large amounts of dissolved 
organic carbon and thereby enhance microbial activity. 
This process is regarded as a respiratory carbon sink for 
the food web, but it may also function to maintain a host-
specific microbial community. Indeed, jellyfish harbor a 
species-specific microbial community that changes with 
developmental transitions [62]. Also in basal marine 
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metazoans, bacteria control major developmental transi-
tions, for example settlement and metamorphosis in jel-
lyfish [63] or settlement in corals via secreted tetrabro-
mopyrroles by Pseudoalteromonas strains [64]. Corals 
and their interactions with microorganisms and the envi-
ronment are of considerable scientific and public interest 
because of their susceptibility to climate change. Corals 
harbor algal endosymbionts, which are crucial for the 
health of the coral as they provide energy from photosyn-
thesis to the coral. After prolonged heat stress, the coral 
expels its algal symbiont in a process termed bleaching. 
Bleached corals can survive, yet are energy-deprived and 
thus highly sensitive. The extent of coral heat tolerance 
depends at least in part on the microbiome, and both the 
coral and its microbiome can adapt to the thermal habitat 
[65]. Importantly, corals adapted to a temperature-vari-
able environment bleach less and maintain a stable mi-
crobiome in contrast to corals from a moderately variable 
environment [65]. The heat stress tolerance can also be 
transmitted via microbiome transfer. These results there-
fore suggest that the environment and in particular 
changes in the coral microbiome contribute to heat toler-
ance [65]. Even though further experiments are needed to 
elucidate the molecular basis of these coral-microbiome 
interactions, this example highlights the importance of 
nonmodel organisms to translate metaorganism research 
onto a larger ecosystem perspective [65]. The interplay 
between host, symbionts, and its associated microbiota 
are crucial for ecosystem health and resilience to environ-
mental changes. The complexity of metaorganisms high-
lights the need for further studies using nonmodel organ-
isms to better understand and predict ecosystem respons-
es to global change-induced pressures.

Summary and Conclusion

The concept that every organism cannot exist on its 
own but relies on several other organisms, such as mi-
crobes or other eukaryotes, was revolutionary. Our un-
derstanding of the mechanisms underlying this synergy 
is constantly developing but still not completely under-
stood. So far, we know that the mucus of surface epithelia 
seems to be one of the most important habitats for host-
associated bacteria. Therefore, the microorganism-mu-
cus-host axis has to be explored further, especially if we 
consider that the host-related bacterial community con-
stantly changes over lifetime and is associated with age-
related diseases and lifespan. However, other potential 
key members of the microbial community, e.g., archaea, 

fungi, and viruses, may still be underestimated. There-
fore, combining culture techniques with molecular tools 
will be essential to expand our view onto these overlooked 
microorganisms and to get a deeper functional under-
standing of the metaorganism. Moreover, computational 
modeling is an important tool to understand interactions 
within the metaorganism, especially when experiments 
are challenging or impossible due to technical limitations. 
However, these computational predictions should always 
be combined with and verified by wet lab experiments. In 
conclusion, we are still far away from fully understanding 
the complete structure and function of metaorganisms, 
especially concerning nonmodel metaorganisms, but our 
understanding of the interactions between host and mi-
croorganisms and their role and function within the 
metaorganisms have progressed remarkably in the last 
few years. Further efforts in this direction are therefore 
required but promise to be well worth it.
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