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The Baltic Sea is one of the world’s largest brackish water bodies and is characterised by pronounced
physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods
provide rich information on the composition of, and activities within, microbial ecosystems, but are
computationally heavy to perform. We here present the Baltic Sea Reference Metagenome (BARM),
complete with annotated genes to facilitate further studies with much less computational effort. The
assembly is constructed using 2.6 billion metagenomic reads from 81 water samples, spanning both spatial
and temporal dimensions, and contains 6.8 million genes that have been annotated for function and
taxonomy. The assembly is useful as a reference, facilitating taxonomic and functional annotation of
additional samples by simply mapping their reads against the assembly. This capability is demonstrated by
the successful mapping and annotation of 24 external samples. In addition, we present a public web
interface, BalticMicrobeDB, for interactive exploratory analysis of the dataset.
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database creation objective • time series design • observation design •
biodiversity assessment objective • gene prediction objective
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Sample Characteristic(s) marine metagenome • Baltic Sea • epeiric sea biome
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Background & Summary
The Baltic Sea is a semi-enclosed inland sea characterized by strong physicochemical gradients, in
particular horizontal and vertical salinity and oxygen gradients, and pronounced seasonal dynamics1.
This ecosystem is also heavily impacted by anthropogenic eutrophication, manifested in e.g. harmful
phytoplankton blooms and large areas with anoxic bottom waters2. Due to their key roles in
biogeochemical cycles, microbial communities are particularly interesting to study in this ecosystem3–11.
One of the most comprehensive methods to characterize the taxonomic and functional composition of
microbial communities is through metagenomics, and specifically by metagenomic assembly, which
enables high precision and sensitivity for both taxonomic and functional annotation12. These annotations
can be quantified in individual samples by mapping short reads from samples that either were included in
the assembly or constitute external samples. For some microbiomes, particularly those associated with the
human body, extensive sequencing efforts have been undertaken to construct reference gene catalogues
that are publicly available and can be utilized by others13–15. Large-scale metagenomic datasets also exist
for the global ocean, such as the Tara Oceans dataset15. However, although the brackish Baltic Sea is
composed of a mixture of marine- and freshwater like lineages3,5,7,10, these are genetically distinct from
their relatives8, which hinders efficient read mapping to fresh- and marine water metagenomes. We here
present a Baltic Sea metagenome co-assembly (BARM; BAltic sea Reference Metagenome) with annotated
genes constructed from three sets of samples, selected to cover variation over geography, depth and
season (Table 1 (available online only), Fig. 1; Data Citation 1).

After preprocessing of the reads, the 81 samples combined contained 586 billion bases in 2.6 billion
read pairs. To allow the assembly of genes also from genomes having low abundance in individual
samples, data from all samples were co-assembled. The resulting co-assembly consisted of 14 billion bases
distributed over 22 million contigs. Out of these contigs, 2.4 million contigs were longer or equal to 1
kilobase. Functional and taxonomic annotation of genes is computationally demanding. For this reason,
and since longer contigs were deemed to be more trustworthy, only genes found on the contigs >1
kilobase were subjected to functional and taxonomic annotations; 6.8 million genes were found on these.

For functional analysis, several database sources were chosen; Pfam16, TIGRFAM (http://www.jcvi.
org/cgi-bin/tigrfams/index.cgi), EggNOG17 and dbCAN18. Additionally, enzyme commission (EC)
numbers19 were extracted based on the EggNOG assignments. Through mapping, the short reads were
then used to quantify the individual genes over all the different samples, which were summarized per
annotation identifier (ID) for each respective annotation source. The mapping rates for the different
sample groups and annotation sources are summarized in Fig. 2 and Fig. 3, where in Fig. 2 also
24 samples from a published metagenomic study20 (Data Citation 2) of the Baltic Sea are included to
illustrate the capabilities for BARM to work as a reference gene catalogue for the Baltic Sea.

Along with the dataset, a public web interface (BalticMicrobeDB) was constructed to facilitate
exploratory analysis of the data (https://barm.scilifelab.se). Through this it is possible to view counts of
functional and taxonomic annotations over the different sample groups. Moreover, it is possible to search
for functional annotations based on their descriptive texts and choose to view or download the counts for
only those matching the search query.

The annotated assembly presented here is a rich resource for further exploitation of the published
datasets, facilitated through the web interface, but could also function as a reference metagenome
assembly for the Baltic Sea, decreasing the computational demands for the analysis of new metagenome
and metatranscriptome samples, and serve as reference for metaproteome analyses.

Methods
Sampling, DNA Extraction and Sequencing
The thirty seven surface-water (2 m depth) samples from the 2012 time series (March to December) from
the Linneaus Microbial Observatory (LMO), station located 10 km off the east coast of Öland, and where
the maximum depth is 47 m, have been described in Hugerth et al. (2015)8 (Data Citation 3). Briefly, after
prefiltration through 3.0 μm, DNA was extracted from 0.2 μm Sterivex™ cartridge filters (Millipore) using
the protocol described in Riemann et al. (2000)21 and sequenced on one HiSeq high-output flowcell with
an average of 31.9 million pair-end reads per sample.

The 30 transect samples were taken during a cruise initiated by Leibniz Institute for Baltic Sea
Research, Warnemünde on the R/V Alkor, carried out for the BONUS BLUEPRINT project from June 4
to June 17 2014. Samples for DNA analyses were collected using a compact CTD (profiling instrument
that records conductivity, oxygen, temperature and depth) SBE 911 Plus with a SBE-rosette SBE32 (Sea
Bird Electronics Inc., USA) equipped with 18 × 10 L FreeFlow-PWS-samplers (HYDRO-BIOS, Kiel,
Germany). Water was sampled from oxic zones, in the range from 2 to 242 m depth, within the salinity
gradient of the Baltic Sea. For DNA analysis, 1 L of seawater was directly filtered onto a 47 mm Durapore
membrane filter with 0.2 μm pore size (GVWP04700, Merck Millipore, Darmstadt, Germany) by a
vacuum of o300 mbar. Subsequently, the filters were folded, flash frozen using liquid nitrogen and
stored at −80 °C until further processing. DNA was extracted using a modified protocol of the QIAamp
DNA Mini Kit (51304, Qiagen, Hilden, Germany) with an initial bead-beating step and a cleanup and
concentration process using the Zymo gDNA Clean and Concentrator Kit (D4010, Zymo Research
Europe, Freiburg, Germany). The concentration and quality of the eluted DNA was assured by gel
electrophoresis and Bioanalyzer DNA 12000 kit (5067-1508, Agilent Technologies, Santa Clara, USA).
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The samples were sequenced at the National Genomics Infrastructure at Science for Life Laboratory,
Stockholm, Sweden, using a full HiSeq 2500 high-output flowcell producing an average of 69.5 million
pair-end reads per sample.

The redoxcline samples consist of samples from station Boknis Eck (Data Citation 4), located at the
entrance of the Eckernforde Bay in the southwestern Baltic Sea, and from station TF0271 at the Gotland
Deep in the eastern Gotland Basin. The Boknis Eck station was sampled on September 23, 2014 on the R/
V Littorina during routine monitoring activities performed monthly by the GEOMAR Helmholtz Centre
for Ocean Research Kiel. Due to windy conditions before the sampling day, the water at the Boknis Eck
station was mixed over most of the water column and only the bottom water was sulfidic. Water was
sampled from the mixed oxygenated layer and from the sulfidic bottom water, which was captured on a 3
μm pore size membrane filters (Whatman, Maidstone, UK) followed by 0.2 μm pore size Sterivex-GV
filters (Millipore Billerica, Massachusetts, USA). The Gotland Basin was sampled during the cruise
EMB087 on the R/V Elisabeth Mann Borgese on October 18 and October 26, 2014. The samples
from October 18 were taken in the context of an experiment close to the oxic-anoxic interface from
suboxic and anoxic water layers and were captured directly on 0.2 μm pore size Durapore membrane
filters (Whatman, Maidstone, UK). The samples from October 26 were taken to cover different zones in
the redox gradient (suboxic, oxic-anoxic interface, upper sulfidic, lower sulfidic) and were captured
first on a 3 μm pore size membrane filters (Whatman, Maidstone, UK) followed by 0.2 μm pore size
Sterivex-GV filters. DNA from water captured on 3 μm pore size membrane filters and 0.2 μm Sterivex-
GV filters was extracted using the QIAmp DNA Mini Kit (Qiagen, Hilden, Germany): ATL buffer was
added to filter pieces together with 200 μm low-binding Zirconium beads (OPS Diagnostics, Lebanon,
NY, USA) and the suspension was vortexed for 5 minutes at maximum speed. Subsequently proteinase
K was added and the suspension was incubated for approximately 1h at 56 °C before continuing DNA
extraction by following the manufacturer’s instructions. Nucleic acids from Gotland Basin water sampled
on October 18 on 0.2 μm pore size membrane filters were extracted using the AllPrep DNA/RNA
Mini Kit (Qiagen, Hilden, Germany). Similar as before, filters were vortexed together with Zirconium
beads in RTL buffer before continuing nucleic acid extraction by following the manufacturer’s
protocol. The concentration and quality of the eluted DNA was assured by gel electrophoresis. The
samples were sequenced on a single HiSeq 2500 lane producing an average of 20.7 million pair-end reads
per sample.

All sequencing libraries (including LMO) were prepared with the Rubicon ThruPlex kit (Rubicon
Genomics, Ann Arbor, Michigan, USA) according to the instructions of the manufacturer.

Preprocessing and Assembly
The quality of the reads were checked and visualized with FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) through MultiQC22 and trimmed from low quality bases with cutadapt23 using
Phred score 15 as a cutoff. Adapter sequences were also removed using cutadapt, keeping only read pairs
where both reads in the pair were longer than 31 bases. Preprocessed reads were then assembled using
Megahit24 version 1.0.2 with default parameters including kmers 21,41,61,81 and 99.

Exclusively to the 30 samples from the transect cruise, genomic material (20 ng per L of seawater)
from a known genome of Thermus thermophilus (strain HB8), which is not expected to be present in
the Baltic Sea naturally, was added after filtration but prior to the DNA extraction, serving as
internal standard to enable absolute quantifications. Aligning all contigs from the metagenome
assembly against this reference genome showed that 84.1% of the genome was recovered within
contigs aligning with average 99.82% identity. These additional genome contigs were kept in the
reference assembly but reads aligning to the reference genome were filtered out before the quantification
steps, and before uploading the processed reads to the European Nucleotide Archive (ENA)
(Data Citation 5).

Functional Annotation
Genes were predicted on all contigs using Prodigal25 version 2.6.3 with the ‘--meta’ tag which potentially
uses different coding tables for different contigs. Genes located on contigs longer or equal to 1 kilobase,
identified with the script toolbox/scripts/fasta_lengths.py, were used for functional and taxonomic
annotation. For functional annotation, the databases EggNOG17, Pfam16, TIGRFAM (http://www.jcvi.
org/cgi-bin/tigrfams/index.cgi) and dbCAN18 were chosen. Furthermore, EC-numbers19 were extracted
from the EggNOG annotations.

To annotate genes with EggNOG17 IDs, the EggNOG hmm file for all organisms, NOG.hmm.tar.gz,
version 4.5 was downloaded from http://eggnogdb.embl.de/download/eggnog_4.5/data/NOG/. For
performance reasons, hmmsearch was used instead of hmmscan26, initially removing all hits with an
E-value >0.0001. To select a maximum of one annotation per gene, the hit with highest score was chosen
using the script toolbox/scripts/hmmer_filtering/keep_top_score.py. Information about each annotation was
downloaded from http://eggnogdb.embl.de/download/eggnog_4.5/data/NOG/NOG.annotations.tsv.gz.

An Enzyme Commision (EC) number19 was assigned to each EggNOG through the Uniprot27

proteins included in the EggNOG model, if a majority of its EC-assigned members were assigned to that
EC. Note that proteins could have multiple EC numbers assigned and therefore some EggNOGs were
assigned multiple EC numbers. The files needed for the conversion were eggnog4.protein_id_conversion.
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tsv.gz (downloaded from http://eggnogdb.embl.de/download/eggnog_4.5/ on January 9th 2017)
and NOG.members.tsv.gz (downloaded from http://eggnogdb.embl.de/download/eggnog_4.5/data/
NOG/ on January 9th 2017). The protein ID conversion file gives EC numbers per reference
protein and the members file gives the reference proteins that build each model. The protein with
taxaid 400682 and protein ID “PAC” was removed from the protein ID conversion file since it had 695
EC entries. Likewise for taxaid 7070 and protein ID “TCOGS2”, with 686 EC entries. The protein ID
with the third most entries had 6 entries and therefore the two others were deemed as outliers.
The suspected reason is that these entries belong to different genes for these genomes but there were no
way to resolve this and the EC-number assignment for each EggNOG was deemed to not be affected
by this. Given the assignment of EC-numbers per EggNOG, the assignment per gene was done with
toolbox/scripts/assign_ec_from_nog.py.

Annotation against the dbCAN18 (DataBase for automated Carbohydrate-active enzyme ANnotation)
database was performed using version 5 (downloaded from http://csbl.bmb.uga.edu/dbCAN/download.
php). Following the instructions from dbCAN (downloaded from http://csbl.bmb.uga.edu/dbCAN/
download/readme.txt), hmmscan26 was used with the option --domtblout and the result was further
treated with the recommended script hmmscan-parser.sh (reference of used script available within
toolbox/third_party_scripts/dbcan/hmmscan-parser.sh) from dbCAN requiring a covered fraction of the
HMM larger than 0.3 and keeping long alignments (>80 amino acids) if the E-value was less than 1e-5
and short alignments if the E-value was less than 1e-3. An additional script toolbox/hmmer_filtering/
dbcan_strict_filtering.py was applied, choosing to follow recommendations for bacteria from dbCAN,
keeping annotations with e-value less than 1e-18 and alignment coverage greater than 0.35. To allow for
more than a single domain within a gene, any annotation which fulfilled these criteria was kept.
Information about each annotation was collected (downloaded from http://csbl.bmb.uga.edu/dbCAN/
download/FamInfo.txt).

Annotation against Pfam16 version 30.0 was conducted with the script pfam_scan.pl supplied from the
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/Tools for version 28.0, using hmmer version 3.1b1 (ref. 26). To
allow for more than a single domain within a gene, any annotation which fulfilled these criteria was kept.
Information about each annotation was collected as columns 1,2 and 4 from the file pfamA.txt.gz
downloaded from ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam30.0/database_files/ on January
11th 2017.

Annotation against TIGRFAM version 15, was performed using hmmsearch (v. 3.1b2)26 with --cut_tc
argument to filter models by trusted cutoff. For each protein sequence, the best scoring HMM was
selected using hmmparse.py available at https://github.com/johnne/biotools/blob/master/scripts/
hmmparse.py

Taxonomic annotation
The method used to assign taxonomy was chosen in order to assign as many contigs as possible to a
taxonomy while still keeping false positives to a low level. As the number of sequences in reference
databases closely related to the genomes in our samples was expected to be low8, amino acid sequences
from the assembly were used to compare against other amino acid sequences in the reference database,
enabling higher sensitivity (due to the more conserved nature of amino acid sequences). This comparison
was done using Diamond version 0.8.26 (ref. 28) with the parameters “--seg yes”,”--sensitive” and “--top
10” against the NCBI nr database downloaded December 2nd 2016.

The code used to assign taxonomy from the Diamond search was based on an original available in the
DESMAN package29 and the modified version of the code is available as the script toolbox/scripts/
taxonomy_from_genes_to_contigs/lca_per_contig.py. The assignment was done as follows: all reported
hits from the Diamond search were given a weight based on the aligned fraction of the query and the
percentage identity of the alignment. At each taxonomic level, if the sum of the weights for one taxon was
greater than half the sum of all weights, the gene was assigned to that taxon as long as the percentage
identity was high enough. The levels for the percentage identity were set to 40% at superkingdom level,
50% at phylum level, 60% at class level, 70% at order level, 80% at family level, 90% at genus level and
95% at species level.

Taxonomic assignments were set per contig to the most detailed level where consensus for at least 50%
of the weights of the preliminary gene assignments could be achieved. Genes without taxonomic
annotation were ignored. The shared assignment was propagated to all genes present on that contig. In
this way, all genes present on one contig will always share the taxonomic assignment. If no single
superkingdom accounted for a majority of the gene assignment weights for a contig, the contig was left
unassigned.

Quantification and Normalization
To use the metagenome assembly as a reference assembly, individual samples are functionally and
taxonomically annotated by quantifying the different annotations present in the assembly. This is done by
mapping all short reads against the assembly and quantifying genes, and thereby any associated
annotation, with the number of reads mapping to them. More specifically bowtie2 (ref. 30) version 2.2.6
was used with the parameter “--local” for mapping, duplicated reads were removed with picard version
1.118, bam-file sorting was done with Samtools31 version 1.3, and the htseq-count script from htseq32

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180146 | DOI: 10.1038/sdata.2018.146 4

http://eggnogdb.embl.de/download/eggnog_4.5/
http://eggnogdb.embl.de/download/eggnog_4.5/data/NOG/
http://eggnogdb.embl.de/download/eggnog_4.5/data/NOG/
http://csbl.bmb.uga.edu/dbCAN/download.php
http://csbl.bmb.uga.edu/dbCAN/download.php
http://csbl.bmb.uga.edu/dbCAN/download/readme.txt
http://csbl.bmb.uga.edu/dbCAN/download/readme.txt
http://csbl.bmb.uga.edu/dbCAN/download/FamInfo.txt
http://csbl.bmb.uga.edu/dbCAN/download/FamInfo.txt
https://github.com/johnne/biotools/blob/master/scripts/hmmparse.py
https://github.com/johnne/biotools/blob/master/scripts/hmmparse.py


version 0.6.1 was used to get raw counts per gene. Counts per annotation was achieved by summing all
counts for genes annotated with each respective annotation.

When quantifying annotation types where multiple annotations were allowed for a single gene
(dbCAN and Pfam), some genes contributed several times to the quantities. This was kept in order to
facilitate analysis of differential abundance for the individual annotations.

Along with raw counts of reads for each annotation type and taxonomy, a count normalized by gene
length and number of mapped reads was also calculated. Analogously to the formula for Transcripts Per
Million used in transcriptomics (ref 33), we calculate TPM for gene counts:

TPM ¼ rgUrlU106

f lgUT

T ¼
X

gAG

rgUrl
f lg

Where rg is the number of reads mapped to gene g from the sample, rl is the average read length for the
sample, flgis the length of the gene and G is the set of all genes. T is a convenience variable for the
indicated sum over all genes.

Code availability
Code used to preprocess reads, assemble contigs and annotate genes is publicly available at https://github.
com/EnvGen/BLUEPRINT_pipeline, containing the pipeline definition of the workflows used, https://
github.com/EnvGen/snakemake-workflows, where the snakemake rules are specified in order to build the

Figure 1. A map showing the locations for all stations where samples were taken. The three sample

groups included in the assembly (Transect, LMO and Redoxcline) are displayed together with the external

sample set20 (External), all groups indicated with different markers. The colour of the marker indicates the

salinity of the water sample while the size indicates the depth at which it was taken. The background color

indicates depth (from white to dark blue), with contour lines drawn with 50 m intervals. The map was

generated using the Marmap package36 in R37 with bathymetric data from the ETOPO1 dataset hosted on the

NOAA server38.
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command used for each step, and the branch BARM_publication of https://github.com/EnvGen/toolbox,
for custom scripts. Scripts within the latter repository that have been used have been indicated
throughout the text.

Data Records
The preprocessed sequencing reads from the Transect and Redoxcline samples were submitted to ENA
hosted by EMBL-EBI under the study accession number PRJEB22997 (Data Citation 5). The raw reads

Figure 2. Mapping rates divided on different sample groups. Mapping rates are calculated by

Bowtie2 (ref. 30) as the “overall alignment rate”. The three first sample groups; LMO 2012 (N= 37,

0.2–3.0 μm), Baltic Transect 2014 (N= 30, >0.2 μm) and Baltic Redoxcline 2014 (N= 6, 0.2–3.0 μm; N= 6,

>3.0 μm; N= 2, >0.2 μm) were included in the assembly, while the four last sample groups; External Samples

o0.1 μm (N= 6), External Samples 0.1–0.8 μm (N= 6), External Samples 0.8–3.0 μm (N= 6) and External

Samples 3.0–200 μm (N= 6) were not. The size intervals of the external samples indicate filter pore sizes used

to tentatively separate viruses, free-living prokaryotes, and small and larger particles as well as Eukaryotic cells,

respectively34. Created using Matplotlib39 and Seaborn40.

Figure 3. Fraction of reads mapping to genes annotated with respective database. Only genes identified on

contigs longer than 1 kilobase were subjected to annotation, defining the ‘included genes’ category. N= 81 for

all categories. Created using Matplotlib39 and Seaborn40.
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from LMO were published elsewhere8 and are accessible at NCBI (Data Citation 3). Contig, gene and
protein sequences from the co-assembly of the Transect, Redoxcline and LMO samples, as well as
quantification tables, contextual data for the samples, and the annotations for each gene are accessible on
Figshare (Data Citation 1). The raw sequencing reads from the external samples used for evaluation were
also published elsewhere34 and are accessible at NCBI (Data Citation 2).

Technical Validation
The mapping rates for all samples included in the reference assembly are shown in Fig. 2, where the
majority of samples included in the assembly reaches a level above 80%. This serves as a validation of the
completeness of the metagenome assembly. The fraction of reads that did not map to the coassembly, and
were hence not assembled past the 200 bases length cutoff most likely originate from low abundance
species, or species with high intraspecies diversity generating fragmented assemblies. The mapping rate
of the external samples shows the capability for this assembly to serve as a reference metagenome
assembly for the Baltic Sea. These external samples34 were collected in a different year (2011) and a
station (58.82 N 17.63 E) separate from where the samples included in the assembly were taken. This
represents a realistic scenario where BARM is used as a reference metagenome for the Baltic Sea. The
mapping rates vary with the filter fractions, where reads originating from the largest (3.0–200 μm) and
smallest (o0.1 μm) fractions displayed lower rates than the two intermediate fractions (0.1–0.8 μm and
0.8–3.0 μm), indicating that picoplankton are better represented in BARM than larger eukaryotic
plankton and viruses.

Assignment rates for different annotation types, as shown in Fig. 3, are in the majority of cases
below 10% of the total number of reads, which is expected since only genes on long contigs (representing
40% of the bases of the total assembly) were predicted and subjected to annotation. The fraction of
reads annotated among reads mapping to genes included in the annotation procedure reaches well
over 30% for Pfam and shows the generality of that database as compared to i.e. dbCAN, a much
more niched resource, which reaches only around 2% of reads mapping to genes included in the
annotation.

Figure 4. Non-metric dimensional scaling (NMDS) of the 30 samples included in the Transect sample

group based on EggNOG annotation. Samples are colored and sized according to salinity and depth,

respectively. Created using Matplotlib39 and Seaborn40.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180146 | DOI: 10.1038/sdata.2018.146 7



The functional annotation was further validated through an NMDS plot (Fig. 4) based on the EggNOG
annotations of the transect data. Depth was found to be negatively correlated with the first dimension
(Spearman’s rank correlation ρ=− 0.73, P= 5.4− 06) and salinity was negatively correlated with the
second dimension (Spearman’s rank correlation ρ=− 0.77, P= 2.4− 06). These two environmental
parameters have previously been found to correlate strongly with the microbial community in the Baltic
Sea5 which strengthens our trust in the EggNOG annotations. Furthermore, analyzing a single annotation
with a known function, namely the photosynthetic reaction centre protein (PF00124), we could see a
strong negative correlation with sampling depth over the thirty transect samples (Spearman correlation
coefficient ρ=− 0.87, P= 3.1-10).

The taxonomic annotation was validated by inspecting the taxonomic profile of the transect samples.
The same dominant prokaryotic taxonomic groups were observed as in previous pan-Baltic amplicon
sequencing and metagenomic studies5,7,10,11, and the overall trends were conserved with an increase in
Alpha- and Gammaproteobacteria and a decrease in Actinobacteria and Betaproteobacteria with
increasing salinity levels (Fig. 5).

Among the predicted proteins in BARM, 98% lacked hits with amino acid identities above 95%, hence
potentially representing species for which sequenced genomes are lacking35. 31% of the sequences lacked
significant hits (E-value >1) and potentially correspond to novel protein families.

Usage Notes
A publicly available repository at https://github.com/EnvGen/BARM_tools hosts instructions and a
pipeline on how to quantify genes and their annotations within BARM for any kind of Baltic Sea
metagenomic and metatranscriptomic samples.

The web interface BalticMicrobeDB, available to the public at http://barm.scilifelab.se, can be used to
explore and access data for the three sample sets that the assembly is based upon. At the index page, the
user can choose whether to access functional annotations or taxonomic annotations. For the functional
annotations, the user can select specific annotation sources and identifiers and select the sample groups
for which the counts will be displayed. Furthermore, a text search over the identifiers and the descriptions
of the annotations can be used to create a custom table of counts over the selected samples. For
taxonomic annotations, counts for the top level superkingdom are first presented but the user can unfold
a taxonomic tree to select any taxon to view counts for.
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