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Abstract 

Reconstruction of early Cenozoic deep-water circulation is one of the keys to modelling Earth’s 

greenhouse-to-icehouse surface evolution, but it has long been hampered by the paucity of 

information from the central South Pacific. To help overcome this knowledge gap, we present new 

micropalaeontological data from dredged carbonates (R/V Sonne Expedition SO193) at several 

eastern volcanic salients of the Manihiki Plateau. Interestingly, despite appreciable longitudinal 

separations among the dredged sites, ages indicated by the foraminiferal assemblages are 

consistently around the Middle Eocene [including mixed Turonian (Late Cretaceous)/Eocene at a 

single site], suggesting widespread post-Eocene cessation of the pelagic sedimentation. By 

integrating with independent seismic and chronostratigraphic data (Deep Sea Drilling Project Leg 33) 

for large-scale erosion of top-Eocene–Oligocene sedimentary units on the eastern Manihiki Plateau, 

our results can be viewed as novel physical evidence for the intensification of central South Pacific 

deep-water circulation since the Eocene/Oligocene climatic transition. 
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1 | INTRODUCTION 

The central part of the South Pacific has long been a vast data-poor area in the study of deep-time 

Cenozoic palaeoceanography, for which two main reasons are apparent, natural and artificial. For 

the natural reason, the pelagic sedimentary records of this area are limited by very low rates of 

sediment accumulation. This is manifested by an extensive field of red clay and Fe–Mn nodules on 

the seafloor, including the “South Pacific bare zone” where sedimentary layers are minimally 

developed or non-existent (e.g., Rea et al., 2006; Glasby, 2007). Another (artificial) reason is that 

central South Pacific palaeoceanography has received little attention in the history of scientific deep-

sea drilling. This is in stark contrast to the surrounding oceanic domains (Antarctic Ocean, Southern 

Ocean, West Pacific, central/eastern equatorial Pacific), which are characterized by superior 

sedimentary records and have been the foci of in-depth Cenozoic palaeoceanographic and 

palaeoclimatic studies. This mega-data bias is apparent from graphic compilations of 

palaeoceanographically studied deep-sea sites for stable isotopes [see, for example, Cramer et al., 

(2009, figure 1 therein)] and Nd isotopes (see later discussion). 

Under such circumstances, one notable exception is the Manihiki Plateau (Figure 1), on which a 

continuous pelagic sedimentary record of the Cenozoic (Eocene and younger), perhaps of high 

palaeoceanographic potential, was proven to exist by Deep Sea Drilling Project (DSDP) Leg 33 

(Shipboard Scientific Party, 1976). Previous studies at DSDP Site 317 and a nearby piston core 

presented Eocene to recent benthic foraminiferal faunal trends (Boltovskoy and Watanabe, 1994; 
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Hayward et al., 2010), Miocene planktonic foraminiferal biostratigraphy (Thunell, 1981) and benthic 

foraminiferal stable isotopes (Woodruff, 1985; Woodruff and Savin, 1989, 1991), and integrated Plio-

Pleistocene magneto-, bio- and isotope-stratigraphy (Schönfeld, 1995; Beiersdorf et al., 1995). 

Meaningful early Cenozoic palaeoceanographic information, however, is still critically lacking from 

this region of the South Pacific. 

This study aims to shed new light on early Cenozoic palaeoceanography in the central South 

Pacific by presenting new information from the Manihiki Plateau. The studied material includes 

recently recovered dredged carbonates along the eastern plateau margin. Based on the evidence 

from foraminiferal micropalaeontology of the dredged carbonates as well as its integration with past 

DSDP Leg 33 geological and geophysical data from the eastern plateau, a new reconstruction can be 

developed for a peculiar pattern of pelagic sedimentation over this setting. Results are placed in the 

context of established early Cenozoic events in global deep-water circulation, and are anticipated to 

direct more attention to this palaeoceanographically highly underexplored area. 

 

2 | CRUISE INFORMATION 

In 2007, IFM-GEOMAR Project SO193 was conducted using German R/V Sonne, sailing across the 

entire Manihiki Plateau and adjacent areas (Figure 1). The major goal of this expedition was to carry 

out systematic geological investigation on the plateau in terms of its origin, spatial–temporal 
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evolution and relationship with other mid-Cretaceous Pacific large igneous provinces (e.g., Timm et 

al., 2011; Golowin et al., 2017). In addition to bathymetric mapping and profiling, rock sampling by 

dredging was carried out on all major geomorphological features at a total of 82 sites (Figure S1). 

Technical methods of dredging as well as a first-order description of the dredged material can be 

found in Werner and Hauff (2007). Due to the strategy of targeting faults and scarps for igneous rock 

sampling, dredged samples were outnumbered by lavas and volcaniclastic rocks, yet some areas of 

the plateau were found to yield partially to strongly indurated sediments. 

 

3 | MATERIAL AND METHODS 

Among 37 dredged sites marked by the recovery of sedimentary rocks, several sites with blocks of 

light-coloured, apparently pelagic chalks/limestones with minor Fe–Mn precipitates were selected 

for foraminiferal analysis (Table S1). In addition to the main procedure of sample processing and 

analysis as detailed below, part of these samples as well as those from some other sites with 

carbonate-poor lithology were chosen for thin-section examination. 

For foraminiferal analysis, each sample was cut into small (~0.5 cm-sided) pieces and weighed 

for 5 g (or less, depending on rock hardness), treated with 3% hydrogen peroxide (HP) solution, wet-

sieved and dried. The <2 mm sieve fraction was saved for microscopic analysis. This conventional 

process is hereafter called the “1st HP” step, yet it resulted in only partial disaggregation for all 
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samples, leaving residue of variable foraminiferal abundance. The remaining very coarse (≥2 mm) 

fraction was then processed by the glacial acetic acid (GAC) method (e.g., Ando et al., 2008). 

Specifically, each of the remaining very coarse fractions was oven-dried, soaked in 100% CH3COOH 

and then rinsed thoroughly with tap water (or stored in water for a few hours) until complete 

cessation of the chemical reaction. Disaggregation of this remaining harder fraction still did not 

proceed, but it was accidentally found that an additional round of drying and 3% HP treatment could 

facilitate the process with ease for some samples. This additional cycle of sample processing is 

hereafter called the “GAC/2nd HP” step. 

Since this study focuses on age determination of dredged carbonates with varying sample 

processing results, foraminiferal picking and species identification were mostly limited to the >212 

μm dry-sieve fraction, thus excluding small, often hardly identifiable specimens in the background 

assemblage. For prolific foraminiferal samples, specimen picking was performed qualitatively, using 

entire grid transect(s) of evenly spread foraminiferal residue on a picking tray until a sufficient 

number of specimens were collected. As described below, foraminiferal assemblages were 

completely different between the 1st HP and GAC/2nd HP steps. Foraminifera in the former are 

obviously from surficial, less stiff, younger sedimentary components, whereas those in the latter are 

considered to represent the essential sedimentary components at each site. It is noteworthy that 

specimens treated by GAC are found variably, often splendidly, preserved. The foraminiferal 

occurrences and counts are summarized in Table S2. 
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4 | RESULTS 

Sites DR72 and DR69 yielded similar and the most intriguing foraminiferal assemblages (Figures 2 

and 3). Recovered specimens are fairly well-preserved in terms of gross morphology, though more or 

less affected by recrystallization (Figure S2). At each site, the main assemblage components 

(extracted by GAC/2nd HP) are abundant, diverse Middle Eocene planktonic taxa, of which 

particularly age-diagnostic are species of Acarinina, Globigerinatheka, Hantkenina and 

Morozovelloides [identification of Eocene planktonic foraminifera in this study follows Pearson et al. 

(2006)]. The subordinate components (by 1st HP) are the Plio-Pleistocene taxa. Some taxa do not fall 

in these age intervals, indicating a certain extent of foraminiferal reworking from wider age ranges. 

This within-sample time-mixing is understandable considering the nature of the unstable 

depositional setting at narrow, steep, current-susceptible volcanic salient tops. 

Site DR93, likewise, yields a Middle Eocene planktonic assemblage (by GAC/2nd HP) including 

species of Acarinina, Globigerinatheka, Morozovelloides and Turborotalia (Figure 4). Minor time-

mixing within the Eocene is also likely in this sample. No subordinate Neogene taxa are present. 

Thin-section examination indicates that Eocene planktonic foraminifera are prolific in this sample, 

with even higher diversity than that observed in the washed sample (Figure S3a). 
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Site DR82 is marked by rare isolated specimens (by both 1st and 2nd steps) (Figure 5), contrasting 

with the sites described above. Based on thin section analyses, however, actual foraminiferal 

abundance and diversity can be rated as very high (Figures 5 and S3b–S3d). Several species of 

Acarinina and Morozovella (with characteristic muricate surface/keel), most likely representing an 

assemblage from the Middle Eocene, are identified. Moreover, this sample is exceptional in 

containing a few taxa of Turonian (Late Cretaceous) planktonic foraminifera that are very poorly 

preserved but are still identifiable at the species level. Taphonomically of interest are numerous 

fragmented specimens comprising chamber-fillings of clinoptilolite, occasionally occurring as 

complete internal moulds (Figure 5f,j,k; see also Figure 4f). 

Other Sites DR 67, DR 68 and DR97 (of which the last is located off the southwestern plateau) 

are marked by Neogene planktonic foraminifera only (after 1st HP). At each site, the assemblage is 

accompanied by some extinct Neogene taxa (Figure 6), suggesting very slow rates of sediment 

accumulation and within-Neogene time-mixing. 

 

5 | SIGNIFICANCE OF UBIQUITOUS EOCENE SURFACE SEDIMENTS 

The observed congruence in the ages of the dredged carbonates at the Middle Eocene is unexpected 

and intriguing, especially because the studied sites are the sedimentary caps on several volcanic 

salients that are widely separated from each other along the eastern Manihiki Plateau margin 
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(Figures 1 and 7). The number of examined sites is rather few, but it is sufficient to suggest a certain 

genetic background mechanism. 

The ubiquity of Middle Eocene surface sediments can be attributed to primary 

palaeoceanographic factor(s) that controlled pelagic sedimentation over this oceanic domain. Note 

that secondary gravitational processes (slumping) of younger (Oligocene–Neogene) sediments is 

unlikely to explain the widespread exposure of an Eocene lithologic unit, as this would necessitate 

multiple coincidences of local processes. There are three possible options, since the Eocene there 

has been: (1) a substantial decrease in primary calcium carbonate production; (2) prevalence of 

carbonate dissolution on the seafloor; and/or (3) a change in deep-water physical properties that 

created unfavourable conditions for the settling of pelagic sedimentary particles. The former two 

possibilities can be ruled out because nearby DSDP Site 317 provides evidence for continuous 

Cenozoic pelagic sedimentation in this area (Figure 7), and because the dredged depths (Table S1) 

are well above Cenozoic carbonate compensation depths (CCDs) (Pälike et al., 2012). 

Thus, the most plausible explanation for the inferred widespread cessation of pelagic 

sedimentation is a change in deep-water physical properties. Specifically, the preferred mechanism 

is a post-Eocene shift in or intensification of deep-water circulation in terms of flow velocity 

(increased current velocity exceeding a threshold of sediment settling), flow thickness (increased 

height of the water circulation cell), flow direction (development of an easterly/southerly deep-

water current directly bathing the eastern Manihiki Plateau), or a combination of these. 
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Strong support for this interpretation comes from DSDP Leg 33 data (Schlanger and Winterer, 

1976; Shipboard Scientific Party, 1976; Takayanagi and Oda, 1976). Based on integration of Site 317 

chronostratigraphic results with seismic profiles (Figure S4), widespread seafloor erosion and 

exposure of the top-Eocene–Oligocene lithologic units are obvious in the eastern low-gradient flank 

of the Manihiki Plateau (Figures 7 and S5). Considering that its water depth was shallower than the 

Pacific CCD during the Oligocene–Neogene (4–4.5 km: Pälike et al., 2012), the only mechanism for 

explaining the significant erosion of post-Eocene sediments on the plateau is intensification of 

abyssal currents that have prevented sediment settling since that time. It should be noted that the 

summit of the Manihiki Plateau is still covered with coherent Neogene chalk/ooze layers (Figures 7 

and S5), showing no evidence for widespread current-induced erosion, despite having sufficient 

depth to have been influenced by such an abyssal current. This fact does not necessarily contradict 

our interpretation by invoking the development of an inherent current system surrounding a 

seamount. That is, the plateau summit could have been topped by a water cell of downward 

circulation (thus facilitating retention of sediment particles), whereas, at the same time, the flank 

setting of the upper plateau could have been swept by horizontal circular currents (e.g., Arreguín-

Rodríguez et al., 2016). 
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6 | BROADER PALAEOCEANOGRAPHIC IMPLICATION 

Based on the observed timing for the onset of non-deposition on the eastern Manihiki Plateau, it 

would be natural to correlate the inferred major shift in South Pacific deep-water circulation with 

the Eocene–Oligocene climatic transition. It is one of the best known and studied 

palaeoenvironmental events in Earth’s history in relation to the onset of the Antarctic Circumpolar 

Current (Figure 8), the development of North Atlantic Deep Water, the expansion of Antarctic ice 

sheets, and the lowering of CO2 (e.g., Katz et al., 2011; Goldner et al., 2014; Scher et al., 2015; Coxall 

et al., 2018). 

In conjunction with the Eocene/Oligocene climatic transition, there is a series of physical 

evidence for deep-water circulation shifts in and around the South Pacific, correlating well with the 

results of this study. They are: bottom current-controlled erosion and redeposition in the Samoan 

Passage (Johnson, 1974; Hollister et al., 1974) (Figures 1 and 8b); widespread deep-sea 

unconformities revealed by multiple DSDP Leg 21 sites in the western South Pacific off Australia 

(Kennett et al., 1972, 1975) (Figure 8b), and radiolarian reworking events in the central equatorial 

Pacific (Moore, 2013). A coeval widespread hiatus is also known from the Southern Ocean (Wright 

and Miller, 1993; Cramer et al., 2009). In addition, Boltovskoy and Watanabe (1994) documented a 

major Eocene/Oligocene boundary faunal turnover of benthic foraminifera at Site 317. 
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As noted above (Section 1), the central South Pacific is a markedly data-poor area for Cenozoic 

palaeoceanography. Although recent progress in seawater Nd isotopic studies (mainly from fish 

debris and Fe–Mn crusts) has been generating crucial insights into past deep-water circulation 

patterns, data from the central South Pacific are limited to a couple of case studies with coarse age 

resolution (van de Flierdt et al., 2004; Thomas et al., 2014) (Figure 8). Of these, van de Flierdt et al. 

(2004) analysed a 38-Myr-spanning Fe–Mn crust (called “Nova”) from the Samoan Passage (Figures 1 

and 8b) and interpreted the Nd isotopic time-series as reflecting late Eocene(?) onset of the Deep 

Western Boundary Current. Nonetheless, while Nd isotopes are excellent tracers of sources of deep-

water masses, they provide limited clues to the flow intensity of water circulation, as pointed out 

previously (e.g., Lyle et al., 2007). Therefore, our new view on the post-Eocene flow intensification of 

South Pacific deep water, as deciphered from physical evidence of non-deposition/erosion of the 

eastern Manihiki Plateau and its salients, will be invaluable in filling this major palaeoceanographic 

knowledge gap. 
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Figure and Appendix captions 

FIGURE 1  (a) Bathymetric map of the Manihiki Plateau, South Pacific, showing site locations of 

dredged sedimentary rocks by R/V Sonne Expedition SO193 analysed in this study (red circles with 

prefix “DR”) (Werner and Hauff, 2007). Also shown are locations of DSDP Site 317 (Shipboard 

Scientific Party, 1976), Samoan Passage piston cores (80, 82, 88) by Johnson (1974), and Fe–Mn crust 

“Nova” (D137-01) by van de Flierdt et al. (2004). Lines A–E–H and J–N (corresponding to those in 

Figures 7 and S5) indicate parts of DSDP Leg 62 ship tracks, from which seismic profiles adopted in 

this study were released by Schlanger and Winterer (1976). This colour bathymetric map was 

generated using The Generic Mapping Tools, version 5.2.1 (c) 1991–2015 (P. Wessel, W.H.F. Smith, 

R. Scharroo, J. Luis and F. Wobbe) and database The GEBCO_2014 Grid, version 20150318, 

http://www.gebco.net. (b) Present-day global map showing tectonic plate configuration and position 

of the Manihiki Plateau (MP) [enclosed by red line delineating area of (a)], as well as major paths of 

deep-water circulation (Weaver et al., 1999; Hall et al., 2003; Sallée et al., 2010). AAC—Antarctic 

Circumpolar Current; DWBC—Deep Western Boundary Current. (c) Middle Eocene palaeo-position of 

the Manihiki Plateau on 45 Ma palaeogeographic and plate tectonic reconstruction. For (b) and (c), 

base maps (orthographic projections) were generated using ODSN Plate Tectonic Reconstruction 

Service (http://www.odsn.de/odsn/services/paleomap/paleomap.html). 
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FIGURE 2  SEM images of Eocene planktonic foraminifera from Sample DR72-2 (a–r) and Sample 

DR69-1 (s). All scale bars = 100 μm. Asterisks (*) indicate specimens isolated by glacial acetic acid 

treatment. (a) Hantkenina lehneri, with numerous phillipsite crystals attached. (b) Hantkenina 

dumblei. (c) Hantkenina liebusi. (d) Morozovelloides lehneri. (e) Morozovella crater. (f) 

Morozovelloides bandyi. (g) Morozovelloides aff. M. coronatus. (h,i) Globigerinatheka curryi. (j) 

Globigerinatheka kugleri. (k) Acarinina praetopilensis. (l) Acarinina pseudosubsphaerica. (m) 

Acarinina rohri. (n) Subbotina senni. (o) Subbotina gortanii. (p) Subbotina corpulenta. (q) Subbotina 

roesnaesensis. (r) Praemurica? lozanoi. (s) Globigerinatheka barri. 

 

FIGURE 3  Diagram showing within-sample age variation of dredged carbonates at Sites DR69 and 

DR72. Numerical age ranges of planktonic foraminifera are from Aze et al. (2011), and timescale is 

from Aze et al. (2011) and Wade et al. (2011). Thick-lined ranges are major taxa occurring in 

few/common to abundant proportions (>4% of total assemblage at either 1st or 2nd sample 

processing step). Grey horizontal bars represent most essential ages of surface sediments at these 

sites. Also shown at further right is the possible age range of Sample DR82-4 (from base of A. 

praetopilensis to top of Mz. aragonensis). Plio.—Pliocene; Pleisto.—Pleistocene; E—Early; M—

Middle; L—Late. 
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FIGURE 4  (Left) SEM and thin-section images of Eocene planktonic foraminifera from Samples 

DR93-9 (a–e,g,h) and DR93-6 (f). Scale bars = 100 μm unless indicated otherwise. Asterisks (*) 

indicate specimens isolated by glacial acetic acid treatment. (a) Turborotalia cerroazulensis. (b) 

Turborotalia pomeroli. (c) Morozovelloides crassatus. (d) Acarinina bullbrooki. (e) Catapsydrax 

globiformis. (f) Globigerinatheka semiinvoluta?, whole specimen (1) and surface ultrastructure (2) of 

complete clinoptilolite internal mould. (g) Acarinina topilensis. (h) Morozovelloides bandyi. (Right) 

Diagram showing within-sample age variation at this site (see Figure 3 for information). 

 

FIGURE 5  Various microscopic images of planktonic foraminifera from Samples DR82-4 (a,f–m) and 

DR82-5 (b–e) [Eocene (a–g) and Turonian (h–m)]. Scale bars = 100 μm unless indicated otherwise. 

Asterisks (*) indicate specimens isolated by glacial acetic acid treatment. (a) Morozovella 

aragonensis. (b) Morozovella sp. (aragonensis or crater). (c) Acarinina sp. (cuneicamerata?). (d) 

Acarinina praetopilensis. (e) Subbotina sp. (f) Subbotina sp. (linaperta?), whole specimen (1) and 

surface ultrastructure (2) of complete clinoptilolite internal mould. (g) Parasubbotina cf. P. 

pseudowilsoni. (h) Dicarinella imbricata. (i–k) Marginotruncana pseudolinneiana, with magnified 

chamber filling (j5) and complete internal mould (k) composed of clinoptilolite. (l) 

?Helvetoglobotruncana helvetica. (m) Marginotruncana sp. 
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FIGURE 6  SEM and stereomicroscopic images of extinct Neogene planktonic foraminifera from 

Samples DR67-5 (a–c), DR68-3 (d) and DR97 (e–g). All scale bars = 100 μm. (a) Dentoglobigerina 

venezuelana. (b) Globigerinoides primordius. (c) Dentoglobigerina larmeui? (d) Globigerinoides 

subquadratus. (e) Dentoglobigerina altispira. (f) Globigerinella obesa. (g) Catapsydrax dissimilis. 

 

FIGURE 7  Evidence for large-scale erosion of the top-Eocene–Oligocene lithologic unit, eastern 

Manihiki Plateau (MP), as seen in a sub-seafloor structural diagram based on seismic profiles along 

the DSDP Leg 33 ship track (Schlanger and Winterer, 1976) and DSDP Site 317 chronostratigraphy 

(Shipboard Scientific Party, 1976; Takayanagi and Oda, 1976). See Figure 1a for seismic track lines 

(A–E–H and J–N) and also Figures S4 and S5 for further information on the compilation of this 

diagram. mbsl—metres below sea level; sec.—two-way travel time (in seconds). 

 

FIGURE 8  (a) Schematic of Middle–Late Eocene deep-water circulation in and around the Pacific 

Ocean, illustrated on a 45 Ma plate tectonic reconstruction. Labelled grey dots indicate 

DSDP/ODP/IODP sites (and single location of Fe–Mn crust) previously analysed for Nd-isotopic deep-

water palaeoceanography at time-window of 48–34 Ma (Thomas, 2004; van de Flierdt et al., 2004; 

Martin and Scher, 2006; Thomas et al., 2008, 2014; Scher et al., 2011, 2015; Hague et al., 2012; Le 

Houedec et al., 2012, 2016; Huck et al., 2017; Wright et al., 2018). Arrows indicate flow path 
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reconstructions based on Hague et al. (2012), Thomas et al. (2014), Le Houedec et al. (2016) and 

Huck et al. (2017). Broken arrows and broken line express formation and northern limit of Southern 

Ocean-sourced deep water (e.g., Hague et al., 2012; Thomas et al., 2014), though its specific major 

path has not been illustrated by any of the previous studies. (b) Schematic mid-Oligocene deep-

water circulation on a 30 Ma plate tectonic reconstruction. Grey dots are previous deep-sea sites 

analysed for Nd isotopes (as above) at 34–28.5 Ma [citations same as in (a) except for Thomas 

(2004)], and grey triangles are DSDP sites of widespread Oligocene unconformities at Lord Howe Rise 

and Coral Sea (Kennett et al., 1972, 1975). Flow path interpretations are based on Kennett et al. 

(1975), van de Flierdt et al. (2004), Hague et al. (2012) and Wright et al. (2017); proto-Deep Western 

Boundary Current (see also Figure 1b) is depicted to account for Samoan Passage (SP) erosion 

(Johnson, 1974; Hollister et al., 1974). Bifurcate arrow toward the Manihiki Plateau is to visualize 

proposed post-Eocene flow intensification of central South Pacific deep water by this study. For (a) 

and (b), base maps (equidimensional cylindrical projections) were generated using ODSN Plate 

Tectonic Reconstruction Service (http://www.odsn.de/odsn/services/paleomap/paleomap.html). 

 

Table S1  Summary of site information on dredging “on/off bottom” location and water depth by 

R/V Sonne Expedition SO193, and lithology of dredged sedimentary rocks examined. 
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Table S2  Foraminiferal count data from DR sample series of R/V Sonne Expedition SO193 (Eocene 

planktonic taxa highlighted). 

 

FIGURE S1  Detailed sampling map of R/V Sonne Expedition SO193 across the Manihiki Plateau. 

Adopted from Werner and Hauff (2007, appendix V therein). 

 

FIGURE S2  Selected SEM images of Eocene planktonic foraminifera from Sample DR72-2, showing 

preservation states in magnified surface views. (a) Morozovella crater (= Figure 2e in main text). 

Example of best-preserved specimen with pored wall surface that appears nearly intact, but with 

muricae/pustules that are thoroughly accentuated by blocky recrystallized calcite. (b) Subbotina 

senni (= Figure 2n). Another seemingly very well-preserved specimen, yet wall surface is evenly 

augmented by micron-scale secondary calcite crystals. (c) Globigerinatheka curryi (= Figure 2h). 

Specimen in more advanced stage of recrystallization. 
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FIGURE S3  Thin-section photomicrograph pairs [open (upper) and cross-polarized (lower) for each] 

of selected samples. (a) Samples DR93-6 and (b) DR82-5. Note very abundant planktonic 

foraminifera that are most likely Eocene in age. (c,d) Sample DR82-4, showing common presence of 

Late Cretaceous planktonic foraminifera (Marginotruncana pseudolinneiana group). Note 

rectangular and double-keeled cross-sections characteristic of this species. 

 

FIGURE S4  Correlation between chronostratigraphic and seismic data, DSDP Site 317, eastern 

Manihiki Plateau. Combined black-and-white image (right) is original Leg 33 litho-, bio- and seismic-

stratigraphy adopted from Schlanger and Winterer (1976, figure 4 therein). In this study, Cenozoic 

(Middle Eocene and younger) age framework is revised using planktonic foraminiferal datums 

selected from Takayanagi and Oda (1976) [their studied levels shown aside datum listing (grey 

ticks)], calibrated against recent standard biochronology (Wade et al., 2011). Cretaceous to Early 

Eocene age assignments are from Shipboard Scientific Party (1976). For seismic unit column, 

colouring corresponds to that of Figures 7 and S5. 

Planktonic foraminiferal range chart of selected taxa by Takayanagi and Oda (1976) is reproduced 

(left) for the interval 200–400 m below seafloor. It demonstrates that the Eocene/Oligocene 

transition could have been obscured, possibly due to the mechanism of deep-water circulation shift 

discussed in the main text. In this regard, noteworthy are the stratigraphic relationships of the base 
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of Turborotalia ampliapertura (orange circle) with the tops of Catapsydrax africanus, Catapsydrax 

globiformis and Globigerinatheka index (green circles). In the ideal Upper Eocene section, there 

exists a range overlap between T. ampliapertura and the latter three species (Pearson et al., 2006). 

Lack of such co-existence points to the presence of a sedimentation gap at Site 317B 

Eocene/Oligocene transition. 

 

FIGURE S5  Compilation of DSDP Leg 33 seismic data for construction of sub-seafloor structural 

diagram in Figure 7. (a) Mosaic of seismic profiles (upper panel) using images of Schlanger and 

Winterer (1976, figure 2 therein), and its coloured sub-seafloor lithologic interpretation (lower 

panel) based on expansion of Site 317 chronostratigraphic data (Figure S4) along seismic reflectors. 

(b) Latitude–longitude coordinates of Leg 33 ship tracks from Schlanger and Winterer (1976, figure 1 

therein), upon which a coloured sub-seafloor geologic profile is fitted as in Figure 7. Upper-case 

letters (A–N) are primary (bold) and secondary tie-points between seismic/colour geological profiles 

and Leg 33 ship track. “sec.”—two-way travel time (in seconds).  
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