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Major intensification of Atlantic overturning
circulation at the onset of Paleogene greenhouse
warmth
S.J. Batenburg 1,2, S. Voigt1, O. Friedrich3, A.H. Osborne4, A. Bornemann 5, T. Klein1, L. Pérez-Díaz6 &

M. Frank4

During the Late Cretaceous and early Cenozoic the Earth experienced prolonged climatic

cooling most likely caused by decreasing volcanic activity and atmospheric CO2 levels.

However, the causes and mechanisms of subsequent major global warming culminating in

the late Paleocene to Eocene greenhouse climate remain enigmatic. We present deep and

intermediate water Nd-isotope records from the North and South Atlantic to decipher the

control of the opening Atlantic Ocean on ocean circulation and its linkages to the evolution of

global climate. The marked convergence of Nd-isotope signatures 59 million years ago

indicates a major intensification of deep-water exchange between the North and South

Atlantic, which coincided with the turning point of deep-water temperatures towards early

Paleogene warming. We propose that this intensification of Atlantic overturning circulation in

concert with increased atmospheric CO2 from continental rifting marked a climatic tipping

point contributing to a more efficient distribution of heat over the planet.
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The Earth underwent long-term climatic cooling between
the peak-greenhouse intervals of the mid-Cretaceous and
the Eocene1–5. Globally averaged deep-water temperatures

gradually declined by almost 10 °C from 72 to 59Ma, as estimated
from benthic foraminiferal oxygen-isotope data3,6. This cooling
has been ascribed to decreasing atmospheric CO2 levels7–9

through global reduction of volcanism and sea-floor spreading
rates10 combined with changes in ocean circulation patterns3. In
contrast, there is no comprehensive model explaining how the
greenhouse conditions of the Eocene were established and what
the roles of atmospheric CO2 and ocean circulation were in
promoting global warming. Mechanisms proposed so far have
solely focussed on increased atmospheric CO2 levels either
induced by carbon cycle changes6, rates of continental rifting11,
or by enhanced volcanism of the North Atlantic igneous
province12,13. The role of changes in overturning circulation
caused by the opening of the Atlantic Ocean and related changes
in oceanic heat transport has, however, not been addressed yet.

While circum-equatorial flow, which had dominated circula-
tion in the proto-North Atlantic earlier in the Cretaceous, gra-
dually declined14, the ongoing opening and deepening of the
Atlantic basin15,16 led to increased North-South connectivity,
although the timing of the establishment of a deep-water con-
nection remains debated17–22. Enhanced latitudinal water-mass
exchange likely promoted the distribution of heat across the
planet via the thermohaline conveyor and resulted in reduced
temperature contrasts between the equator and the poles. To
distinguish tectonic constraints on circulation from climatically
driven changes, the role of subsiding submarine barriers has to be
assessed. We determine the timing of the establishment of a
persistent deep-water connection between the North and South

Atlantic by combining deep-water neodymium (Nd) isotope and
temperature records.

Assessing the role of ocean circulation on Earth’s climate in the
latest Cretaceous and early Paleogene requires tight constraints
on the modes and locations of deep-water formation and the
extent of mixing of different deep-water masses. Information on
past water mass mixing and exchange can be derived from Nd-
isotope signatures (143Nd/144Nd, expressed as εNd(t)) of authi-
genic, seawater-derived sedimentary archives such as ferro-
manganese coatings of sediment particles or fish debris, which
have been demonstrated to incorporate the Nd-isotope compo-
sition of ambient deep waters23. Deep-water masses mainly
acquire their Nd-isotope signatures from continental contribu-
tions via rivers and dust inputs in their source areas23, as well as
through exchange processes with ocean margin sediments24.
These characteristic Nd-isotope compositions of deep-water
masses are then conservatively advected and mixed over large
distances in the open ocean given that the average Nd residence
time of 400–2000 years is similar to the global ocean mixing
time23,25. Analysis of the Nd-isotope composition of authigenic
sedimentary archives thus allows the reconstruction of changes in
deep-water mixing over time.

Existing Late Cretaceous Atlantic seawater εNd(t) signatures
display a large spread in values (Fig. 1) that led to the suggestion
that different mechanisms and locations of deep-water formation
operated simultaneously21,26–30. There are indications that inter-
mediate and deep-water exchange commenced as early as at 90Ma
in the Late Turonian20, although the deep Atlantic Ocean poten-
tially operated as a number of sub-basins with limited connectivity
until the Maastrichtian22. The large variability in Cretaceous εNd(t)
values has so far been interpreted to reflect different modes and
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Fig. 1 Nd-isotope data across the latest Cretaceous – early Paleogene. In this compilation of published Atlantic εNd(t) records and new Nd-isotope data from
Site 369 (this study) only records with four or more data points over the time-interval 72–50Ma are included. The εNd(t) data of Demerara Rise (Sites 1258,
1260, 1261), Maud Rise, Blake Nose and Site 525 have been smoothed by LOWESS regression (f= 0.3) with the dashed lines representing the 97.5%
confidence interval. The εNd(t) data are flanked by the geomagnetic polarity time scale with chrons C31-C24. PETM: Paleocene/Eocene thermal maximum,
K/Pg: Cretaceous/Paleogene Boundary
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locations of deep-water formation either in the southern high
latitudes21,22,29,30 or in the North Atlantic26–28, or local deep-
water formation in relatively shallow sub-basins separated at
depth22. The spread in εNd(t) values was likely further enhanced by
local boundary exchange and weathering inputs into the relatively
small Atlantic basins. Since the Cretaceous Atlantic Ocean was
limited in depth and width, its contact area with the margins was
large compared to its volume. Regional processes such as
boundary exchange thus had a profound effect on water-column
chemistry, as is the case for modern near-shore settings24,31 or
restricted sub-basins32. The Cretaceous Nd-isotope records from
Demerara Rise and the Cape Verde Basin exemplify this effect by
local weathering inputs of highly unradiogenic Nd from the old
cratons of South America and Africa27,28 (Fig. 1). Despite the
potential influence of continental inputs near ocean margins,
several open-ocean sites in the Late Cretaceous North and South
Atlantic show parallel Nd-isotope trends. These parallel trends
have been interpreted to reflect the formation and northward flow
of a southern-sourced deep-water mass, “Southern Component
Water”30, although the behaviour of individual εNd(t) records is
highly variable on a time scale of millions of years and patterns of
change are dissimilar between localities.

From the Paleocene–Eocene Thermal Maximum (PETM) at
56Ma onwards, most open-ocean εNd(t) signatures from the
North and South Atlantic were within a narrow range of -8 to
-1028,33,34, indicating common water masses at bathyal and
abyssal depths. There is, however, a lack of data for the Paleocene,
which limits our understanding of when and to what extent deep
waters exchanged and when the Atlantic started to play a key role
in hemispheric oceanic heat exchange. A compilation of existing
εNd(t) records for the period of time from 72 to 50Ma (Fig. 1)
shows that Nd-isotope data for the Paleocene are only available
from a limited number of sites and, with the exception of
Demerara Rise26,28, are of limited resolution (less than one
sample per two million years). The Paleocene, however, marks the
time when the Atlantic significantly widened and deepened,
which potentially paved the way for similar-to-modern ocean
overturning processes17. Here we fill this gap and present new
Paleocene intermediate- and deep-water Nd-isotope records from
the North and South Atlantic Ocean. Five ocean drilling sites
were selected from paleo-water depths between 500 and 4500 m
(Supplementary Table 1/Fig. 2) to obtain seawater Nd-isotope
records covering the critical time span from the end-Cretaceous
to the early Paleogene.

Results
Seawater origin of Nd-isotope signatures. Seawater Nd-isotope
signatures were obtained by leaching ferromanganese coatings of
bulk sediments that are considered a reliable archive if sufficiently
weak leaching procedures are applied35. The εNd(t) variability of
the detrital material was also determined for selected samples in
this study (details in “methods” section), to evaluate the potential
influence of local weathering inputs. The εNd(t) signatures of the
detrital fractions and the leached ferromanganese oxide coatings
show similar long-term trends at Sites 516 and U1403 and parts
of the records at Sites 1267 and 525. Despite following parallel
trends, most detrital εNd(t) values are significantly offset from
those of the coatings supporting the validity of the seawater εNd(t)
signatures extracted from the coatings at the offshore locations of
our studied sites as faithful recorders of past water mass mixing
(Fig. 3). The Nd-isotope composition of the water-masses
themselves may have been influenced to some extent by local
factors such as boundary exchange processes that mainly occur
when deep-water circulation is slow and/or the sites were located
in small or partly isolated basins with high detrital input31,32,36.

In addition, the dissolved seawater Nd-isotope signature may
have been incorporated into the hydrogenous component of
pelagic clays20,37, which may partly explain the similarity in the
long-term evolution of the detrital and leached εNd(t) values.

Parallel trends and convergence of Nd-isotope values. Our new
seawater Nd-isotope records from the North and South Atlantic
(Fig. 3 and Supplementary Tables 2 to 6) display a wide range of
values (−2 to −11) in the Maastrichtian interval (72.1–66Ma)
with parallel trends that converge to a common value of -8 to -9
at 59Ma (Fig. 4). Our North Atlantic record from Site U1403
ends at 58Ma, but εNd(t) values between −9.2 and 8 around 57
Ma at northern Site 54938 corroborate our findings (Fig. 1).

Sites 525, 1267 and 516 in the South Atlantic, and Site U1403
in the North Atlantic show a trend of decreasing εNd(t) from
approximately 70 to 63Ma, with lowest values reached in the first
half of the Paleocene. This decrease may reflect the reduction in
active volcanism and exposed volcanic terrains in and around the
Atlantic Ocean20. Nd-isotope values at Site 525 were positively
offset from εNd(t) signatures at comparably shallow Site 516 on the
Rio Grande Rise and nearby deeper Site 1267 at the base of the
north-western slope of the Walvis Ridge until the end of
the Cretaceous. This positive offset was most likely caused by
the weathering influx of volcanic material from the partially
subaerially exposed Walvis Ridge in the latest Cretaceous15,39.
The offset decreased as the ridge and Site 525 subsided.

From approximately 64Ma onwards, average εNd(t) values
display an increasing trend until 60–59Ma. We assign this trend
to the enhanced volumetric flow of deep and intermediate water
masses in the opening South Atlantic Basin which likely led to a
decrease of the influence of local inputs and boundary change
effects. In addition, the observed trend coincides with a first phase
of magmatic activity of the North Atlantic Igneous Province from
62 to 61 Ma13, which may have supplied radiogenic Nd, and
ongoing deepening of the study sites that may have reduced
unradiogenic weathering inputs from nearby continents.

From 59Ma onwards, the Nd-isotope signatures at all newly
studied sites, as well as Demerara Rise26, decrease together and
our εNd(t) results fall within a narrow range of -7 to -9.5 for the
period 58.5–56.5 Ma. This convergence may reflect increasing
admixture of southern-sourced deep water, which would have
carried a εNd(t) signature similar to that at Maud Rise of
approximately -9 in the Paleocene (Fig. 4)20.

Opening of the Atlantic Ocean and climatic implications.
Recent paleobathymetric reconstructions show that deep oceanic
basins in the Atlantic Ocean, like the Cape and the Angola basins,
were constricted until the end of the Cretaceous15. Deeper
structures, such as the Vema and Hunter channels flanking Rio
Grande Rise only allowed intermediate-water exchange at depths
shallower than 2500 m. In the Paleocene, the South Atlantic
deepened and widened, with the western portion of the Rio
Grande Rise having subsided below 2500 m water depth at 60Ma
and the Argentine and Brazil basins reaching depths of over 5500
m in the early Eocene15,40 (Fig. 2). The close correspondence in
εNd(t) signatures at 59Ma suggests a common deep-water sig-
nature (εNd(t) −9 to −8) in the South and North Atlantic (Fig. 4).
We interpret the converging trend of Nd-isotope signatures to
reflect an increasingly efficient deep-ocean circulation in the
Atlantic Ocean with the dominant deep-water masses most likely
originating in the high southern latitudes. Such a southern origin
of deep water is consistent with recent modelling results17 sug-
gesting locations of major deep-water formation in the Southern
Ocean, potentially supplemented by a minor source of deep water
formed offshore North America. At the same time, our data show
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that the sub-basins of the deep Atlantic became fully connected
by subsidence of the Rio Grande Rise near 59Ma, accompanied
by the widening and deepening of the equatorial gateway17,20.
The improved connectivity and the increased volumetric
exchange of water masses in the Atlantic Ocean at 59Ma allowed

modern-like open-ocean processes and water-mass mixing to be
established, which decreased the sensitivity of the Nd-isotope
composition of seawater to local effects such as terrigenous and
coastal sedimentary inputs. The convergence of Nd-isotope sig-
natures across the entire Atlantic Ocean spanning paleo-
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waterdepths of 500 to 4500 m, further suggests that between 62
and 59Ma, both local tectonic restrictions as well as the vertical
stratification of the deep Atlantic Ocean decreased and a global
mode of thermohaline circulation was initiated.

The close correspondence in Nd-isotope values among sites at
59Ma coincided with the onset of the mid-Paleocene global
climate warming as evident from benthic foraminiferal oxygen
isotopes13,41 (Fig. 4). Based on a recent reconstruction of
continental rift length histories11 in comparison to the long-
term evolution of atmospheric pCO2

8, the underlying cause of
this warming may lie in the increased cumulative length of
incipient continental rifts. Despite a reconstructed gradual
increase in pCO2 levels during the end of the Cretaceous and
earliest Paleocene8,11 (Fig. 4), as well as an initial magmatic phase
of the North Atlantic Igneous Province from 62 to 61 Ma13, the
long-term increasing trend in bottom-water temperatures did not
start until 59 Ma13,41, when pCO2 started to increase at a higher
rate8,11 (Fig. 4).

Discussion
We hypothesize that the strengthened Atlantic overturning cir-
culation suggested by our data enhanced oceanic poleward heat
transport thereby contributing to global climate warming cul-
minating in the peak greenhouse conditions of the Eocene. Global

warming may itself have enhanced vertical mixing through
increased occurrence of storms and cyclones42 that enabled more
efficient overturning circulation in the Atlantic Ocean. Both the
deepening of the Rio Grande Rise and enhanced mixing asso-
ciated with global warming would have increased the capacity of
the overturning circulation in the Atlantic Ocean to transport
heat. These interpretations of our new Nd-isotope data are con-
sistent with observed changes in Late Cretaceous to early Paleo-
gene Nd-isotope records from the Pacific Ocean42 and Earth
system modelling results, which indicate that vigorous ocean
circulation and strong vertical mixing resulted in increased
oceanic heat transport and reduced equator–pole temperature
gradients42,43. Higher oceanic heat transport efficiency likely also
set the stage for the occurrence of brief hyperthermals which were
frequently superimposed on the overall temperature rise of the
Eocene hothouse41. Together with increasing atmospheric CO2

levels8,11, the changing paleogeography of the Atlantic Ocean
may have contributed to the boundary conditions that pushed the
Earth’s climate into a greenhouse state.

Methods
Extraction of Nd isotopes. For Nd-isotope analyses of past seawater extracted
from ferromanganese oxide coatings, bulk sediment samples consisting mainly of
nannofossil oozes and chalks were dried and homogenised in an agate mortar. To
extract the authigenic, seawater-derived Nd-isotope signature, ~2.5 g of powder
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was treated following the procedure described in ref. 44, omitting the carbonate
removal step45. Powdered samples were rinsed three times with de-ionized (MQ)
water, after which 10 ml of MQ was added and 10 ml of a 0.05 M hydroxylamine
hydrochloride/15% acetic acid solution, buffered with NaOH to a pH of 4. Samples
were placed on a shaker for 1 h and centrifuged. The supernatant containing the
seawater Nd-isotope signature of the ferromanganese oxide coatings was pipetted
off and dried down. For determining the detrital εNd signature, selected samples
underwent an additional 12 h leaching step with 20 ml of the hydroxylamine
solution (above), after which samples were rinsed with MQ three times and ~50 mg
of dried sample was dissolved in a mixture of aqua regia and HF. As preparatory
steps for column chemistry, all samples were refluxed in concentrated HNO3 at
80 °C overnight, centrifuged, and 80% of the supernatant was dried down. Twice,
0.5 ml of 1M HCl was added and the sample was dried down, after which the
samples were redissolved in 0.5 ml 1 M HCl. Samples were passed through cation-
exchange columns with 0.8 ml AG50W-X12 resin (mesh size 200‒400 μm), using
standard procedures, to separate Sr and the Rare Earth Elements (REEs), as well as
removing most of the Ba46. A second set of columns with 2 ml Ln-Spec resin (mesh
size 50‒100 μm) was used to separate Nd from the other REEs and remaining Ba47.

Analytical procedure. Neodymium isotope ratios were measured on a Nu
Instruments Multiple Collector Inductively Coupled Plasma Mass Spectrometer
(MC-ICPMS). The majority of samples were measured at GEOMAR Kiel, Ger-
many, and a subset of samples at the department of Earth Sciences of Oxford
University, UK (Supplementary Tables 2, 5 and 6). Measured 143Nd/144Nd results
were mass-bias corrected to a 146Nd/144Nd ratio of 0.7219 and were normalized to

the accepted 143Nd/144Nd value of 0.512115 for the JNdi-1 standard48, which was
measured after every third sample.

The results were decay-corrected for the time of deposition by (143Nd/
144Nd)sample(t)= (143Nd/144Nd)sample(0) – [(147Sm/144Nd)sample(0) * (℮ʎt – 1)] where
t is time, the decay constant ʎ is 6.54 × 10−12, and using an average 147Sm/144Nd
ratio of 0.12422. Nd-isotope ratios are reported as εNd(t) values with respect to the
Chondritic Uniform Reservoir (CHUR), which are calculated as εNd(t)= [(143Nd/
144Nd)sample(t) / (143Nd/144Nd)CHUR(t)− 1] × 104 using a (143Nd/144Nd)CHUR(0)

value of 0.512638, and a (147Sm/144Nd)CHUR(0) of 0.196649. External reproducibility
(2σ) of the measurements was between 0.15 and 0.54 εNd units and procedural Nd
blanks were ≤ 30 pg Nd and thus negligible.

Age models. Age models for the individual sites were generated by an integrated
approach of magneto- and biostratigraphy and if available astrochronology. All
datum levels are tied to the Geological Timescale GTS2012. Ages of polarity chrons
are from ref. 50, and of calcareous nannofossils (NP zonation) from ref. 51 as
compiled in ref. 52. In detail the following data are used and summarized in
Supplementary Table 7. Tie points for Site 516 are defined by magneto- and
calcareous nannofossil stratigraphy given in ref. 53. Tie points for Site 525 are
defined by polarity chrons in the Maastrichtian54 and by calcareous nannofossils in
the Paleocene55. Tie points for Site 1267 are derived from precession cycle counting
for the upper Paleocene (until 58.2 Ma ago)56 and polarity chrons for the lower to
middle Paleocene and the Maastrichtian57. Ages of neodymium isotope data from
Site 126234 and Site 52733 were converted to GTS 2012. Tie points for Site 369
follow the age model of the Shipboard Scientific Party58. Tie points for Site U1403
are defined by first occurrences (FO) of calcareous nannofossils for the Paleocene59
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with an adjustment for the FO of Lithoptychius spp. at 227 m depth rCCSF (cor-
responding to the first radiation of fasciculithids according to refs. 60,]61) and by
astronomical tuning of 405 kyr cycles and carbon isotope stratigraphy62.

Data availability
The authors declare that all the data generated during this study are available
within the manuscript and its supplementary information file.
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