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Supplementary Note 1: Modern oceanography of the Bay of Bengal 

The Andaman Sea and Bay of Bengal form a unique semi-enclosed tropical 

basin in the northeastern Indian Ocean that experiences a dominant seasonal 

surface wind reversal during boreal summer (June–September) and winter 

(November–February) seasons. Modern day upper ocean variability in the 

Andaman Sea and Bay of Bengal is characterised by a semi-annual cycle of 

mixed layer and thermocline depth variations and is intrinsic to the seasonally 

reversing monsoonal circulation1,2. The net annual surface water exchange (i.e. 

precipitation plus runoff minus evaporation) is primarily driven by intense 

freshening of the surface ocean during the summer monsoon season and leads 

to strong stratification of the upper ocean, which persists year round3. This 

freshwater forcing also exerts significant influence on SST patterns and SSS 

distribution in the tropical belt4 and instigates a large reduction in SSS. The mean 

SSS in the Andaman Sea ranges between 28 and 33‰ (Ref 5). Mean SST is 

29°C and homogenous throughout the mixed layer and the top of the 

thermocline, which is generally situated at a depth of ~50 m (Ref 6). Although 

near-surface SSS changes in the Bay of Bengal are dominated by the freshwater 

fluxes associated with the summer monsoon, it has also been reported that 

vertical mixing plays a significant role in controlling near-surface salinity in this 

region7,8,9. The vertical movement of the thermocline in particular is known to 

play an important role in driving chlorophyll-a concentration and biological 

activities in the upper ocean by modulating the advection of nutrient rich 

thermocline waters10. A sediment trap study conducted along a transect in the 

Bay of Bengal showed that the abundance of mixed layer dwelling planktonic 

foraminifera G. sacculifer is not biased towards a particular season11. This is also 

the case with the thermocline dwelling N. dutertrei, which is present throughout 

the year with a minor peak in abundance during the summer monsoon11. Thus, 

seasonal biases are not anticipated in these species and long-term changes in 

these records represent ‘year round’ surface and thermocline conditions. We 

assume that the living depths of the two species likely remained similar to 

modern day observations12,13.  



 

A recent comprehensive study examining the seasonality of SST and SSS in the 

Bay of Bengal based on observations from a mooring in the Bay of Bengal 

demonstrate that SSS changes in the Bay of Bengal to large extent are driven by 

river discharge from the Ganges-Brahmaputra and Irrawaddy rivers during the 

summer monsoon season14. The study14 also notes that this co-variability occurs 

with a significant time lag (Supplementary Figure 7) and low surface salinity 

changes are often observed during the following winter monsoon season. Thus, 

the δ18Osw record is interpreted in the context of monsoon variability proportional 

to salinity changes in the Andaman Sea. This relationship is also clearly 

supported by data from the last deglaciation (Supplementary Figure 8) and by the 

prevalence of a remarkably consistent patterns in the G. sacculifer and N. 

dutertrei based δ18Osw records which approximate mixed layer and thermocline 

conditions at the base of the boundary layer (Supplementary Figure 9). Physical 

processes such as wind-stress curl via Ekman pumping, geostrophic flow, and 

the radiation of Rossby waves from poleward propagating coastal Kelvin waves 

influence the seasonal thermocline15. The vertical movement of the thermocline 

also plays an important role in driving chlorophyll-a concentration and biological 

activities in the upper ocean by modulating the advection of nutrient rich 

thermocline waters10. Thermocline depth variability also exerts considerable 

influence on SST by transferring colder thermocline waters into the upper ocean 

through wind-induced upwelling, entrainment and mixing1.  Recent work has 

shown N. dutertrei to feed on marine snow16 and particulate material both 

terrigenous and autochthonous would accumulate preferentially at the base of 

the boundary layer suggesting this is the likely habitat for N. dutertrei in the BoB 

and Andaman Sea. This demonstrates that the δ18O records (Supplementary 

Figure 10) have primarily been driven by surface ocean rather than intermediate 

water variability.  

Supplementary Note 2: Salinity influence on Mg/Ca temperatures 

The oxygen isotopic composition (δ18O) and Mg/Ca ratios of planktic foraminifera 

tests are among the most commonly applied proxies for reconstructing past 



ocean temperature and δ18Osw. Recent studies, however, have highlighted the 

potential influence of salinity on Mg/Ca ratios17,18,19, although any significant 

influence of salinity on Mg/Ca is generally driven by higher Mg/Ca ratios in 

regions with salinities above 35 psu. For example, the new data for Bay of 

Bengal sediment trap samples from Gray et al.17 demonstrate the absence of a 

salinity influence on Mg/Ca over the Bay (see figure 3b in Ref 17) and the salinity 

effect is driven by the Arabian Sea samples.  Nonetheless, reconstructed salinity 

(indirectly inferred from the δ18OSW record) was higher in the Andaman Sea 

during glacials, and therefore, we have carefully checked for any potential salinity 

influence on the Mg/Ca-SST record using the PSU solver program20. We find that 

salinity did not significantly affect the Mg/Ca and, consequently, also not the 

resulting δ18OSW records (Supplementary Figure 11).  

 

In addition, to test if the δ18Osw signal is sensitive to potential artefacts arising 

from sea level correction due to the fact that the periodicities of mechanisms 

driving both temperature and sea level are the same (glacial-interglacial 

cyclicity), we have performed spectral analysis on the SST and raw δ18O records 

(Supplementary Figure 12). Reconstructed SST and raw δ18O records are 

dominated by pronounced ~100 kyr eccentricity, 41 kyr obliquity and ~23 kyr 

precession cycles (>90% CI) in line with δ18Osw. We have also compared the 

temporal evolution of IV corrected and IV uncorrected δ18OSW records 

(Supplementary Figure 13) and estimate the orbital phasing of the two 

(Supplementary Figure 14). The IV corrected and IV uncorrected δ18OSW records 

are significantly coherent with respect to ETP21 in the precession band and show 

a consistent time lag of ~8-9 kyrs (-148°/360° * 23 kyrs) behind NH insolation 

maxima. On the other hand the IV uncorrected δ18OSW lags the IV corrected 

timeseries by  ~11 kyrs and phases closer to the minimum sea level (maximum 

IV) pointing to this frequency outcompeting the monsoon signal.  

 
 
 



Figure captions for supplementary material 
 
 
 

 
Supplementary Figure 1. a) Correlation of the Site NGHP17 benthic (C. wuellerstorfi /C. 
mundulus) δ18O record (yellow) and the LR04 benthic stack22. Major Tie points are shown by 
crosses. b) Age depth model for NGHP 17 indicating a near linear sedimentation rate. 
 

 
Supplementary Figure 2. Crosshole comparison of XRF Ti/Ca records of two Andaman Sea Sites 
(NGHP17 and U1448) to establish the length of gaps between cores that result from the drilling 
process. 
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Supplementary Figure 3. a) Redfit spectral analysis23 of LR04 tuned Site 17 benthic isotope 
stratigraphy showing strong periodicity at frequencies corresponding to the three main orbital 
periods (95% CI). b) Continuous wavelet transform of NGHP 17 benthic isotope record. c) Redfit 
spectral analysis23 of NGHP 17 benthic record on depth domain showing strong power spectra at 
0.002, 0.005 and 0.007 m/cycle (95% CI). d) Continuous wavelet transform of NGHP 17 benthic 
record in depth domain. Black line contours in b) and d) represent 90% confidence level. The 
evolutionary wavelet spectrum is computed using the Matlab codes of Torrence and Compo24 
available at (paos.colorado.edu/research/wavelets/). 

 
Supplementary Figure 4. Phase wheels summarizsng age model uncertainties with respect to 
LR04. Ice minima and maxima defined based on the LR04 benthic stack22. 
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Supplementary Figure 5. Phase wheels summarising Asian monsoon response to orbital 
insolation forcing at the obliquity (41kyr) and precession (23 kyr) periods during early to late 
Pleistocene as in Fig. 2 with precession related maximum and minimum insolation based on the 
NGHP17 benthic record.   
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Supplementary Figure 6. Comparison of the sea level curve from Rohling et al.25 used to correct 
for ice volume with a sea level curve from Waelbroeck et al.26 and the NGHP17 benthic data.   
 

 
Supplementary Figure 7. Comparison of Bay of Bengal salinity data from moored observations14 
and Ganges-Brahmaputra-Meghna river discharge (km3/day) based on satellite observations27,28 
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between 2009-2010. Also shown is mean summer monsoon precipitation in the Bay of Bengal for 
the period 1979-2015.  
 

 
Supplementary Figure 8. a) Deglacial multi-proxy records of the monsoon from core SSK168 (Ref 
29,30) and NGHP17 (see Fig. 1) in relation to changes in insolation. b) Seasonal monsoon 
precipitation inferred from All Indian Monsoon Rainfall Index (AIMRI) and Andaman Sea salinity 
variations extracted from SODA for the year 1959-2013. Inverted triangles in red and black show 
14C-AMS dates used to construct the age models for cores NGHP17 and SSK168 respectively.  
 

 
Supplementary Figure 9. Modern depth profiles of temperature, salinity and dissolved oxygen 
from World Ocean Atlas 2013 (Ref 5). Green bar shows depth range of deep chlorophyll 
maximum (DCM) during May-June 1996 (Ref 31). 
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Supplementary Figure 10. a) Reconstructed SST and thermocline temperatures (calculated 
based on Mg/Ca analysis of N. dutertrei) b) Ice volume corrected δ18Osw and thermocline δ18Osw  
(VPDP Scale). Envelops in a and b show propagated errors. SSTs were calculated by using the 
multispecies equation of Anand et al.32. Seawater δ18O (δ18OSW) was calculated using the δ18O – 
temperature calibration of Bemis et al.33. 
 

 
Supplementary Figure 11. Estimating the relative influence of salinity on the Mg/Ca ratios based 
on the Mg/Ca-SST-SSS equation of Kisakürek et al.34 using the PSU solver program20. 
Envelopes denote the 68% and 95% uncertainty range due to analytical, and sampling errors.  
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Supplementary Figure 12. Redfit Spectral analysis23 of a) SST (blue) and thermocline 
temperature (yellow) records. b) Redfit spectral analysis23 of ice volume corrected δ18Osw (blue) 
and thermocline δ18Osw (yellow) records. Significant spectral powers at the 95% CI and 80% CI 
are shown in light green and brown respectively. c) Continuous wavelet transform24 of Ice volume 
corrected δ18Osw. d) Continuous wavelet transform24 of Ice volume corrected thermocline 
δ18Osw. Black contours in c) and d) represent 80% confidence level. 
 



 
Supplementary Figure 13. a) Comparison of 41 kyr obliquity21 (blue) and 41 kyrs filtered IV 
corrected δ18Osw. b) Time series of reconstructed δ18Osw uncorrected for ice volume. c) Ice 
volume corrected δ18Osw. Envelopes in b and c show 1σ-error (see methods).  
 

 
Supplementary Figure 14. Phase wheels summarising Asian monsoon response to orbital 
insolation forcing at the obliquity (41 kyr) and precession (23 kyr) periods during the late 
Pleistocene as in Fig. 6 and also showing the phase of reconstructed δ18Osw uncorrected for ice 
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volume (black line). 95% and 80 confidence intervals for coherency are 0.79 and 0.64 with 
bandwidth 0.00423175. The interpolated time interval is 3.5 kyrs and covers the period of time 
from 3 to 951 kyrs.  
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