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Executive summary 
This deliverable is concerned with the integrating of observational data (in-situ and satellite) 
for exploratory generation of climate indices. The focus is on overturning, heat and freshwater 
transports on a regional scale. We provide a comprehensive census for such climate indices 
for both the subpolar and subtropical North Atlantic and subtropical South Atlantic during a 
period with intense in-situ observation activities. These climate indices are relevant to the 
Copernicus climate change service (climate.copernicus.eu). 

1. North Atlantic Subpolar and Subpolar Gyres 
 
In the following a listing of established indices for the subpolar gyre are introduced. A summary of the 
indices, the data basis and the variable are given in Table 1.  
 

1.1 Deep ocean convection 
Purpose: describes the interannual variability of the intensity of ocean convection occurring in the 
Labrador Sea during winter. 

Indices approach: indicated by the maximum mixed layer depth [Yashayaev and Loder, 2016, 2017; 
Piron et al., 2016, 2017], the thickness or density of Labrador Sea Water [Yang et al., 2016], or the 
volume of North Atlantic Deep Water [Galaasen et al., 2014]. 

Data used: based on monthly observations provided by Argo since 2003 [Yashayaev and Loder, 2017; 
Piron et al., 2016, 2017] or annual hydrographic observations in the Labrador Sea since the 1930s 
[Yashayaev and Loder, 2016], objective analyses of hydrographic observations since 1950s (using the 
EN4.0.2 dataset from the Hadley Centre), averaged over three-year periods, or sediment cores 
covering the last interglacial period 116.1 to 128.0 ky [Galaasen et al., 2014], or flow speed of the deep 
western boundary current [e.g. Thornalley et al. 2018]. 

 

1.2 Subpolar gyre intensity 

Purpose: describes the interannual variability of the subpolar gyre circulation intensity 

Indices approach: indicated by the salinity of the Atlantic Water inflow to the Nordic Seas/Irminger 
Sea [Hátún et al., 2005], the ocean heat content in the subpolar gyre [Häkkinen et al., 2013], the range 
of the sea level anomalies, i.e. the maximum sea level anomaly minus the minimum sea level anomaly 
over the subpolar gyre [Foukal and Lozier, 2017], the first empirical orthogonal function of the sea 
level anomaly in the subpolar region [Berx and Payne, 2017] or the second empirical orthogonal 
function of the windstress curl over the North Atlantic region [Häkkinen et al., 2011] 

Data used: based on model output and hydrographic observations from the Irminger Sea extending 
back since 1960 [Hátún et al., 2005] or satellite-derived sea level height observations since 1993 
[Hátún et al., 2005, Häkkinen et al., 2011, 2013, Foukal and Lozier, 2017] 

1.3 Heatflux over Subpolar North Atlantic (winter) 

Purpose: describes the variability of the wintertime surface heat fluxes in the subpolar North Atlantic 
region, mostly over the Labrador Sea. 

Indices approach: indicated by the negative North Atlantic Oscillation index [Hurrell, 1995] or the 
Greenland Blocking Index [Hanna et al., 2016]. 

Data used: based on meteorological observations since 1864 [Hurrell, 1995; Jones et al., 1997] and 
atmospheric reanalysis data since 1851 [Hanna et al., 2016]. 
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1.4 Freshwater  

1.4.1 Freshwater content in the Irminger Sea and the Labrador Sea in summer: 
Purpose: describes the interannual variability of the sea surface salinity and freshwater content 
(averaged over the upper 30 m) in the Irminger Sea at the end of the summer (beginning of 
September), when the sea surface salinity reaches its annual minimum value. Winter convection and 
heat flux depend critically on this preconditioning.  

Indices approach: indicated by the mean sea surface temperature in the Irminger Sea in August, high 
temperature being correlated in summer with high freshwater content   [Oltmanns et al., 2018] 

Data used: based on correlations of 13-year long hydrographic time series from 2002 through 2014 of 
SST and air-sea heat fluxes [Oltmanns et al., 2018] 

1.4.2 Freshwater from Arctic/Greenland: 
Purpose: describes the interannual variability of freshwater fluxes from Greenland and the Arctic, 
including ice sheet melt from Greenland and glaciers in the Canadian Archipelago, runoff from 
snowmelt in the tundra in Greenland, the Canadian Archipelago and Arctic sea ice [Yang et al., 2016], 
or only from Greenland [Bamber et al., 2012].  

Indices approach: estimates are derived from various sources, in particular GRACE gravity data [Yang 
et al., 2016], as well as from a reconstruction of the surface mass balance over the ice sheet, using a 
regional climate model forced with an atmospheric reanalysis. Operational products of surface mass 
loss are available [http://polarportal.dk/en/greenland/surface-conditions/] 

Data used: based on time series that extend back since 1980 [Yang et al., 2016] or, considering 
Greenland only, since 1958 [Bamber et al., 2012] 

1.5 - Meridional Overturning Circulation indices  

1.5.1 - MOC, Scotland-Iceland: 
Purpose: describes the variability of heat and freshwater transports across a hydrographic section 
from Scotland to Iceland (the Extended Ellet Line) into the Nordic Seas as part of the Atlantic 
Meridional Overturning Circulation [Holliday et al., 2015, Gary et al., 2018] 

Indices approach: transport estimates are derived from 61 full-depth stations at a horizontal 
resolution of 10–50 km 

Data used: based on annual surveys since 1996  

1.5.2 - MOC, 59.5N: 
 Describes the poleward heat and freshwater transports between Greenland and Scotland Ridge, as 
part of the Atlantic Meridional Overturning Circulation [Rossby et al., 2017] 

Indices approach: estimates include data from shipboard ADCP profiles, which cover the surface to 
700 m depth, and from Argo profiles, sampling the upper 2000 m 

Data used: the section is surveyed 3-weekly by a ship for the period from late 2012 to early 2016 

1.5.3 - MOC, OSNAP 
Purpose: describes the interannual variability of volume, heat and freshwater in relation to the AMOC 
across nominal 60°N (Lozier et al., 2017). 

Indices approach: investigates changes in overturning transport (Labrador Sea, Eastern basin, 
subpolar gyre)  

Data used: mooring data combined with ship measurements, floats and autonomous underwater 
glider data since 2014 
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1.5.4 - MOC, Greenland-Portugal Ovide section: 
Purpose: describes the interannual variability of heat and freshwater transports between Greenland 
and Portugal (the OVIDE section), as part of the Atlantic Meridional Overturning Circulation (data set: 
DOI: 10.17882/46445) 

Indices approach: investigates changes in the circulation, transports, water mass properties by 
integrating data from ship cruises, satellite data and model studies 

Data used: the section has been surveyed by ships (bi-annual) since 2002 and calculated back to 1993 
by  satellite-altimetry data  

1.5.5 - 53°N-Array (DWBC) 
Purpose: describes the variability of the Deep Western Boundary Current at 53N (the 53N array), as 
part of the Atlantic Meridional Overturning Circulation [Zantopp et al., 2017] 

Indices approach: transport estimates of volume, heat and freshwater in the DWBC and its 
recirculation’s. 

Data used: data from a mooring array in combination with ship surveys; started in 1997. 

1.5.6 - MOC, 41°N heat and freshwater transport (AMOC): 
Purpose: describes the variability of heat and freshwater transports at 41N, as part of the Atlantic 
Meridional Overturning Circulation [Willis, 2010] 

Indices approach: estimates combine satellite-derived altimetry data with Argo profiles 

Data used: hydrographic time series from Argo floats extend back since 2002, satellite-altimetry since 
1993 

1.5.7 - MOC, 38°N/Line W (DWBC) 
Purpose: describes the variability of the deep western boundary current at 38 N (Line W), as part of 
the Atlantic Meridional Overturning Circulation [Toole et al., 2017]. 

Indices approach: transport estimates are derived from mooring at six locations, spanning the 
continental slope southeast of Cape Cod between depths of 2238 m and 4700 m. 

Data used: mooring observations extend back until 2002 but stopped in 2014. 

1.5.8 - MOC, 26°N/RAPID-MOCHA 
Purpose: describes heat, freshwater transports at 26°N across the RAPID array, as part of the Atlantic 
Meridional Overturning Circulation [McCarthy et al., 2012, 2015, McDonagh et al 2015] 

Indices approach: estimates include observations from a large number of moorings, Argo floats, 
samplers and oxygen and carbonate system sensors across the North Atlantic (>19)  

Data used:  data from the moorings at high temporal resolution are available since 2004, mapped Argo 
floats of same time period, GO_SHIP repeat hydrography every 5-6 years, NOAA cable and repeat 
hydrography measurements across Florida Straits. 

1.5.9 - 16°N/MOVE (AMOC) 
Purpose: describes the variability of the zonally-integrated meridional heat and freshwater transports 
at 16N (the MOVE array), as part of the Atlantic Meridional Overturning Circulation [Kanzow et al., 
2008] 

Indices approach: volume transport estimates  

Data used: based on moorings observations since 2000
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2. South Atlantic Subtropical Gyre 

24°S: MOC, circulation and property transports 
Purpose: describes overturning and gyre circulation  and associated, heat, freshwater, inorganic 
nutrients and carbon transports at 24S, using observations from GO-SHIP and Argo floats 

Indices approach: include observations from Argo floats and GO-SHIP repeat hydrography 

Data used:  data from GO_SHIP repeat hydrography every 10 years and mapped data from Argo floats 

24°S: composition of thermocline and intermediate waters  
Purpose: to discern the relative proportions of South Indian and Drake Passage water in the subtropical 
South Atlantic. using observations from GO-SHIP and Argo programmes 

Indices approach: include observations from Argo floats with oxygen sensors and GO-SHIP repeat 
hydrography as in McCarthy et al 2011 

Data used:  data from GO_SHIP repeat hydrography every 10 years and Argo floats with oxygen 
sensors 

34.5°S/SAMBA 
Purpose: describes overturning strength using data from SAMBA array, [Meinen et al, 2018] 

Indices approach: estimates include observations from a large number of moorings, CPIES, and repeat 
hydrography 

Data used:  data from the moorings at high temporal resolution are available. 

 

Investigated variable Index Data basis Reference 

 max. MLD CTD profiles, moorings, Argo 

floats 

Yashayaev and Loder [2016, 

2017], Piron et al. [2017] 

deep ocean convection LSW thickness objective analyses Yang et al. [2016] 

 NADW volume sediment cores Galaasen et al. [2014] 

 S of Atlantic inflow hydrogr. obs. and model 

output 

Hatun et al. [2005] 

 OHC SLA from satellites Häkkinen et al. [2013] 

SPD intensity range of SLA SLA from satellites Foukal and Lozier [2017] 

 1st EOF of SLA SLA from satellites Berx and Payne [2017] 

 2nd EOF of WSC atmospheric reanalysis Häkkinen et al. [2011] 

HFX in SPNA, winter NAO meteor. observations, ice 

cores 

Hurrel [1995], online data 

bases 

 GBI atmospheric reanalysis Hanna et al. [2016], online data 

bases 

FW in IS, summer SST in IS satellite and in situ data Oltmanns et al. [2018] 
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FW in LS, summer neg. NAO meteor. observations Oltmanns et al. [2018] 

FW from 

Arctic/Greenland 

obs.-based 

estimates 

GRACE data and other 

sources 

Bamber et al. [2012], Yang et 

al. [2016] 

MOC, Scotland-Iceland EEL transports hydrogr. sections Holliday et al. [2015], Gary et 

al. [2018] 

MOC, 59.5 N transport 

estimates 

shiboard ADCP, Argo profiles Rossby et al. [2017] 

MOC, Greenland-Portugal OVIDE transports Argo and satellite-derived DOI: 10.17882/46445, Mercier 

et al. [2017] 

MOC, 53 N DWBC transports mooring array Zantopp et al. [2017] 

MOC, 41 N DWBC transport 

estimates 

satellite and Argo data Willis [2010] 

MOC, 38 N Line W transports mooring array Toole et al. [2017] 

MOC, 26 N RAPID transports mooring array McCarthy et al. [2012,2015] 

MOC, 16 N MOVE transports mooring array Kanzow et al. [2008] 

MOC, 24 S  Go-Ship and Argo  

MOC 36.5 S SAMBA Moorings and repeat 

hydrography 

Meinen et al., [2018] 

 Table 1: Climate indices for meridional overturning circulation, heat and freshwater transports in the 
subpolar North Atlantic and the subtropical North and South Atlantic 
 

3. Concluding remarks 
 
The two different sets of indices presented in this deliverable – routinely generated and new indices 
(and associated base line data) derived by AtlantOS R&D in the context of WP5. It should be mentioned 
that the R&D was only possible through the coordinated activities in different AtlantOS workpackages: 
in particular, it benefited from the enhancement of the observing capabilities of ship based (WP2 and 
its subtasks) and autonomous observing networks (WP3 and its subtasks) and the enhancement of 
data access (WP7). Moreover, and maybe even more important from an AtlantOS legacy perspective, it 
benefited from what AtlantOS as a whole contributed in a substantial way: an improved operational 
service of established ocean observing networks (JCOMM) and (meta-)data management facilities 
(Coriolis, EMODnet) and linked to a data integration facility, most importantly the Copernicus marine 
environmental Monitoring Service providing for example satellite data, reanalysis data. 
 
A future routine generation of these indices should closely link with the Copernicus climate change 
service (climate.copernicus.eu) and the European Environment Agency (www.eea.europa.eu/data-
and-maps/indicators). At these levels the link with other climate indices can be created (e.g. WP5 
deliverable D5.2: Indices associated with Primary productivity and carbon export). Such linkages have 
been shown to be very successful in supporting and guiding advice strategies (see e.g. EU reports such 
as “Climate Change and European Fisheries” https://publications.europa.eu/s/go3l) for example in 
the context of specific services such as ecosystem services for fisheries by ICES. 
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