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Abstract

Gelatinous zooplankton hold key functions in the ocean and have been shown to significantly influence

the transport of organic carbon to the deep sea. We discovered a gelatinous, flux-feeding polychaete of the

genus Poeobius in very high abundances in a mesoscale eddy in the tropical Atlantic Ocean, where it co-

occurred with extremely low particle concentrations. Subsequent analysis of an extensive in situ imaging

dataset revealed that Poeobius sp. occurred sporadically between 58S–208N and 168W–468W in the upper

1000 m. Abundances were significantly elevated and the depth distribution compressed in anticyclonic

modewater eddies (ACMEs). In two ACMEs, high Poeobius sp. abundances were associated with strongly

reduced particle concentrations and fluxes in the layers directly below the polychaete. We discuss possible

reasons for the elevated abundances of Poeobius sp. in ACMEs and provide estimations showing that a single

zooplankton species can completely intercept the downward particle flux by feeding with their mucous nets,

thereby substantially altering the biogeochemical setting within the eddy.

Primary production by marine phytoplankton contributes

about 50% to the global biological carbon dioxide with-

drawal from the atmosphere (Field et al. 1998). This biomass

production and the subsequent active and passive export to

deeper water layers and ultimately the seafloor—mostly in

the form of small to large particles—is termed the biological
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Primary production by marine phytoplankton contributes
about 50% to the global biological carbon dioxide with-
drawal from the atmosphere (Field et al. 1998). This biomass

production and the subsequent active and passive export to
deeper water layers and ultimately the seafloor—mostly in the
form of small to large particles—is termed the biological
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carbon pump (Volk and Hoffert 1985). Together with the

physical and microbial (Jiao et al. 2010) carbon pump, the

biological carbon pump plays a major role in the natural car-

bon cycle and the oceanic climate buffering system (Sabine

and Tanhua 2010; Heinze et al. 2015). A mechanistic under-

standing of the processes that are regulating the biological

carbon sequestration is required to predict and model the

biological carbon pump on local to global scales.

The efficiency of the biological carbon pump varies

strongly and depends particularly on plankton community

dynamics and processes (e.g., Legendre and Rivkin 2002;

Cavan et al. 2017). Zooplankton contribute to the biological

carbon pump by producing fast-sinking particles in the form

of fecal pellets (Wilson et al. 2013) and dead bodies (Frangoulis

et al. 2011). Furthermore, many species contribute substan-

tially to the active transport of carbon to depth by performing

diel vertical migrations (Riley 1951; reviewed by Packard and

G�omez 2013); they feed at the surface at night and migrate to

depth during the day, where respiration (Bianchi et al. 2013),

excretion (Steinberg et al. 2008), defecation (Angel 1984), pre-

dation, and other metabolic processes (e.g., Longhurst et al.

1990) continue to take place.

Part of the sinking particulate organic matter is consumed

by deeper-living zooplankton, particularly by filter feeders

and flux feeders. Filter feeders such as salps (Hamner et al.

1975) and different copepod species (Kiørboe 2000) retrieve

particulate matter from a continuous flow of water generated

through their feeding apparatus. Pteropods and some poly-

chaetes (Hamner et al. 1975; Jackson 1993; Uttal and Buck

1996; Stemmann et al. 2004; Turner 2015) deploy net-like

mucous structures on which they collect sinking particles;

this feeding mode is termed flux-feeding (Jackson 1993).

Flux-feeding has been hypothesized to contribute strongly

to particulate matter loss processes in the upper ocean.

Iversen et al. (2010) compared in situ particle profiles with

shipboard measurements of particle sinking velocities and

respiration rates off Cape Blanc. The authors concluded that

microbial respiration alone could not explain the observed

organic matter degradation but that instead, zooplankton

flux-feeding was the dominant degradation process in the

upper water column. Pteropods are flux-feeders that use

mucous nets of several times their own body size to catch

sinking particles from the water column (Gilmer 1972). Jack-

son (1993) assessed the influence of these animals’ mucous

nets on vertical particle flux and found a median flux reduc-

tion of 26% by two species alone in the upper 100 m of five

different regions in the Atlantic Ocean. Observations with

remotely operated vehicles in the Pacific Ocean have shown

that the flux-feeding polychaete Poeobius meseres significantly

reduces the concentration of very small particles (transmis-

someter data) in the deep sea (Robison et al. 2010).

Enhanced zooplankton (Ring 1981; Tsurumi et al. 2005;

Stemmann et al. 2008; Godø et al. 2012; Hauss et al. 2016)

and particle abundances (Sweeney et al. 2003; Fiedler et al.

2016; Waite et al. 2016) within mesoscale eddies suggest par-

ticularly dynamic zooplankton-particle interactions in these

ecosystems. Indeed, Goldthwait and Steinberg (2008) found

increased zooplankton fecal pellet flux in mesoscale eddies

in the Sargasso Sea during periods of enhanced zooplankton

abundances in the surface layer, compared with the sur-

rounding open ocean. However, the interaction between

zooplankton and mesoscale eddy biogeochemistry is still

poorly understood and remains an important topic in

marine ecology.

Mesoscale eddies are features of rotating water masses

with diameters reaching about 100 km in the eastern tropi-

cal North Atlantic (Chelton et al. 2011). Three eddy types

are distinguished (Sch€utte et al. 2016b): anticyclones (ACs),

cyclones (CEs), and anticyclonic mode-water eddies (ACMEs;

McGillicuddy et al. 2007; Sch€utte et al. 2016b). Considering

local productivity, ACs are generally low productive features,

while CEs and ACMEs are generally perceived as “oases” of

elevated productivity in oligotrophic open ocean environ-

ments (McGillicuddy et al. 2007; Godø et al. 2012; Hauss

et al. 2016). While the rotating waterbody and the water

stratification lead to the isolation of the water mass within

the eddy (hereafter called the eddy core; Karstensen et al.

2017), dynamic processes that are operating at the sub-

mesoscale (1–10 km) are responsible for upward nutrient

supply into the euphotic zones of these eddies (L�evy et al.

2012; d’Ovidio et al. 2013; Karstensen et al. 2017). This trig-

gers enhancement of primary production (Sweeney et al.

2003; Stramma et al. 2013; L€oscher et al. 2015), zooplank-

ton, nekton (Godø et al. 2012; Hauss et al. 2016) and parti-

cle abundance (Sweeney et al. 2003; Fiedler et al. 2016;

Waite et al. 2016) as well as oxygen consumption, which

may lead to suboxic, and eventually even anoxic conditions

in the eddy cores (Karstensen et al. 2015; Fiedler et al. 2016;

Hauss et al. 2016; Sch€utte et al. 2016a; Waite et al. 2016).

Beneficial environmental conditions might create a niche for

specific zooplankton organisms (Godø et al. 2012; Hauss

et al. 2016), but whether zooplankton aggregations mainly

result from migration of specimens from the eddy periphery

into the eddy core, or from altered reproduction success and

mortality remains an important question.

Our deployments of a pelagic in situ observation system

(PELAGIOS, Hoving et al. unpubl.) in the tropical Atlantic

led to the discovery of an undescribed species of the fragile

polychaete genus Poeobius (Fig. 1a). Within one particular

ACME, Poeobius sp. was exceptionally abundant and seemed

to impact the particle abundance. This is the first record of

this genus in the Atlantic Ocean while in the Pacific Ocean,

the congener P. meseres (Heath 1930) is fairly well known

from both net catches and remotely operated vehicle obser-

vations (McGowan 1959; Uttal and Buck 1996; Robison et al.

2010). P. meseres is a gelatinous, holoplanktonic polychaete

that reaches lengths of up to 2.7 cm (Robbins 1965). In

Monterey Bay, P. meseres has a bimodal depth distribution,
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with highest abundances between 300–500 m and 1600–

2200 m depth (P. meseres (Heath, 1930). Deep-Sea Guide

(DSG) at http://dsg.mbari.org/dsg/view/concept/Poeobius%20-

meseres. Monterey Bay Aquarium Research Institute (MBARI).

Consulted on 2 May 2018). The polychaete feeds on detritus

by deploying a free-floating mucous net or by catching par-

ticles with its tentacles (Uttal and Buck 1996).

The discovery of Poeobius sp. on PELAGIOS video record-

ings enabled the identification of this polychaete also on

quantitative Underwater Vision Profiler (UVP5; Picheral et al.

2010) image data. To characterize the Poeobius sp. distribu-

tion we analyzed a dataset of 956 vertical UVP5 profiles

obtained in the tropical Atlantic in the years 2012–2015.

Using satellite, conductivity-temperature-depth (CTD), and

shipboard Acoustic Doppler Current Profiler (ADCP) data, we

categorized each UVP5 station to be either non-eddy, CE,

AC, or ACME. This enabled us to assess the abundance and

potential biogeochemical impact of Poeobius sp. in these dif-

ferent environments and to estimate the potential effects of

these organisms on particle export.

Material and methods

We analyzed a dataset of 1.82 million UVP5 images from

956 vertical UVP5 deployments that were conducted during 13

cruises in the tropical North Atlantic between 168W to 468W

and 58S to 208N (Fig. 1b) in the years 2012–2015. Environmen-

tal data (temperature, salinity, and oxygen concentration) were

obtained from concurrent CTD deployments. A total of 956

vertical profiles were taken at 719 stations (station defined as

all profiles within 0.018 and sampled within less than 7 d). Of

all profiles analyzed, 821 UVP5 profiles were conducted down

to at least 600 m depth, 722 profiles down to at least 1000 m

depth, and 260 profiles down to at least 3000 m depth. A total

of 42 profiles were sampled at African and 9 profiles at Brazil-

ian coastal stations (water depths<600 m).

Assignment of profiles to eddies

We differentiated between CEs, ACs, and anticyclonic

modewater eddies (ACMEs; Sch€utte et al. 2016b). CEs are

defined by a cyclonic rotation corresponding to a negative

sea level anomaly and by lower sea surface temperature and

sea surface salinity than in the surrounding ocean. ACs and

ACMEs both feature anticyclonic rotation and a positive sea

level anomaly but differ in their density structure and there-

fore also in their sea surface temperature and sea surface

salinity: While ACs have higher sea surface temperature and

sea surface salinity, ACMEs can be identified by cold and

more saline surface signatures (Sch€utte et al. 2016b). These

physical characteristics are usually associated with high pro-

ductivity in CEs and ACMEs. Therefore, these eddies can also

be identified by high Chlorophyll a levels and a shallow oxy-

gen minimum zone at the base of the photic layer around

50–100 m depth (thereby distinguished from the midwater

oxygen minimum zone, which can usually be found

between 300 m and 700 m depth in the eastern tropical

North Atlantic; Brandt et al. 2015; Sch€utte et al. 2016b). Sev-

eral mesoscale eddies were already identified during the

respective cruises (Supporting Information Table S1) due to

their distinct vertical oxygen profiles and velocity structure

(swirl velocity around the eddy core). The profiles which

were located in those eddies were assigned to the respective

eddy category. The eddy status of all other profiles was deter-

mined by automatic identification using satellite images and

subsequent validation with CTD and ADCP data as described

in Sch€utte et al. (2016b). The applied algorithms detected

eddies with a radius>45 km. The coarse resolution of the

satellite data (0.258 3 0.258) leads to an increasing probabil-

ity to include profiles from outside the eddy with increasing

distance from the eddy core. Therefore, in order to avoid the

inclusion of profiles taken at the margins or outside of

Fig. 1. Examples and distribution of Poeobius sp. in the tropical Atlantic
Ocean. (a) Two Poeobius sp. specimens as recorded by the UVP5. The

scale bar is 5 mm. (b) Horizontal distribution in 1-degree gridded non-
eddy conditions. Gray symbols indicate that no Poeobius sp. was

recorded, symbols with a black border indicate shelf stations with less
than 600 m water depth. (c) Poeobius sp. standings stocks (0–600 m) in
all identified eddies with ACME 5 anticyclonic modewater eddy,

CE 5 cyclone, and AC 5 anticyclone.
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eddies, only profiles that were located within 40 km distance

of an eddy center were assigned to the respective eddy type.

This may have led to an underestimation of eddy profiles.

See Supporting Information Table S1 for information on

deployments in eddy conditions. Profiles that were recorded

within the same eddy were averaged before the comparative

analysis of the different eddy types and background condi-

tions was performed.

UVP5 measurements

The UVP5 was mounted on the CTD rosette frame and

deployed vertically. During a cast, the instrument takes

between 6 images per second and 11 images per second of a

defined volume (Picheral et al. 2010). In this study, we used

three different UVP5 (serial numbers sn000, sn001, and

sn010) which recorded volumes of 0.95 L, 0.93 L, and 0.88 L

per image, respectively. UVP5 sn000 and sn010 were cali-

brated against UVP5 sn001. For further information regard-

ing the calibration process, see Picheral et al. (2010).

The UVP5 provides a quantitative method to assess abun-

dances of particles and zooplankton, but bias may be intro-

duced at the lower size range (due to insufficient resolution

and light diffusion) and at the upper size limit due to the

then comparably small sampling volume that may over- or

underestimate rare organisms and particles. The UVP5 used

in this study had pixel sizes of 0.151 mm (sn001 and sn010)

and 0.174 mm (sn000) enabling a quantitative assessment of

particles with an equivalent spherical diameter (ESD,

mm)>0.15 mm and 0.17 mm, respectively. In the following,

we only use particles with ESD between 0.17 mm and

16.88 mm in logarithmic size classes for the quantitative

analysis of particle abundances. Objects with an ESD>500

lm are saved as images, so-called vignettes, and can be used

for the quantification and identification of larger detritus

and zooplankton, such as Poeobius sp. (see, e.g., Fig. 1a and

Supporting Information Fig. S1).

Poeobius sp. standing stocks

Poeobius sp. vignettes were combined with previously

obtained and categorized UVP5 image data to train a deep

convolutional neural network (CNN) for image recognition

using the Caffe framework (Jia et al. 2014). The CNN com-

putes a discrete probability distribution over all previously

defined classes and the most likely category is selected

(LeCun et al. 2015). All images of the vertical UVP5 profiles

obtained in the tropical Atlantic were classified using the

neural network. The Poeobius sp. category, but also categories

that were identified to contain wrongly assigned Poeobius

sp., in total around 370,000 images, were manually validated

to reduce the number of false positives (objects that were

wrongly classified as Poeobius sp.) and false negatives (Poeo-

bius sp. objects that were sorted into a different category).

Identified zooplankton and artifacts were subtracted from

the total particle spectrum for the presentation of vertical

particle abundance profiles. Poeobius sp. abundance (ind

m23) was obtained within 5 m depth bins by dividing the

number of individuals by the sampling volume of the respec-

tive bin. Standing stocks (ind m22) were calculated by multi-

plying the abundance within each depth bin with the bin

size (i.e., 5 m) and integrating the standing stocks of the

individual bins over the water column.

Detailed analysis of two ACMEs with particularly high

Poeobius sp. abundance

We found particularly high Poeobius sp. standing stocks in

two ACMEs which we hereafter refer to as ACME1 and

ACME2. For these two eddies, we performed a more detailed

analysis in order to explore the potential causes and conse-

quences of the high Poeobius sp. abundances. We compared

the conditions that we observed in ACME1 and ACME2 with

data from 12 background profiles that were obtained at the

same location as the eddies but during non-eddy conditions.

Background data included validated profiles of the cruises

M97, MSM22, M105, M106, and PS88b.

Determination of stratification

Water column stratification can occur where strong den-

sity gradients exist and may increase particle retention (Mac-

Intyre et al. 1995; Kindler et al. 2010). We calculated the

potential density (sigma h, kg m23) and the squared buoy-

ancy frequency (Brunt-V€ais€al€a frequency N2, s22), which

gives an indication of the change in density with depth,

using the Gibbs-SeaWater (GSW) Oceanographic toolbox

(Version 3.05 for MATLAB) that is based on the TEOS-10

convention (McDougall and Barker 2015).

Poeobius sp. size and biomass

Length and width of all recorded Poeobius sp. were mea-

sured manually on the individual UVP5 images with ImageJ

(http://www.imagej.net). The measured length and width

was used to calculate the individual area (Area, mm2), esti-

mated as prolate ellipse, of all recorded Poeobius sp. Biomass

in terms of dry weight (DW, lg) was determined from this

area, using the relation by Lehette and Hern�andez-Le�on

(2009) for gelatinous zooplankton (siphonophores):

DW 5 43:17 3 Area1:02 (1)

Vertical biomass profiles for ACME1 and ACME2 were calcu-

lated from the individual lengths, widths, and abundances

of Poeobius sp. for each 5 m depth bin.

Other zooplankton

Poeobius sp. abundance in relation to other zooplankton

was assessed in ACME1, ACME2, and in the background

profiles. In addition to Poeobius sp., three categories of zoo-

plankton were differentiated: copepods, Rhizaria (as classified

in Biard et al. 2016) and “other zooplankton” (containing all

other identified zooplankton groups, e.g., non-copepod crus-

taceans, medusa, etc.). Additionally, Poeobius sp. and macro-

zooplankton were counted on a 15 min 11 s pelagic video

Christiansen et al. Flux interception by Poeobius in eddies
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transect at 110 m depth that was recorded with PELAGIOS

in ACME2. Poeobius sp. and macrozooplankton counts in

that transect were estimated by selecting six sections (9–13 s

length each) of the transect where the camera was towed

steadily. In these sections, the number of Poeobius sp. and

several other macrozooplankton groups were counted, result-

ing in an abundance per second estimate for these groups

for each section. The values of all six sections were averaged

and multiplied by the length of the total transect. This pro-

cess was repeated three times and the mean calculated. No

PELAGIOS data were available from ACME1.

Particle size distribution

We compared the particle abundance spectra of ACME1

and ACME2 with those of the 12 background profiles. For

this purpose, we defined two 10 m depth intervals, one

above and one below the layer where Poeobius sp. occurred.

The particle abundance of each layer was plotted against the

particle size on a double logarithmic scale. The slope of

the resulting log-log linear relationship between particle

abundance and size was calculated for each depth layer in

ACME1, ACME2, and the respective background data.

Detritus flux

Detritus flux was calculated from the abundance and size

of particles in individual size classes, thus using the particle

abundance measured by the UVP5 as a proxy for vertical

flux. Only particles identified as detritus (including fecal pel-

lets) on the UVP5 vignettes, were included in the analysis.

First, the carbon content (minsitu, mmol C) of the detritus in

the different size classes was calculated:

minsitu5 a 3 ESDb 3 R (2)

with the constants a 5 273 and b 5 1.62 (Kriest 2002),

ESD 5 equivalent spherical diameter (cm) and R 5 106/16

(Redfield stoichiometry; Redfield et al. 1963). We used the

equation for miscellaneous aggregates (Alldredge 1998).

Then, sinking velocities (sinkk2002, m d21) of individual

detritus particles in the different size classes were calculated:

sinkk2002 5 c 3 ESDd (3)

with the constants c 5 132 and d 5 0.62 (Kriest 2002). Finally,

for each size class, the flux (F, mg C m22 d21) of a single

detritus particle was calculated from the particles sinking

velocity, sinkk2002, and its carbon content, minsitu.

F 5 sinkk2002 3 minsitu 3 MC (4)

with MC 5 12 g mol21 (molar mass of carbon).

Individual detritus particle masses and detritus fluxes of

each size class were multiplied with the particle abundance

in the respective 5 m depth bin. Detritus mass and flux were

integrated for the size classes 0.5–16.88 mm in order to obtain

the total detritus mass flux of this size range. Our calculations

exclude zooplankton, but also neglect the role of smaller detri-

tus (< 500 lm ESD) and thus are not representative for the

total particle flux. Furthermore, our flux calculations are based

on global relationships between aggregate size and sinking

velocities (Kriest 2002) which can only serve to provide a first-

order estimate of the actual flux, as local variations in these

relationships might occur (McDonnell and Buesseler 2012).

Therefore, we would like to point out that our detritus flux esti-

mates mainly serve to compare between ACME and back-

ground conditions.

Microbial particle-associated respiration rates

Microbial particle-associated respiration rates (PARR, lmol

kg21 yr21) for particles between 0.17 mm and 16.88 mm

ESD were calculated as a function of particle size (ESD, mm),

ambient temperature, and oxygen concentration as done by

Kalvelage et al. (2015). These PARR are based on empirical

relationships between aggregate diameter and respiration

rate that were measured by Iversen et al. (2010) and cor-

rected for the occurrence of anoxic conditions inside the

aggregate according to Ploug et al. (1997). The PARR of indi-

vidual size classes were integrated by particle abundances in

the different size classes. PARR estimates at 100–600 m depth

in 12 background profiles coincide well with apparent oxy-

gen utilization rate estimates that range between 2 lmol

kg21 yr21 and 12 lmol kg21 yr21 for the tropical Atlantic

Ocean below 100 m depth (Karstensen et al. 2008).

Poeobius sp. respiration

Poeobius sp. respiration (Rpoeo, lmol ind21 h21) was calcu-

lated based on the specific respiration rate (RTh) of 0.068

lmol g21 (wet weight) h21 that was measured by Thuesen

and Childress (1993) for the Pacific Ocean congener

P. meseres. A Q10 temperature coefficient of 2 was applied

considering the experimental temperature of 58C in Thuesen

and Childress (1993) and temperatures of around 158C in

the ACME cores. An assumed body shape of a prolate ellipse

with mean seawater density (q, 1.023 g mL21) served to

define the wet weight (WWpoeo) of a Poeobius sp. of a certain

length l and width w.

WWpoeo5
4 � pi

3

� �
3

w

2

� �2

3
l

2

� �� �
3q (5)

Rpoeo 5 RTh 3 Q10 3 WWpoeo (6)

Rpoeo was calculated from individual body lengths in ACME1

and ACME2 and integrated for each 5 m depth bin. Respira-

tion in lmol kg21 yr21 was obtained by dividing the inte-

grated Rpoeo by the volume recorded in the respective depth

bin, multiplying with 8760 to get to values per year and

dividing by mean seawater density (1023 kg m23).

Poeobius sp. flux interception potential

We identified Poeobius sp. mucous nets from PELAGIOS

HD video recordings by running the video in slow mode and

Christiansen et al. Flux interception by Poeobius in eddies

52097



identifying patches of particles that were attached to a Poeo-

bius sp. and moved in the same way through the cameras

field of view (see Supporting Information Video S1). The area

of the mucous nets was estimated based on frame shots from

the video. As the field of view of PELAGIOS is unknown and

objects cannot be scaled absolutely, the net size was deter-

mined relative to the size of the Poeobius sp. specimen

attached to it. Relative length, width, and area of nets on

five frame shots were measured manually in ImageJ (Support-

ing Information Fig. S2). Additionally, the net area was

approximated as a prolate ellipse from the net length and

width that was measured relative to Poeobius sp. length. Con-

sidering that the aspect of the towed camera system was

from the side, not from above/below (which is likely the

maximum net surface area to optimize sinking particle cap-

ture), our size estimations have to be considered as cautious

approximations and are likely underestimates.

The potential total area covered by all Poeobius sp.

mucous nets Atotal at a given station was calculated as:

Atotal 5 Stdi3 pfeeding3 Anet (7)

where Stdi is the standing stock (ind m22) in the defined

depth interval where Poeobius sp. occurred, pfeeding is the pro-

portion of nets deployed, and Anet is the mean net area (m2)

as determined from the mean length of the Poeobius sp. in

the respective eddy and the relations described above.

Statistics

Data visualization was done in MATLAB R2016b. All sta-

tistical tests were done in the R statistical environment. To

account for non-normal distributions and unequal sample

sizes, the following non-parametric statistical tests were

applied:

1. The Mann-Whitney U test (R-function wilcox.test, stats

package) was used for comparing Poeobius sp. standing

stocks between non-eddy stations and stations of different

eddy types.

2. The two-sample Kolmogorov-Smirnov test (R-function

ks.test, stats package) was used for comparing the distribu-

tion of depth occurrences between non-eddy stations and

stations of different eddy types.

3. Confidence intervals (95%) were used to present the varia-

tion of the 12 background profiles that were sampled at

the same location as the two eddies with highest Poeobius

sp. standing stocks (ACME1 and ACME2). A statistically

significant difference between these background condi-

tions and the ACME was assumed when the ACME values

were outside the 95% confidence interval.

Only data from the upper 600 m were considered for

comparing both standing stocks and depth distribution.

Results

Poeobius sp. was found throughout the entire observation

area, except for the African or Brazilian coast (water

depths<600 m). Most identifications stem from the Guinea

Dome region where the sampling effort was highest (Fig.

1b). In open ocean non-eddy profiles, all Poeobius sp.

occurred at particle concentrations between 1 particle L21

and 25 particles L21. Although 70% of the casts were deeper

than 1000 m depth, Poeobius sp. was not observed below

1000 m, where the median particle abundance was less than

Fig. 2. Poeobius sp. standing stocks in non-eddy (NE) and different
eddy conditions. AC, anticyclone; ACME, anticyclonic modewater eddy;

CE, cyclone. Boxes represent the first and third quartile, circles are out-
liers. n is the number of stations for NE conditions and for different
eddies. Significance of difference to non-eddy conditions with *p<0.05.

Only data from the upper 600 m are considered. One outlier (5523 ind
m22) in ACME conditions (ACME1) is not shown here but was included

in the analysis.

Fig. 3. Depth distribution of Poeobius sp. in non-eddy conditions (a)

and in ACMEs (b). Data are averaged for 50 m depth bins and the posi-
tive standard deviation indicated. Please note the 50-fold larger values

on the x-axis of (b). Only oceanic profiles deeper 600 m water depth
are considered.
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2 particles L21. Poeobius sp. was present at oxygen concentra-

tions below the suboxic level (< 4.5 lmol kg21), as observed

in one ACME (Supporting Information Fig. S3).

Observations from the upper 600 m were used to statisti-

cally compare Poeobius sp. standing stocks and depth distri-

butions. Poeobius sp. standing stocks were significantly

(Mann-Whitney U: p<0.05) larger in ACMEs (median

226 ind m22, range 0–5523 ind m22, n 5 6 eddies) compared

to non-eddy stations (median 0 ind m22, range 0–289 ind

m22, n 5 721 stations, Figs. 1c, 2). The distribution of stand-

ing stocks in CEs differed significantly from non-eddy sta-

tions but the effect size was small (median in CEs 0 ind m22,

range 0–126 ind m22, n 5 17 eddies). No significant differ-

ence was found between ACs (median 0 ind m22, range 0–

123 ind m22, n 5 13 eddies) and non-eddy stations (Mann-

Whitney U: p>0.05).

A very shallow and narrow depth distribution was

observed in ACMEs compared to the non-eddy situation

(Fig. 3). The median depth of Poeobius sp. at non-eddy sta-

tions was 422 m (range 32–998 m, 82 individuals, 668 pro-

files down to at least 1000 m depth). In ACMEs, the depth

distribution differed significantly from the non-eddy depth

distribution (Kolmogorov-Smirnov test (KS): p<0.05) with

the median depth of occurrence at 87 m (range 37–722 m,

104 individuals, 12 profiles down to at least 600 m and 6

profiles down to at least 1000 m depth). Only seven and two

individuals (depth ranges 23–813 m and 253–408 m), respec-

tively, were recorded in CEs and ACs; therefore, a detailed

analysis of the depth distribution for these eddy types was

not possible.

Characteristics of two ACMEs with high Poeobius sp.

standing stocks

Two ACMEs showed especially high Poeobius sp. and

reduced particle abundances. Both were sampled at 88N,

238W, one on the 22nd May 2015 (ACME1) and the other on

Fig. 4. Environmental characteristics of the anticyclonic modewater eddies ACME1 and ACME2. Oxygen concentration (a, b), potential density (c,

d), and squared buoyancy frequency (e, f) in ACME1 (a, c, e) and ACME2 (b, d, f) compared to background (i.e., mean reference) conditions during
five other cruises (12 profiles) at the same location. Red lines indicate mean eddy conditions, black lines mean reference conditions. The gray area
shows the 95% confidence interval of the reference conditions. The blue shaded area indicates in which depth interval Poeobius sp. occurred in

ACME1 and ACME2.
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the 27th September 2015 (ACME2). Please see the video clips

in the Supporting Information for an impression of the con-

ditions in ACME2 (Supporting Information Video S2) com-

pared to non-eddy conditions (Supporting Information

Video S3). Poeobius sp. standing stock in the upper 600 m

was calculated as 5523 ind m22 in ACME1 and as 500 ind

m22 in ACME2. The average body length of Poeobius sp. was

6.7 mm (range 2.9–12.8 mm; standard deviation 2 mm,

n 5 63 individuals) in ACME1 and 14 mm in ACME2 (range

10.9–15.2 mm; standard deviation 2.1 mm, n 5 14 individu-

als). For detailed Poeobius sp. length information, see Sup-

porting Information Fig. S4. Poeobius sp. was observed

between 45 m and 75 m in ACME1 and between 65 m and

115 m in ACME2, coinciding with the location of the eddy

core, which is indicated by the shallow oxygen minimum

zone (Fig. 4a,b). Minimum oxygen values of 17 lmol kg21

in ACME1 and 50 lmol kg21 in ACME2 were observed in

this shallow oxygen minimum zone, compared to a mean

minimum oxygen concentration of about 100 lmol kg21 at

similar depths in background conditions observed during

five cruises (12 profiles) at the same location (Fig. 4a,b).

In ACME1, the pycnocline was located at around 30 m

depth, in ACME2 at around 40 m depth (Fig. 4c,d). The

slope of the pycnocline appeared to be shallower in both

ACMEs compared to the background conditions, which indi-

cates a stronger stratification in the eddies. This can also be

seen in the squared buoyancy frequency, which showed

increased peaks of density discontinuity at the pycnocline of

the two ACMEs and partly decreased values below, compared

to the background profiles (Fig. 4e,f).

In the core of ACME1 and ACME2, Poeobius sp. consti-

tuted about 50% of the zooplankton community abundance

assessed with the UVP5 (median 56%, range 35–75% over six

depth intervals in ACME1 and median 44%, range 25–100%

in six depth intervals where they occurred in ACME2; Fig. 5).

It was absent from the zooplankton community in five non-

eddy profiles sampled at 88N 238W during three other cruises.

In one PELAGIOS video transect (15 min and 11 s, tow speed

� 0.5 m per second) in ACME2 at 110 m, a total number of

4817 Poeobius sp. individuals were estimated. Only 114 other

macrozooplankton organisms (65 krill, 16 fish, 12 large

siphonophores [Praya sp.], 4 other siphonophores, 6 sergestid

Fig. 5. Zooplankton abundance and composition in the anticyclonic modewater eddies ACME1 (a, b) and ACME2 (c, d) and in non-eddy profiles at
88N 238W (NE; e, f). Note the difference in scale in (a). The category “other zooplankton” includes all zooplankton not identified as either Copepod,
Rhizaria, or Poeobius sp. and includes for example non-copepod crustaceans and jellyfish.
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shrimps, 5 medusae, 4 ctenophores, 1 other crustacean, 1

unidentified, no salps, no appendicularians) were counted in

the whole transect.

The highest Poeobius sp. biomass observed in ACME1

(16 mg DW m23) co-occurred with the particle maximum

and subsequent particle decrease in this eddy. In ACME2,

high Poeobius sp. biomass was found below the particle maxi-

mum, but above the upper limit of the layer with less than 1

particle L21 (Fig. 6a,b). Compared to background conditions

(mean particle abundance maximum of 12 particles L21),

particle abundances in ACME1 (maximum of 23 particles

L21) were significantly elevated—outside the 95% confidence

interval of the background profiles—between 45 m and 80 m

depth (Fig. 6a). The particle abundance above 40 m depth

was reduced or similar to background conditions while

between 80 m and 600 m abundances were usually within

the background confidence interval but sometimes slightly

elevated. In ACME2, on the other hand, particles were signif-

icantly depleted between 100 m and 300 m depth, with

minimum values between 110 m and 210 m depth (less than

1 particle L21, minimum 0.48 particles L21, Fig. 6b). Above

100 m and below 300 m depth, ACME2 particle abundances

were within the 95% confidence interval of the background

profiles.

The downward detritus flux in ACME1 was within the

confidence interval of the background profiles, with a com-

paratively low subsurface peak flux (13 mg C m22 d21) com-

pared to 44 mg C m22 d21 in the mean background profile

(Fig. 6c). In ACME2, the downward detritus flux (subsurface

peak flux of 9 mg C m22 d21; Fig. 6d) was almost always

lower than the background flux and outside of the confidence

interval. Below 100 m depth, the downward flux in ACME2

(generally below 1 mg C m23 d21, below 0.5 mg C m23 d21

between 115 m and 250 m) was significantly lower than in the

background conditions (around 2.5 mg C m22 d21).

The PARR in the upper 50 m of ACME1 (mean of about

114 lmol kg21 yr21) was significantly reduced compared to

background conditions (mean of about 234 lmol kg21 yr21;

Fig. 6. Poeobius sp. and biogeochemical properties in the anticyclonic modewater eddies ACME1 and ACME2. Poeobius sp. biomass (dry weight,
blue bars) and particle abundance (a, b), detritus flux (c, d) and microbial particle associated respiration rate (PARR; e, f) in ACME1 (a, c, e) and

ACME2 (b, d, f) compared to background (i.e., mean reference) conditions as observed during five other cruises (12 profiles) at the same location.
Red lines indicate mean eddy conditions, black lines mean reference conditions. The gray area shows the 95% confidence interval of the reference

conditions. The blue shaded area in (c–e) indicates in which depth interval Poeobius sp. occurred in ACME1 and ACME2.
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Fig. 6e). Below 50 m, the calculated PARR in ACME1 was

similar to background conditions. In ACME2, PARR was

within the confidence interval of the background profiles

above 100 m and below 300 m depth. PARR was significantly

reduced at depths between 100 m and 300 m with minimum

rates below 4 lmol kg21 yr21 (Fig. 6f). Poeobius sp. individual

respiration rates ranged between 0.00028 lmol h21 and

0.0064 lmol h21 in ACME 1 and between 0.0084 lmol h21

and 0.02 lmol h21 in ACME2. Maximum community respi-

ration calculated for Poeobius sp. was 0.84 lmol kg21 yr21 in

ACME1 and 2.27 lmol kg21 yr21 in ACME2.

Particle size distribution

We compared the change in slope of the particle abun-

dance spectrum from above to below the layer in which

Poeobius sp. occurred in ACME1 and ACME2 and the respec-

tive background spectrum (Fig. 7). In ACME1, the slope of

the particle spectrum of the deeper layer was shallower, lead-

ing to a crossing of slopes at around 1.5 mm particle size

(Fig. 7a). This indicates reduced particle abundances in the

layer below Poeobius sp. (compared to the shallow layer)

mainly in the small size classes and partly elevated abundan-

ces in the larger size classes. In the background situation, the

slopes were similar in both depth intervals and were almost

parallel, indicating very little change in the particle size

spectrum apart from a reduction in particle abundance with

depth (Fig. 7b). In ACME2, the difference in slopes between

the shallow and the deep layer was only small, although a

trend toward a shallower slope in the deeper layer of the

ACME could be observed (Fig. 7c). In the background profiles

at these depth intervals, the slope of the particle spectrum

was rather larger than in the shallow interval, but here again

the difference was only small (Fig. 7d).

Poeobius sp. flux interception potential

In order to estimate the potential impact of flux feeding

on the downward particle flux, the area of Poeobius sp.

mucous nets was measured on five PELAGIOS frame shots

(Supporting Information Fig. S2, Video S1). The mean shape

of mucous nets was irregular with lengths of about 9.9

(mean value; range 5 8.5–11.2, SD 5 1) and widths of approx-

imately 1.7 times (mean value; range 5 0.9–2.9, SD 5 0.8)

Poeobius sp. body length, respectively (Supporting Informa-

tion Table S2). Mucous net areas approximated as prolate

ellipse from net length and width (mean 12.7 cm2 assuming

a Poeobius sp. length of 1 cm, SD 5 5.4 cm2) were similar to

the manually measured relative net area (mean 12.3 cm2,

SD 5 6.6 cm2). We therefore established the following rela-

tionship to calculate mucous net area (Anet, m2) from Poeo-

bius sp. length (lengthpoeo, mm):

Anet 5
p 3

lengthpoeo3 9:9
2

� �
3

lengthpoeo3 1:7
2

� �
1000

(8)

Mucous nets were visible in about 40% of the Poeobius sp. on

the selected PELAGIOS transects, but could only be identi-

fied when particles were attached to them which is why we

only have five distinct measurements of mucous net size.

Within ACME1, we observed a Poeobius sp. standing stock

of 5500 ind m22 in a 30 m depth interval (45–75 m). Length

measurements of all individuals observed yielded a mean

length of 6.7 mm. The established length to mucous net

area relationship (Eq. 8) allows us to calculate a mean indi-

vidual mucous net area of about 6 cm2. Our PELAGIOS video

observations reveal that approximately 40% of the Poeobius

sp. standing stock have their mucous nets deployed. If we

assume that their nets align perfectly, we can come to the

conclusion that the mucous nets deployed by Poeobius sp.

individuals in ACME1 cover an area of 1.3 m2 per square

meter in ACME1, yielding a 1.3-fold flux interception poten-

tial. In ACME2, Poeobius sp. of mean length 14 mm occurred

in a 45 m depth interval (65–110 m) with a standing stock

of 500 ind m22 and with a mean individual net area of

26 cm2. With the same assumptions as above, this leads to a

total covered area of 0.51 m2 per square meter, i.e., about

50% flux interception potential in ACME2. Given that the

mucous nets are unlikely to be perfectly aligned (i.e., with-

out overlaps), the actually covered area was probably smaller.

However, extended tentacles, which may also indicate active

feeding (Uttal and Buck 1996), were visible in more than

Fig. 7. Comparison of the slopes of the particle size spectrum in the

10 m depth interval above and below Poeobius sp. in ACME1 and
ACME2, compared to the background (mean reference) conditions

obtained during five cruises (12 profiles). ACME conditions are depicted
in lines and triangles (a, c), background conditions in lines and points
(b, d) with gray representing the shallow depth interval and black the

deep depth interval, respectively.
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80% of the observed Poeobius sp. specimens on PELAGIOS

video transects, suggesting that the number of visible

mucous nets likely underestimates the actual proportion of

actively feeding Poeobius sp.

Discussion

Our analysis reveals that the flux feeder Poeobius sp. had

significantly larger standing stocks in ACMEs, compared to

ACs, CEs, and non-eddy open ocean conditions. We further-

more conclude that Poeobius sp. impacts the particle distribu-

tion and flux in ACMEs by feeding with their mucous nets.

Here, we first discuss possible mechanisms that lead to the

observed patterns and then relate to the potential biogeo-

chemical impacts that flux feeding by Poeobius sp. can cause

in ACMEs.

Increased Poeobius sp. abundances in mesoscale eddies

Several mechanisms or a combination thereof may explain

the increased abundance of Poeobius sp. in ACMEs. These

mechanisms include physical aggregation and advection, active

habitat choice and improved survival and reproduction due to

beneficial habitat conditions.

1. Physical aggregation and advection: ACME cores are

strongly isolated and there is virtually no lateral exchange

with surrounding waters, as shown by very stable tempera-

ture and salinity conditions in ACMEs over periods of several

months (Karstensen et al. 2015, 2017). It therefore seems

unlikely that they collect zooplankton from the upper

� 400 m of the surrounding ocean on their path. However,

the isolation could result in an export of Poeobius sp. speci-

mens from the coastal areas of the Mauritanian shelf region

westward, into the open ocean (Sch€utte et al. 2016b). Never-

theless, our observations do not show an enhanced abun-

dance of Poeobius sp. off Mauretania, lending no support to

this hypothesis.

2. Active habitat choice: Enhanced abundances of zoo-

plankton (Hauss et al. 2016) and nekton (Godø et al. 2012)

near the surface of mesoscale eddies can result in increased

flux of fecal pellets to depth (Goldthwait and Steinberg

2008) and may lead to an export of large quantities of fresh

particulate matter down to the seafloor (Beaulieu 2002).

Fecal pellets made up the majority of nutritious food items

that were found in P. meseres stomachs (Uttal and Buck

1996) and may thus be perceived as “high-quality food” by

the polychaetes. We hypothesize that Poeobius sp. migrate

into the ACMEs from below approximately 400 m depth,

triggered, for example, by the high-quality food signal that

these eddies emit to the deep sea via enhanced particle flux

while they travel. In non-eddy conditions, the integrated

standing stock between 400 m and 1000 m depth from

where individuals could migrate into the isolated eddy core,

was about 10 ind m22, whereas in ACME1 and ACME2

Fig. 8. Schematic illustrating the potential processes during the lifetime of an ACME if it becomes heavily colonized by Poeobius sp. Dots represent
particles in the water column. (a) Non-eddy open ocean conditions: Poeobius sp. are evenly distributed in the upper 1000 m of the water column in
low abundances. (b) Poeobius sp. aggregate in the ACME core, likely due to active vertical migration. Particle production is enhanced due to nutrient

input into the euphotic zone and a high-quality food signal triggers upward migration of individuals into the eddy. Optimal feeding conditions and
higher encounter rates facilitate reproduction of Poeobius sp. The isolation of the eddy core prohibits spreading of the polychaete into the ambient

ocean. (c) Large numbers of Poeobius sp. compete for sinking particles—they aggregate close to the mixed layer. Low oxygen conditions in the eddy
core exclude potential predators and competitors. Particle abundances are reduced as small particles are repackaged into fast sinking, large fecal pel-
lets. (d) Reduced nutrient cycling results in low productivity in a later stage of the eddy. Poeobius sp. repackage the remaining flux in the ACME. Stage

(c) represents the situation that was found in ACME1. ACME2 may have been an ACME of stage (b) or (d). Eddy schematic modified from Karstensen
et al. (2017).
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between 0 m and 150 m depth, it was about 552- and 50-

fold elevated (5523 ind m22 and 500 ind m22, respectively).

It follows that, with a diameter of about 100 km, and

neglecting population dynamical processes such as reproduc-

tion, ACME1 would have needed to travel about 55,230 km

and ACME2 5000 km in order to “collect” the observed Poeo-

bius sp. Eddies in the area generally originate at the African

coast at about 600–1000 km distance from the 238W section.

Active habitat choice can therefore not explain the especially

large stocks in ACME1 and ACME2, even if all Poeobius sp.

on the eddies’ path migrated into the eddy. However, a

probable path of 600–1000 km may lead to a 6- to 10-fold

increase in abundance which might already be important for

further population dynamical processes in the eddy.

Additionally, the strong upward shift in the depth distri-

bution of Poeobius sp. in ACMEs could be a result of active

habitat choice, likely amplified by intraspecific competition

for space and food, as already outlined by Jackson (1993) for

pteropods. Low abundances of flux feeders, as found in non-

eddy open ocean conditions, result in a low total cross-

sectional area of mucous nets (
P

netarea) that only weakly

attenuates flux with depth, providing no reason to compete

for space in a certain depth layer (Fig. 8a). In contrast, if

abundances increase, e.g., due to active migration into favor-

able conditions (Fig. 8b), a high
P

netarea leaves only a small

fraction of the near-surface flux to settle into deeper layers.

We calculated that Poeobius sp. could potentially intercept

all of the gravitational flux in ACME1 and 50% in ACME2.

Such strong flux attenuation might lead to a strategy where

flux-feeders gather directly below their food source, which

may explain the strongly condensed depth distribution that

we observed in ACMEs with high Poeobius sp. abundances

(Fig. 8c,d).

3. Increased survival and reproduction due to beneficial

conditions: Poeobius sp. has separate sexes and an external

fertilization (Robbins 1965). Higher encounter rates in eddies

due to active habitat choice and a resulting “concentration

effect” may facilitate reproduction. In order to assess the

potential reproduction of Poeobius sp. in the observed eddies,

we would need information such as their egg numbers,

development time, and growth rates. However, an intensive

literature search did not reveal any such information. Short

life cycles and the capability to form blooms as a response to

environmental triggers are however a well-known feature of

gelatinous zooplankton (e.g., Boero et al. 2008). Maximum

ACME lifetimes of about 200 d (Sch€utte et al. 2016b) should

allow for reproduction and larval development also for sex-

ually reproducing invertebrates such as Poeobius sp. The

highest recorded abundance of Poeobius sp. in ACME1 coin-

cided with the smallest mean size of the individual poly-

chaetes, which in our view points to a recent reproduction

event.

In addition to increasing the likelihood of reproduction

due to a “concentration effect,” ACMEs probably also

improve the survival of Poeobius sp. ACMEs generally provide

beneficial growth conditions for flux-feeders as ACME cores

are low mixing regions (Karstensen et al. 2017) where fragile

mucous nets are well preserved and feeding is not disrupted

by turbulence (Tsurumi et al. 2005). Furthermore, generally

elevated particle loads in ACMEs and CEs (Sweeney et al.

2003; Fiedler et al. 2016; Hauss et al. 2016) provide beneficial

conditions for the growth of flux-feeding organisms. How-

ever, near-surface particle concentrations in ACME1 and

ACME2 were not particularly enhanced, and in ACME2 even

lower than the background signal. One explanation for this

could be that eddy productivity is episodic (Karstensen et al.

2017). Especially in later stages of their lifetime, particle pro-

duction in ACMEs may not differ from the background

(Buesseler et al. 2008), although it was probably high during

earlier stages. Reduced oxygen concentrations in both

eddies, and especially in ACME1, indicate strong oxygen

consumption, possibly generated by a high particle load and

remineralization during the earlier isolation time of the

eddies (Buesseler et al. 2008). These low oxygen concentra-

tions may also be beneficial to the survival of Poeobius sp.

Oxygen concentrations were below 20 lmol kg21 in ACME1

and Poeobius sp. dominated the zooplankton community

(about 50% contribution) at these oxygen levels. These lev-

els are below the critical physiological threshold for some

competitors like copepods (Kiko et al. 2016) and pteropods

(Maas et al. 2012), as well as for potential predators such as

squid and fish (Purcell and Arai 2001; Seibel 2011; Cardona

et al. 2012). Some gelatinous predators may however toler-

ate these low oxygen concentrations (Purcell et al. 2001).

In ACME2, on the other hand, oxygen concentrations did

not drop below 45 lmol kg21 and should therefore not

exclude competitors and predators. These considerations

are supported by the observation of some krill and cope-

pods, as well as large siphonophores in a pelagic video

transect in ACME2. However, the numbers of these zoo-

plankton organisms were considerably lower than those of

Poeobius sp.

Summarizing the discussion of enhanced abundances of

Poeobius sp. in ACMEs, we suggest that active habitat choice

as well as increased survival and reproduction may have con-

tributed to the enhanced abundance of Poeobius sp. in

ACMEs. Especially high particle fluxes and, through exclu-

sion of predators and competitors, low oxygen concentra-

tions seem to generate a unique niche that favors growth,

reproduction, and survival of this species. Similar conditions

may be found in upwelling areas such as the Monterey

Canyon where P. meseres is highly abundant (Robison et al.

2010). Also, the encounter rate of these organisms is

enhanced in mesoscale eddies in comparison to the open

ocean which might be important for their reproductive suc-

cess. The large standing stock of small individuals in ACME1

is probably the result of a relatively recent reproduction

event. These findings underline the potential importance of
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mesoscale eddies for the survival and dispersion of rare zoo-

plankton species and support theoretical studies that see

mesoscale eddies as a solution to the paradox of the plank-

ton (Bracco et al. 2000).

Potential influences of Poeobius sp. on particle

distribution and flux

Increased abundances of Poeobius sp. in ACME1 and

ACME2 at shallow depth co-occurred with reduced particle

abundances, especially in ACME2. The almost complete

absence of particles between 110 m and 210 m in ACME2 is

unique in our current dataset of 177 UVP5 profiles in the

region (between 5–108N and 25–208W).

We observed a relatively high stratification in ACME1 and

ACME2 compared to the background conditions. Sharp den-

sity gradients, especially when due to strong increases in

salinity, can slow down sinking particles at the pycnocline

(MacIntyre et al. 1995; Kindler et al. 2010). This can lead to

a peak in the particle abundance profile and a reduced trans-

port of particles into deeper layers, if these peaks are hot-

spots of particle remineralization (MacIntyre et al. 1995). We

would thus expect an accumulation of particles at the pyc-

nocline of the ACMEs and a reduction in particle abundance

below. In ACME1, a significant particle peak was observed

just below the pycnocline and coincided with Poeobius sp.

occurrence, possibly due to beneficial feeding conditions.

Particle abundances were within background range below

the peak, which indicates a stronger reduction of particle

abundances than in background conditions. In ACME2, par-

ticle abundances were not elevated at the pycnocline. Parti-

cle abundances were normal just below the pycnocline,

where Poeobius sp. occurred, but were significantly reduced

below the polychaetes. We therefore consider that the partic-

ularly strong reduction of particle abundances in ACME1

might result from particle retention at the pycnocline and

Poeobius sp. flux feeding, and in ACME2 almost exclusively

from Poeobius sp. flux feeding.

We calculated a 1.3-fold and 0.5-fold coverage potential

of the water column by Poeobius sp. mucous nets in ACME1

and ACME2, respectively. This result and the observation

that Poeobius sp. dominated the zooplankton community in

the respective layers of both eddies is in our view another

clear indication that Poeobius sp. has substantially contrib-

uted to the particle depletion and thus had a strong influ-

ence on the biogeochemistry of the eddy.

Biogeochemical consequences of flux feeding

Substantial flux feeding can have different consequences

for eddy oxygen concentration and nutrient cycling:

1. Enhancement of remineralization and respiration by flux

attenuation: By intercepting the particle flux, Poeobius sp.

could possibly enhance remineralization and respiration

at the depth where they feed. This would lead to an inten-

sification of the oxygen minimum zone in the eddy and

to a reduction of carbon export to deeper layers. However,

the maximum Poeobius sp. community respiration of 2.27

lmol kg21 yr21, observed in ACME2, would take about 24

yr to create an oxygen deficit of 55 lmol kg21. Such a def-

icit results if we assume an oxygen concentration of � 75

lmol kg21 at eddy formation (value for Mauritanian shelf

concentrations; Fiedler et al. 2016) and subtract the

observed concentration of about 20 lmol kg21 between

60 m and 70 m depth during the sampling of ACME1. As

ACMEs in the area have lifetimes below 7 months

(Sch€utte et al. 2016b), it follows that the oxygen deficit

must be the result of zooplankton and particle dynamics

at an earlier stage of the eddy. Mucous nets collect micro-

zooplankton (Gilmer 1972) and microbes associated with

sinking particles which may lead to enhanced local bio-

logical activity and respiration. However, as they are

ingested regularly, it seems unlikely that they massively

support microbial growth and respiration.

2. Particle repackaging and generation of a deep penetrating

flux: Considering the very low community respiration rates

of Poeobius sp. (maximum 2.27 lmol kg21 yr21), we suggest

that it is more likely that, rather than assimilating the cap-

tured particles efficiently, Poeobius sp. collect sinking par-

ticles and repackage them into larger, rapidly sinking, fecal

pellets (as described for salps; e.g., Madin 1982). Through

this process they would reduce particle associated reminer-

alization and respiration at their feeding depth. Uttal and

Buck (1996) described P. meseres fecal pellets to “appear

watery and remain intact” after egestion in the laboratory.

However, settling experiments and observations of P.

meseres fecal pellets (B. Robison and R. Sherlock unpubl.)

in Monterey Bay indicate that the fecal pellet morphology,

consistency, and sinking velocity can vary considerably,

probably depending on the type of ingested food and feed-

ing technique. Some fecal pellets were watery and very

fragile, but some also compact and dense. An assessment

of sinking rates resulted in a median sinking speed of

175 m d21 (range 35–869 m d21). The maximum sinking

speed of 869 m d21 suggests that a rapid carbon export by

Poeobius sp. fecal pellets is feasible. Analysis of the size

spectrum slope above and below the occurrence of Poeobius

sp. also indicates a reduction of small particles in ACME1

and ACME2 and partly even an increase in larger particles

below the depth where Poeobius sp. occurred. These obser-

vations further support our hypothesis that the polychaetes

repackage small particles into larger, more rapidly sinking

fecal pellets. It is probably due to the very low productivity

of ACME2 that this pattern was less obvious in this eddy,

i.e., input particle abundances may have been too low to

generate an increased output flux in comparison to the

background situation.

The removal of particles from the core of ACMEs by Poeo-

bius sp. suggests a strong impact on the biogeochemistry and
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the pathway of carbon in the water column. In addition to

reducing the direct remineralization of particles—as indicated

by reduced microbial particle associated respiration rates at

midwater depth—the proposed deep penetrating flux could

also result in a loss of nutrients from the eddy: Karstensen

et al. (2017) described an “outward directed mixing” or

“erosion” of the ACME core because the low-mixing core is

surrounded by regions of strong mixing. They relate the ero-

sion to upwelling processes and conclude that by this upwell-

ing and by eddy retention, dissolved nutrients such as NO2
3

are transported from the margins of the eddy core back into

the euphotic zone of the eddy where they can be utilized by

autotrophs and later are reintroduced into the eddy core in

the form of sinking particulate matter. If the particulate mat-

ter that reaches the eddy core is not remineralized but instead

directly exported into deeper layers—e.g., via repackaging by

Poeobius sp.—this recycling process is weakened and less

nutrients are made available for surface productivity. This

may explain the low near-surface particle concentrations of

ACME1 and ACME2 compared to other ACMEs (Fiedler et al.

2016). The generation of a deep penetrating flux could also—in

contrast to consequence 1—attenuate oxygen consumption in

eddies and could prevent eddies from turning anoxic as particle

removal reduces substrate for microbial respiration.

Conclusion

Based on our findings, we developed a conceptual model

for the evolution of a Poeobius sp. aggregation inside eddies

(Fig. 8). We suggest that the high abundance of Poeobius sp.

in ACMEs compared to non-eddy conditions is the result of

the combination of an accumulating effect by active vertical

migration into the eddy and improved survival and repro-

duction in ACME conditions. Poeobius sp. appears to benefit

from enhanced particle fluxes in ACMEs and potentially

from the exclusion of hypoxia intolerant competitors and

predators. This indicates that mesoscale eddies can serve as

an important niche for marine biodiversity by aggregating

otherwise low-abundant species. The shallow and narrow

depth distribution of Poeobius sp. in ACMEs is probably a

result of both the competition of the flux-feeding animals

for sinking particles and the physical isolation of the eddy

core. Very low particle concentrations and a change in the

particle size distribution were measured below layers with

high Poeobius sp. abundances and our analysis suggests that

the polychaete worms were the ultimate cause for these par-

ticularly low particle numbers. However, seemingly stochas-

tic heterogeneity of Poeobius sp. abundance in different

eddies still makes it difficult to assess the large-scale impacts

of Poeobius sp. on eddy biogeochemistry in general. Our

work nevertheless underlines that not only physical and

microbial processes, but even individual, fragile zooplankton

species may substantially affect biogeochemical processes in

the open ocean.
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