Peter Brandt^{1,2}, Richard J. Greatbatch^{1,2}, Martin Claus^{1,2}, Jan-Dirk Matthießen¹, Franz Philip Tuchen¹, François Ascani³, Marcus Dengler¹, John M. Toole⁴, Christina Roth¹, and J. Thomas Farrar⁴

- ¹ GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
- ² Christian-Albrechts-Universität zu Kiel, Germany
- ³ University of Hawai`i, USA
- ⁴ Woods Hole Oceanographic Institution, USA

Equatorial Deep Jets in the Atlantic Ocean studied by observations and ocean general circulation models

Zonal Velocity in the Central Equatorial Atlantic

Zonal Velocity in the Central Equatorial Atlantic

Equatorial Deep Jets with downward phase and upward energy propagation (Johnson and Zhang 2003, Bunge et al. 2008)

Role of Equatorial Deep Jets (EDJ)

- suggested EDJ impact on equatorial zonal surface velocity and SST
- enhanced climate predictability in the Atlantic sector

EDJ Simulations

von Schuckmann et al. (2008)

- Barotropic instability (right) dominant process generating eddy kinetic energy (bottom)
- Baroclinic instability contributes
- Boreal summer maximum

Tropical Instability Waves

Maintenance Mechanism

 A circular wave of large meridional scale (intraseasonal Yanai or short Rossby wave) interacts with a small meridional scale equatorial jet to produce a momentum flux that maintain the jet

Analogous mechanism by which storm systems in the atmosphere act to maintain the atmospheric jet stream

Maintenance of Equatorial Ocean Currents

▶ Dominant balance at the €

- ▶ describes linear wave pro maintenance and dissipati
 ▶ Regression of the converç क्ष्र
- Regression of the convergence intraseasonal zonal mome equatorial zonal velocity
- Positive regression slope fluxed into the slowly varyi

Resonant Equatorial Basin Modes

Greatbatch et al. (2012)

Reduced gravity model forced with oscillatory zonal wind stress produces enhanced velocity variability at resonance period:

$$T_0 = \frac{4L}{c_{out}}$$

Only weak forcing required to produce zonal velocity variability at resonance period.

Resonant Equatorial Basin Modes

1000m

1500m

Decomposition of moored zonal velocities into vertical mode-frequency space (Greatbatch et al. 2018)

- Energy is found at basin mode characteristic
- Regular EDJ oscillations at period of 4.5 years

Vertical Structure of Power Input

- By fitting a multimode reduced gravity model to observations, basin wide EDJ structures as well as power input into the EDJs and vertical energy flux can be reconstructed (Claus et al. 2016)
- Power input is dominantly balanced by dissipation

Mechanisms & Processes

