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cially over the Indian Ocean. We also find significant inter-basin connections in
both observed and predicted rainfall. Teleconnections between basins due to El
Nifio—Southern Oscillation (ENSO) appear to be reproduced in multi-model predic-
tions and are responsible for much of the prediction skill. They also explain the
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1 | INTRODUCTION

While significant progress has been made in recent years,
there is a limit of around 2 weeks to deterministic weather
forecast skill for daily rainfall, and most of the skill falls
away by the second week (e.g., Li and Robertson, 2015;
Stern and Davidson, 2015). In addition, numerous studies
point to limitations of general circulation models in the sim-
ulation of rainfall in the Tropics. The poor reproduction of
the Madden—Julian Oscillation (e.g., Ahn et al., 2017) and
the challenges of accurately parametrizing tropical convec-
tion (e.g., Arakawa, 2004) are commonly cited reasons.

Despite these well-known limitations on shorter time-
scales, the long-range prediction of seasonal rainfall in the
Tropics is highly skilful, and seasonal mean skill scores a
few months ahead far exceed the skill of weather forecasts in
the extratropics just days ahead (Stockdale et al., 1998;
Dequé, 2001; Kumar ez al., 2013; Molteni et al., 2015;
Scaife et al., 2017). This capability is of great interest for
early warning of the risk of tropical drought and flooding
(e.g., Dutra et al., 2014; Li et al., 2016). However, we also
note that tropical rainfall has an influence on the extratropics
via Rossby waves (e.g., Hoskins and Karoly, 1981; Sim-
mons et al., 1983; Li et al., 2014). Recent advances in winter
seasonal prediction of extratropical circulation (e.g., Riddle
et al., 2013; Kang et al., 2014; Scaife et al., 2014; Yang
et al., 2015; Athanasiadis et al., 2017) are strongly linked to
these teleconnections from the Tropics (Greatbatch et al.,
2012; Molteni et al., 2015; Kumar and Chen, 2017; Scaife
et al., 2017) as are some inter-annual (Dunstone et al., 2016)
and even decadal variations (Trenberth et al., 2014; Smith
et al., 2016) and so our study is focussed on the winter
season.

Previous single model studies (Kumar et al., 2013;
Molteni et al., 2015) have documented high tropical skill
and linear inverse modelling suggests that seasonal forecasts
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relative magnitude of inter-annual variability, the relative magnitude of predictable
rainfall signals and the ranking of prediction skill across different basins.

These seasonal tropical rainfall predictions exhibit a severe wet bias, often in
excess of 20% of mean rainfall. However, we find little direct relationship between
bias and prediction skill. Our results suggest that future prediction systems would
be best improved through better model representation of inter-basin rainfall connec-
tions as these are strongly related to prediction skill, particularly in the Indian and
West Pacific regions. Finally, we show that predictions of tropical rainfall alone
can generate highly skilful forecasts of the main modes of extratropical circulation
via linear relationships that might provide a useful tool to interpret real-time

ensemble, ENSO, NAO, PNA, seasona prediction, tropical rainfall

may already be near the predictability limit in the East
Pacific (Newman and Sardeshmukh, 2017). We therefore
investigate tropical rainfall predictability in multiple sea-
sonal prediction systems to document the variation of skill
across different models and also across different tropical
regions (section 3). We also compare the skill in predicting
observed rainfall variability with the level of predictability
inherent in the models (section 4) and show how well the
dominant influence of El Nifio—Southern Oscillation
(ENSO) and inter-basin connections are reproduced in cur-
rent prediction systems in section 5. Given that much climate
model development is focused on improving the mean state,
in section 6 we investigate whether there is a relationship
between the magnitude of mean state errors (i.e., forecast
drift) and seasonal forecast skill. Finally, in section 7 we
show that using tropical rainfall forecasts alone can provide
highly skilful predictions of extratropical inter-annual vari-
ability in the winter Pacific North American pattern and the
North Atlantic Oscillation.

2 | SEASONAL PREDICTION SYSTEMS

We analyse winter (December—January—February) mean pre-
dictions of tropical rainfall from 14 seasonal prediction sys-
tems over the period 1992/1993 to 2011/2012 where
available. These retrospective predictions are all initialized
on or close to November 1 and the November data are
excluded to prevent contamination from medium range pre-
dictability. Brief details and references for further details of
each system follow:

U.K. Met Office predictions are from the operational
global seasonal prediction system GloSea (Arribas et al.,
2011). Data used here are from GloSea5—the fifth genera-
tion of this forecast system which has relatively high resolu-
tion and uses coupled ocean, sea-ice and land surface model
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components (MacLachlan et al., 2015). Ensemble generation
is through a combination of lagged start dates and stochastic
physics perturbations to produce an ensemble of 24 member
forecasts for each winter, initialized around early November,
approximately 1 month ahead of winter as described in
MacLachlan et al. (2015). The atmospheric resolution of the
model is 0.83° longitude by 0.55° latitude with 85 quasi-
horizontal atmospheric levels and an upper boundary at
85 km. Ocean resolution is 0.25° globally with 75 quasi-
horizontal levels.

Canadian Climate Centre models CanCM3 and CanCM4
share the same coupled ocean, land and sea-ice components.
The land component is version 2.7 of the Canadian Land
Surface Scheme (CLASS). Sea-ice dynamics are governed
by cavitating fluid rheology, and thermodynamics by a sim-
ple energy balance model. The CanCM3 atmospheric com-
ponent is CanAM3 (Scinocca et al., 2008), whereas the
CanCM4 atmospheric component is CanAM4 (Von Salzen
et al., 2013). Upgraded physical parameterizations in
CanAM4 include fully prognostic cloud and aerosol
schemes, improved radiation schemes and a parameterization
of shallow convection. Ten ensemble members are generated
for both CanCM3 and CanCM4 using initial conditions from
10 separate simulations constrained by observations. Hori-
zontal resolution in both cases is T63 or about 2.8°.
CanAM3 has 31 vertical levels and CanAM4 35 levels, both
extending to 1 hPa. Horizontal resolution of the ocean com-
ponent is approximately 100 km, with 40 vertical levels.
Further details are provided in Merryfield et al. (2013).

European Centre for Medium Range Weather Forecast-
ing (ECMWF) seasonal forecasts are from ECMWF system
4 (Molteni et al., 2011) with atmospheric model IFS cycle
36r4 coupled to the HTESSEL land surface model and the
Nucleus for European Modelling of the Ocean (NEMO)
ocean model (Madec, 2008) via the OASIS3 coupler
(Valcke, 2013). An ensemble of 15 forecasts was made from
November 1 for each winter using stochastic physics pertur-
bations. Ozone is a prognostic variable and is radiatively
active. Time-variation of greenhouse gases and solar cycle
are specified, although solar variability is not spectrally
resolved. Volcanic aerosols are included based on the esti-
mated distribution in the month prior to the start of the fore-
cast, and then follow damped persistence. There is no
dynamical sea-ice in this system. For the first 10 days, the
forecast persists the initial sea-ice analysis; then there is a
transition towards specified ice conditions derived from the
previous 5 years. This sea-ice configuration captures the
main trend in sea-ice and gives a representation of the uncer-
tainty in sea-ice conditions. The atmospheric model has a
spectral truncation T255 (~80 km resolution) and 91 levels
in the vertical. The ocean model has 42 vertical levels and a
horizontal resolution of about 1° in the extratropics with an
equatorial refinement to 1/3° latitude.

Météo-France predictions are from version 5 of the
Meteo-France seasonal forecast system. It is based on the
Centre National de Recherches Météorologiques Coupled
Model version 5 (CNRM-CMS5; Voldoire et al., 2013). The
four components of the model are Arpege 6.0 (atmosphere),
Surfex 7.3 (continental surfaces), Nemo 3.2 (ocean) and
Gelato 5.1 (sea ice). Each forecast ensemble is initialized on
November 1 and contains 15 ensemble members generated
by stochastic perturbations (Batté and Déqué, 2016). This
model also uses coupled, prognostic ozone, in this case ini-
tialized from climatology. The atmosphere resolution is
TL255 (0.7°) with 91 vertical levels. The ocean resolution is
1° and has 42 vertical levels.

The Centro FEuro-Mediterraneo sui Cambiamenti
Climatici (CMCC) data used here are from the CMCC Sea-
sonal Prediction System version 1.5 (hereafter referred to as
CMCC, Materia et al., 2014), while a general description of
the model components is given in Alessandri et al. (2010).
The CMCC-SPS-v1.5 uses the ECHAMS atmospheric
model coupled to OPA8.2 ocean model and the SILVA land
surface model and sea-ice initialized from climatology. The
ensemble consists of nine members covering the period
1983-2011 and initialized on November 1 each year using
lagged initial conditions. The horizontal resolution in the
atmosphere is T63 with 19 vertical levels up to 10 hPa. The
ocean resolution is around 2° with 31 vertical levels.

Beijing Climate Centre (BCC) seasonal prediction data
are from the BCC/China Meteorological Administration
(CMA) operational system 2, which is based on the BCC
Climate System Model version 1.1 m (BCC_CSM1.1m; Wu
et al., 2013). The BCC Atmospheric GCM is coupled to the
BCC Atmosphere and Vegetation Interaction Model version
1.0, the Geophysical Fluid Dynamics Laboratory (GFDL)
Modular Ocean Model version 4 (Griffies et al., 2005) and
the Sea Ice Simulator (Winton, 2000). Forecasts are initial-
ized for each calendar month from the four-time daily
NCEP/NCAR RI1 data and the oceanic initial values from
ocean temperature of the NCEP Global Oceanic Data Assim-
ilation System (GODAS), using a nudging scheme with
timescale of 2 days while sea ice is interactive but not initial-
ized (Liu et al., 2015). The BCC ensemble includes 24 fore-
cast members initialized near the beginning of November:
9 are perturbed by an empirical singular vector (Cheng
et al., 2010) and 15 are generated from the lagged average
of the atmospheric states on the first 5 days of each month
and the ocean states on the first 3 days which are combined
to generate 15 further members. The ocean model resolution
is 1° with 40 levels and the atmospheric horizontal resolu-
tion is T106 with 26 vertical hybrid sigma/pressure levels
(Wu et al., 2010).

National Centers for Environmental Prediction (NCEP)
data are from the Climate Forecast System version (CFSv2;
Saha et al., 2014). CFSv2 is a coupled ocean—atmosphere—
land dynamical seasonal prediction system. The oceanic
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component is the Geophysical Fluid Dynamics Laboratory
Modular Ocean Model version 4 including the sea-ice simu-
lator (MOM4; Griffies et al., 2005). CFSv2 forecasts are ini-
tialized from the Climate Forecast System Reanalysis
(CFSR; Saha et al., 2010). For CFSv2 forecasts, there is one
forecast at 00Z, 06Z, 127 and 18Z every fifth day of the year
and the 12 forecast members from October 18, 23, 28 are
used here. The atmospheric component is at horizontal reso-
lution of T126 (~100 km) with 64 vertical levels and the
ocean is at 0.25° with 10° of the equator, tapering to 0.5°
poleward of 30° latitude.

The Kiel Climate Model (KCM) couples the atmospheric
model ECHAMS (Roeckner et al., 2003) with interactive
land surface to the NEMO-based ocean model OPA9
(Madec et al., 1998; Madec, 2008) with coupled LIM?2 sea-
ice model, using the OASIS3 coupler (Valcke, 2013). For
more details see Park er al. (2009). An ensemble of nine
members was run from November 1 for each winter using
the nine different combinations of ocean and atmosphere ini-
tial states from three assimilation runs, where the model was
run in partially coupled mode to minimize equatorial initiali-
zation shock (Ding et al., 2013; Thoma et al., 2015). The
ocean and sea-ice components in the assimilation runs were
forced with observed wind stress anomalies from ERA-
Interim, added to the model’s native wind stress climatology.
Radiative forcing was constant in time. Here we used the
KCM in a coarse resolution: ECHAMS at T31 with 19 verti-
cal levels, OPA9 with the ORAC2 horizontal grid (roughly
1.3° horizontal resolution, refined to 0.5° at the equator) and
31 vertical levels.

The hindcasts from GFDL were produced from the
Forecast-oriented Low Ocean Resolution model (FLOR;
Vecchi et al., 2014). The atmosphere and land components
of FLOR are taken from the GFDL Coupled Model version
2.5 (CM2.5; Delworth et al., 2012), whereas the ocean and
sea-ice components are based on the GFDL Coupled Model
version 2.1 (CM2.1; Delworth et al., 2006; Wittenberg
et al., 2006). FLOR is an operational seasonal forecast
model in the North American Multi-Model Ensemble for
seasonal prediction (Kirtman et al., 2014). Twelve-member
ensemble forecasts are initialized in November from 1991 to
2012. The initial conditions of the ocean and ice components
are from the GFDL ensemble coupled data assimilation
(ECDA) system (Zhang et al., 2007; Chang et al., 2013).
Initial conditions for the atmosphere and land are from a set
of AMIP simulations with time-varying observed SST
(Reynolds et al., 2002) and radiative forcing. FLOR has a
spatial resolution of ~50 km in the atmosphere and land,
~100 km in the ocean and 32 (50) vertical levels in the
atmosphere (ocean). Further details of FLOR and its initiali-
zation can be found in Vecchi et al. (2014).

The Australian Bureau of Meteorology POAMA sea-
sonal forecast system is based on a coupled ocean—
atmosphere model and data assimilation system (Hudson
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et al., 2013). The land surface component is a simple bucket
model for soil moisture (Manabe and Holloway, 1975) and
has three soil levels for temperature (Hudson et al., 2011).
The ocean model is the Australian Community Ocean Model
version 2 (ACOM2; Schiller et al., 1997; 2002) and is based
on the Geophysical Fluid Dynamics Laboratory (GFDL)
Modular Ocean Model (MOM version 2). The atmosphere
and ocean models are coupled using the Ocean Atmosphere
Sea Ice Soil (OASIS) coupling software (Valcke, 2013).
Forecasts are initialized from assimilated atmospheric and
oceanic states using ocean initial conditions from the
POAMA Ensemble Ocean Data Assimilation System (Yin
et al., 2011a). Climatological sea-ice is imposed in the simu-
lations and the atmosphere and land initial conditions are
taken from the atmosphere—land initialization scheme
(Hudson et al., 2011). A 10 member ensemble was initial-
ized on November 1 using a coupled-model breeding scheme
(Yin et al., 2011b; Hudson et al., 2013). The atmospheric
model has T47 horizontal resolution with 17 vertical levels
and the ocean grid resolution is 2° in longitude and 0.5° in
latitude at the Equator, increasing to 1.5° near the poles.

The Max-Planck Institute Earth System Model version
1.0 in low resolution (MPI-ESM-LR; Giorgetta et al., 2013)
was used to perform an ensemble of hindcasts (Baehr et al.,
2015). This configuration consists of the atmospheric com-
ponent ECHAMG6 (Stevens et al., 2013). The ocean compo-
nent consists of the Max-Planck Institute Ocean Model
(MPIOM; Jungclaus et al., 2013). The oceanic and atmo-
spheric components are coupled through the Ocean—Atmo-
sphere-Sea-Ice coupler (Valcke, 2013). The initial
conditions are obtained by Newtonian relaxation (“nudg-
ing”) of the atmosphere, ocean and sea-ice to ERA-Interim,
ORAS4 and NSIDC, respectively (see Baehr et al., 2015 for
details). Bred vectors in the oceanic component of the model
are used to generate initial perturbations for the ensemble
(following Baehr and Piontek, 2013). An ensemble of
10 forecasts was made from November 1. The atmospheric
component is spectrally resolved with a truncation at wave-
number 63 (~200 km), and with physics represented on a
regular Gaussian grid in the horizontal and 47 vertical levels
and the ocean model uses a bi-polar grid at nominal 1.5°
horizontal resolution.

Japan Meteorological Agency (JMA) predictions are
from the operational global seasonal prediction system
JMA/MRI-CPS2 (Takaya et al., 2017). The sea-ice compo-
nent is incorporated in the coupled model. Data analysed
here are from a lagged ensemble of 10 member forecasts for
each winter that started from initial dates in the second half
of October as described in Takaya et al. (2017). The model
was initialized using the atmosphere and land analysis from
the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al.,
2015), and ocean and sea-ice analysis from the Multivariate
Ocean Variational Estimation/Meteorological Research Insti-
tute Community Ocean Model-Global version 2 (MOVE/
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MRI.COM-G2; Toyoda et al., 2013). The resolution of the
atmospheric component is approximately 110 km with
60 vertical levels with a model top at 0.01 hPa. The oceanic
component has 52 vertical levels a horizontal resolution of
1° in longitude and 0.5° in latitude with an equatorial refine-
ment to 0.3°.

The Model for Interdisciplinary Research on Climate
(MIROC) seasonal predictions (Imada et al., 2015) are pro-
vided by the Atmosphere and Ocean Research Institute
(AORI), National Institute for Environmental Studies
(NIES), and the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC). Data used here are from MIROC
version 5 (Watanabe er al., 2010). A lagged ensemble of
eight-member forecasts for each winter was initialized
around early November. In the initialization process, the
observed temperature and salinity anomalies in the ocean
were incorporated into the model fields under the 20th cen-
tury and CMIP5 climate forcing of solar radiation, volcanic
forcing, greenhouse gases, ozone, aerosol and land-use
change (Tatebe er al., 2012), no sea-ice or land surface
observations are used in the initialization. The resolution of
the atmospheric component is triangular spectral truncation
at total horizontal wave number 85 (T85) with 40 vertical
layers. The oceanic component has a horizontal resolution of
1.4° in longitude and 0.9° in latitude (0.5° near the equator),
with 44 vertical levels.

Precipitation data are taken from the Global Precipita-
tion Climatology Project (GPCP) version 2.3 data set
(Adler er al., 2003). Sea level pressure observations are
taken from the Hadley Centre Sea Level Pressure recon-
struction version 2 (HadSLP2) data set (Allan and Ansell,
2006) and observational analyses of geopotential height
are from ERA-Interim (Dee et al., 2011). Sea surface tem-
perature observations are from the Hadley Centre Sea Ice
and Sea Surface Temperature version 2 (HadISST2) data
set (Titchner and Rayner, 2014).

3 | PREDICTION SKILL

The largest mean rainfall and the largest inter-annual vari-
ability in seasonal rainfall totals occurs in the Tropics
(Figure 1). The intense year-to-year variability of boreal
winter rainfall is also well connected to extratropical predic-
tions via teleconnections that are thought to be mediated by
Rossby waves (Hoskins and Karoly, 1981). Following
Scaife et al. (2017), we examine rainfall predictions for four
tropical regions that show high variability and are connected
to the extratropical winter circulation in models and observa-
tions: the tropical Indian Ocean (TIO: 45°-100°E, 5°S—
10°N), tropical West Pacific (TWP: 110°-140°E, 5°S—
25°N), tropical East Pacific (TEP: 200 -90 W, 5°S—10°N)
and tropical Atlantic (TA: 60°-0 W, 5°S—5°N) shown by the
black boxes in Figure 1. Prediction skill for each of the
models and each of the four ocean basin regions is measured

by ensemble mean correlations with GPCP data and illus-
trated in Figure 2. Raw ensemble mean rainfall predictions
are plotted in each case to illustrate any bias and the ensem-
ble mean variability from year to year. It is immediately
clear that most models and regions are biased wet, as is typi-
cally found in climate models (Mueller and Seneviratne,
2014). For all of these regions, scores calculated using dif-
ferent sized ensembles converge quickly with ensemble sizes
of 10-15 members being enough for correlation scores to
converge (not shown). Consistent with this, the ensemble
mean variance is also comparable to that in the observations,
suggesting that a large proportion of observed rainfall vari-
ability is predictable.

Figure 2 shows that tropical West Pacific rainfall is well
predicted by current seasonal forecast systems, with correla-
tions ranging from 0.68 to 0.90 with seasonal mean GPCP
rainfall observational data. However, a clear wet bias of
around 30% is again present in predicted rainfall. Interest-
ingly, although it does not have higher skill in this region,
the BCC model shows a very small bias compared to other
models.

Skilful seasonal predictions of tropical Indian Ocean
rainfall are produced by most prediction systems (Figure 2),
although results are varied and correlations range from small
positive values to almost 0.7. Models are again generally too
wet with around 30% too much rainfall in most cases. Inter-
estingly the BCC model again shows only a very small mean
bias, but this does not relate to its prediction skill which is in
the middle of the range from other systems. Many models
correctly predict a dip in the 1997/1998 winter and peaks in
the 1998/1999 and 2006/2007 winters.

Predictions of tropical Atlantic rainfall show encourag-
ing skill (Figure 2) but the levels vary between systems, with
scores ranging from 0.49 to 0.83. All are highly significant,
but the skill is lower here than in the tropical West Pacific in
almost all prediction systems. Mean biases are more mixed
in the Atlantic than the Indian or Pacific basins and over this
region biases are generally smaller, with a range of wet and
dry biases across different prediction systems.

The prediction systems show near perfect skill scores for
the tropical East Pacific region (Figure 2) due mainly to
ENSO as we show below. All systems correctly predict the
peaks during El Nifio and troughs during La Nifia but here
again a wet bias is evident in almost all systems, although
biases are small in the CMCC and KCM models. The BCC
and MIROC systems also show suppressed inter-annual
anomalies compared to other models. Nevertheless, for this
region the very high correlation scores suggest that almost
all inter-annual variability
timescales.

We should note that these results are also lower bounds
on the predictability of tropical rainfall due to the finite
ensemble sizes (see model descriptions), inevitable errors in
the individual forecast systems and errors in the observations

is predictable on seasonal
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Tropical rainfall and its year-to-year variability. Seasonal mean climatological rainfall (top left) and inter-annual variability (top right) of global

rainfall from GPCP observations. Tropical rainfall is analysed in the boxed regions for the Indian (45°-100°E, 5°S—10°N), West Pacific (110°-140°E, 5°S—
25°N), East Pacific (200 90 W, 5°S—10°N) and Atlantic (60°-0 W, 5°S-5°N) regions (after Scaife ez al., 2017). Mean and standard deviation of ensemble
member rainfall over the same years (1993-2012) from a single example prediction system (bottom panels, GloSea5). Note the logarithmic contour interval.

Units are mm/day

used for initialization and verification. It is common practice
to increase ensemble size and remove some of these errors
by cancellation by taking multi-model mean forecasts
(dashed lines in Figure 2). In our case this results in an
ensemble size of over 100 members and this multi-model
average shows the best overall scores (Figure 2, inset scores
in black). However, the multi-model mean still shows simi-
lar skill levels to the best single model in each region. This
similar skill, despite the much larger multi-model ensemble
size, is consistent with rapid convergence of skill for tropical
rainfall (Kumar and Chen, 2015). As in the single model
cases, there is a clear ranking of skill across the different
regions with TEP > TWP > TA > TIO. We offer an expla-
nation for this ranking below when we consider teleconnec-
tions to the El Nifio—Southern Oscillation.

4 | MODELLED PREDICTABILITY

It is important to distinguish the predictability of the real cli-
mate system from that in prediction systems, as these may
not always be the same (Kumar et al., 2014a). Neither is
modelled predictability an upper estimate of the real-world
predictability as is often assumed. A few studies have tried
to estimate seasonal predictability from analysis of observa-
tions alone (e.g., Keeley et al., 2009; Feng et al., 2012) but
we can estimate the predictability of the real world directly
by taking correlations between ensemble mean forecasts and
observations. Similarly, we can estimate the predictability of

the model by substituting single ensemble members for the
observations and correlating with the mean of the remaining
members. Of course, if our prediction systems (and the cli-
mate models they contain) were perfect then these two mea-
sures would be statistically identical. This is the crucial
assumption in so called “perfect model” studies where mod-
elled predictability is used to estimate real-world predictabil-
ity. However, this is not always the case, and examples have
been found where the predictability of the model is either
higher or lower than that of the real world (e.g., Eade et al.,
2014; Scaife et al., 2014; Seviour et al., 2014; Weisheimer
and Palmer, 2014; Kumar et al., 2014a; Dunstone et al.,
2016; Kumar and Chen, 2017; Saito et al., 2017).

Figure 3 compares the predictability of the models with
their skill in predicting the observations. One value is plotted
for each model and each region. Perfect models would lie
close to the diagonal line where the model skill in predicting
one of its own ensemble members equals its skill of predict-
ing the real world. For the TEP region we can see this is
almost the case as predictions are near perfect on this time-
scale, although even here, prediction systems are slightly
better at predicting themselves than the observations. In the
TWP, modelled predictability is again close to prediction
skill, with similar high (typically ~0.8) correlations when the
ensemble mean is compared with single ensemble members
or observations alike. For the tropical Atlantic rainfall almost
all models show a greater correlation with their own ensem-
ble members than with the observations, suggesting they are
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Tropical West Pacific rainfall
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FIGURE 2  Prediction skill of winter rainfall for the tropical West Pacific, Indian, Atlantic and East Pacific Ocean regions. Absolute winter mean rainfall
values are plotted (mm/day) from the ensemble mean of each forecast system: BC = BCC, KC = KCM, GF = GFDL, PM = POAMA, MP = MPI,

IM = JMA, MI = MIROC, G5 = UKMO, C3 = CANCM3, C4 = CANCM4, E4 = ECMWF, CM = CMCC, MF = METEOFR, NC = NCEP. GPCP
observational data (solid black) and multi-model mean (dashed black). Correlation scores are inset

overconfident, or equivalently, that they are better at predict-
ing themselves than the real-world rainfall variability.
Finally, the Indian Ocean rainfall shows the largest errors:
almost all models are overconfident and correlations of the
ensemble mean with single model ensemble members are
around twice as large as the correlations with observations.
As noted by other studies, this overconfidence can pre-
sent serious problems with the use of forecasts (Weisheimer
and Palmer, 2014). Depending on its cause, overconfidence
may also indicate a potential for high skill if systematic
errors can be corrected. For example, a systematic error in
the spatial structure of a predictable teleconnection could
lead to overconfident forecasts. If this teleconnection were
improved in future climate models and hence future seasonal
forecast systems, then skill could in principle rise. However,
we also note that if the overconfidence of rainfall forecasts
for the Indian Ocean is due to the absence of unpredictable
“noise” in models, from weak model representation of the

Madden—Julian Oscillation for example, then there may
actually be limited potential for improvement.

S | INTER-BASIN CONNECTIONS AND THE
EFFECTS OF ENSO

Atmospheric variability over the tropical oceans is correlated
across different ocean basins (e.g., Camberlin et al., 2004;
Kumar et al., 2014b; Molteni et al., 2015; Scaife et al.,
2017). These links arise primarily due to changes in atmo-
spheric circulation that can bridge land regions and create
remote teleconnections, often due to ENSO (e.g., Giannini
et al., 2001; Dong et al., 2006; Toniazzo and Scaife, 2006;
Smith et al., 2010). If we are to extract the maximum predic-
tion skill from globally important sources of predictability
such as ENSO, it is therefore important to have good tele-
connections between rainfall over different tropical ocean

basins.
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FIGURE 3 Model predictability versus real-world prediction skill. Skill in

predicting observations is plotted against modelled predictability for each
region and each prediction system. Modelled predictability is calculated as
the average correlation between single forecast members and the ensemble
mean of the remaining members

The skill of seasonal predictions of tropical rainfall is
found to be generally high in our analysis (Figure 2). How-
ever, inter-basin connections are more uncertain because,
unlike deterministic prediction skill which involves the
ensemble mean, model inter-basin relationships can only be
meaningfully compared to observations using the correlation
across basins in individual ensemble members, which will
therefore contain significant unpredictable internal variabil-
ity. Some of these statistics can therefore vary substantially
across the GPCP observational record due to sampling vari-
ability. To try and address this sampling variability we there-
fore examine inter-basin connections from all the forecast
systems by calculating the correlation between rainfall in
pairs of tropical regions using single ensemble members
(c.f., Johnson et al., 2017). Table 1 shows the strength of
these relationships in observations and single model ensem-
ble members. In observations, the strongest relationship is
found in the anti-correlation between rainfall in the tropical
East and West Pacific; as would be expected given the east—

TABLE 1
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west seesaw in Pacific rainfall due to ENSO. Strong anti-
correlation is also found between the tropical East Pacific
and the neighbouring tropical Atlantic. Consistent with these
results, a positive correlation occurs between rainfall in the
West Pacific and that in the tropical Atlantic. Finally, East
Pacific/West Pacific rainfall is positively/negatively corre-
lated with that in the Indian Ocean in this season and there is
only a weak relationship between Atlantic and Indian Ocean
rainfall variations. Table 1 also shows the corresponding
range of values from ensemble members and the number of
individual models whose member correlations span the value
found in observations. It is immediately clear from the range
of correlations found in ensemble members that the observed
inter-basin relationships are captured by the multi-model
ensemble as a whole. A very broad range of correlations is
generated and so it is hard to argue that inter-basin connec-
tions are misrepresented in the multi-model ensemble. How-
ever, it is possible to show that the correlations found in
members from individual models (Table 1, third row) do not
span the value found in observations. It is interesting to note
that despite the very high skill in predicting tropical East
Pacific rainfall, its inter-basin connections are least well
represented and are often weaker than observed, particularly
between the East and West Pacific, but also elsewhere, and
so this is an important area where seasonal prediction sys-
tems might be improved in future.

Many studies note that seasonal predictions are more
skilful during periods when ENSO is active (e.g., Arribas
etal., 2011; Kim et al., 2012; Lu et al., 2017) so an obvious
question is whether the ENSO influence on the different
basins is properly represented in current forecast systems.
The top left panel of Figure 4 shows the strength of pre-
dicted year-to-year variations in tropical rainfall in each of
our four regions, calculated as the standard deviation of the
multi-model ensemble mean. In order of magnitude, the larg-
est predictable signals are found in the East Pacific, West
Pacific, Atlantic and Indian Ocean, which shows the smallest
predictable signal. Interestingly, the same ranking is found
in the magnitude of observed inter-annual variability
(Figure 4, top right) and also in the skill of our multi-model
predictions (Figure 2). Figure 4, bottom panels show the sig-
nal from a typical ENSO event, obtained by regressing the
Nifio3.4 SST index against observed and predicted rainfall
and scaling to a 2 K ENSO event. The strength of the ENSO
signals is lower than observed but within the observational
uncertainty in all basins. Note that the strength of ENSO
effects follows exactly the same ranking as the skill and

Observed and modelled inter-basin rainfall correlations. Observed inter-basin correlations (top row), range of inter-basin correlations from all

models and all ensemble members (middle row) and number of models whose individual member correlations span the observed correlation (bottom row)

TEP-TWP TEP-TA
Observed —-0.89 —0.62
Modelled —-0.96, —0.24 —-0.85,0.16
No. models spanning obs. 6/14 10/14

TEP-TIO TWP-TA TWP-TIO TA-TIO
+0.41 +0.61 -0.30 -0.07
-0.67,0.75 -0.09, 0.83 —-0.65, 0.64 -0.69, 0.75
9/14 12/14 11/14 11/14
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(top right). ENSO anomalies in rainfall in the four regions (bottom panels) are calculated by linear regression of multi model predictions against Nifio3.4 and
correspond to a 2 K warm anomaly. 95% uncertainty ranges are shown for both model and observations. Units are mm/day

inter-annual variability of different basins. The observed var-
iability, the size of predictable signals and the relative skill
of seasonal predictions for different basins can therefore be
explained by the relative strength of the ENSO influence on
each basin. Indeed, when we removed the ENSO influence
from forecasts for each basin using linear regression on
Nifio3.4, only small and statistically insignificant (but posi-
tive) levels of skill remained (not shown).

6 | WHAT GOVERNS PREDICTION SKILL?

So far we have examined anomalies from the climatological
mean of forecasts for many years, after linearly correcting
away the mean bias in each of the models. However, initial-
ized predictions from different systems drift to a greater or
lesser degree (e.g., Hermanson et al., 2017) and if the result-
ing bias from the real world is large enough, then it could be
that this affects the skill of predictions (e.g., Magnusson

et al., 2013; Smith et al., 2013; Vecchi et al., 2014; Kim
et al., 2017). We therefore examined the prediction skill for
different regions as a function of model bias.

The skill of rainfall predictions from each forecast sys-
tem for the same four regions was compared with the corre-
sponding mean rainfall bias in each system. For the tropical
West Pacific, tropical East Pacific and tropical Indian Ocean,
correlations between skill and mean bias across the systems
were 0.0, 0.1 and —O0.1, respectively, indicating no simple
systematic relationship between mean rainfall bias and the
skill of predictions. This is a simple test for a link between
mean bias and skill and it could be that mean biases in other
variables control both the mean rainfall and prediction skill
(c.f., Magnusson et al., 2013; Richter, 2015; Mulholland
et al., 2017). Nevertheless, it suggests that if we were to
focus exclusively on improving the mean rainfall biases in
these regions in future models, the skill of our seasonal cli-
mate predictions may not be improved. In the tropical Atlan-
tic there is a weak relationship between rainfall bias and
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prediction skill (r = —0.3). Although it is not statistically
significant, this inverse relationship between bias and predic-
tion skill in different systems is what would be expected if
model bias were having a detrimental effect on forecast skill.
Alleviating model bias in this region might therefore yield
higher prediction skill. This possibility is supported by Ding
et al. (2015). Using the KCM with a correction to surface
heat fluxes to reduce SST biases, they improved the fidelity
of their data assimilation runs in boreal summer (JJA) and
showed a greater role for ocean dynamics in the variability
of the tropical Atlantic (Dippe et al., 2017).

If a small mean bias is not sufficient for high prediction
skill, then what is? Given the strong influence of ENSO on
observed inter-annual variability, forecast inter-annual vari-
ability and the ranking of skill across different basins identi-
fied above, we now test whether prediction skill is related to
the strength of teleconnections to the East Pacific (ENSO)
region. Figure 5 shows the relationship between prediction
skill and the strength of inter-basin teleconnections to the
East Pacific rainfall for each of the other three basins. Most
models underestimate the strength of inter-basin teleconnec-
tions and clear relationships are now found with prediction
skill, which increases as the strength of the teleconnections
to the East Pacific increases. The skill of rainfall predictions
in the tropical West Pacific and the Indian Ocean are
strongly related to the strength of their relationship with the
East Pacific.

At this point, we need to be careful about what we con-
clude from the relationships in Figure 5. For example, if the
TIO variability originates from two components: one being
the ENSO signal, and the other being poorly predicted but
nearly uncorrelated with ENSO, then the correlation skill of
predicted TIO rainfall would necessarily be an increasing
function of the variance explained by ENSO, as seen in
Figure 5. However, we note that the observed relationship
between the TIO or TWP and ENSO is larger than the
model correlation in almost all cases, even though model
data are from the ensemble mean and observed data are sin-
gle realizations. This is surprising given that we might

TWP teleconnection vs skill

TIO teleconnection vs skill
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expect larger correlations from the ensemble mean data and
is consistent with the model under-representing the observed
inter-basin correlation, at least over this period. In summary,
while it is also important to enhance the predictive skill for
non-ENSO-related variability where possible, our analysis
suggests that errors in inter-basin connections may limit cur-
rent prediction skill.

7 | LINKS TO EXTRATROPICAL CLIMATE

Seasonal predictions for the extratropics generally show
much less skill than for the Tropics (e.g., Kim et al., 2012)
but robust skill has previously been established for the
Pacific North American (PNA) pattern via skilful predictions
of ENSO (e.g., Derome et al., 2005; Athanasiadis et al.,
2014) and more recently for the North Atlantic Oscillation
(NAO) via skilful predictions of the Tropics
(e.g., Greatbatch et al., 2012; Scaife et al., 2014; 2017).
International projects are now focusing on these mechanisms
as a route to improved climate predictions for the whole
globe (e.g., Merryfield et al., 2017).

We determine the potential for skilful prediction of the
main modes of extratropical inter-annual variability using
our multi-model tropical rainfall predictions alone. The PNA
is defined using the index of Wallace and Gutzler (1981)
applied to upper tropospheric (200 hPa) geopotential height
and the NAO is defined according to the sea level pressure
difference between Iceland and the Azores (see Figures 6
and 7, respectively, and figure captions for detailed defini-
tions). Multiple linear regression was then carried out
between rainfall in our four tropical regions and these
observed PNA and NAO indices (c.f., Scaife et al., 2017).

Figures 6 and 7, middle panels show the strong relation-
ship between observed winter rainfall variations and associ-
ated variability in the PNA (Figure 6) and the NAO
(Figure 7). Using observed winter mean rainfall suggests
that perfect advance knowledge of rainfall in our four
regions would allow highly skilful predictions of both the

TA teleconnection vs skill
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(45 N, 165 W) + Z(55 N, 115 W) — Z(30 N, 85 W))/4 calculated from the 200 hPa geopotential height (m). Predictions are made using linear regression of

the four rainfall indices used in this study and observed rainfall for November (left), observed rainfall for December—February (middle) and multi-model
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Tropical rainfall predictions allow skilful prediction of the North Atlantic Oscillation. Predictions of the NAO index: mean sea level pressure

difference (hPa) between Iceland (23 W, 65 N) and the Azores (26 W, 38 N). Predictions are made from linear regression of the four rainfall indices used in

this study and observed rainfall for November (left), observed rainfall for December—February (middle) and multi-model predictions (right)

PNA (r = 0.87) and the NAO (r = 0.70). Of course in prac-
tice, the observed winter rainfall is not known in advance
but some skill can even be derived from knowledge of
November rainfall, with significant, though lower, correla-
tions of 0.39 and 0.49 for the PNA and NAO, respectively.
Multi-model predictions of tropical rainfall improve on these
empirical forecast scores with correlations of 0.82 (PNA)
and 0.55 (NAO), and reach even higher values in some sin-
gle models, confirming that skilful predictions of tropical
rainfall are likely to be crucial for the prediction of major
modes of extratropical winter variability.

8 | CONCLUSIONS

We find encouraging levels of tropical winter rainfall predic-
tion skill on seasonal timescales in different forecast sys-
tems. High levels of skill are found in tropical rainfall
predictions in all basins and a very similar pattern emerges
across different forecast systems: the East Pacific is the most
predictable region, followed by the West Pacific, then the
Atlantic and finally the Indian region. Our multi-model-

mean predictions suggest that the proportion of observed
rainfall variance that is predictable in each basin is at least:

TEP(94%)>TWP(85%)>TA (67%)>TIO(42%).

Furthermore, we find an identical ranking in the
observed levels of inter-annual variability, in the magnitude
of predicted ensemble mean signals and in the influence of
ENSO on each of these regions. This striking similarity, and
the fact that only small levels of skill remain after ENSO
variability is linearly removed from the forecasts, suggests
that the skill of tropical rainfall in current seasonal forecast
systems is largely driven by ENSO. However, the imperfect
correlations between rainfall in the East Pacific and other
regions, the imperfect correlation between the inferred NAO
and PNA forecasts shown here, and the (small) but positive
residual skill in each basin after ENSO is linearly removed
all suggest that a single ENSO index is not sufficient to
explain all tropical rainfall variability.

Unlike the extratropics, the signal to noise ratio in tropi-
cal rainfall forecasts is very large and relatively few ensem-
ble members (<15) are needed to realize almost all of the
available prediction skill (Kumar and Chen, 2015). Modelled
predictability is generally higher than the skill in predicting
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observed variations, suggesting overconfidence, especially
over the Indian Ocean, which showed the lowest skill
despite remote teleconnections that have been identified for
Indian rainfall (e.g., Kucharski et al., 2009; Molteni et al.,
2015). This contrasts sharply with the extratropics in the
Atlantic for example, where modelled predictability can be
lower than the skill of predicting the observations, and
models can be underconfident (Eade et al., 2014; Scaife
et al., 2014; Stockdale et al., 2015; Dunstone et al., 2016;
Kumar and Chen, 2017; Saito et al., 2017).

Potential for improvement appears to exist in the Indian
Ocean basin, where modelled predictability far exceeds cur-
rent prediction skill. However, we emphasize that high levels
of model predictability does not always indicate potential for
improvement and an important caveat here is the lack of
realistic MJO activity in models which could itself be unpre-
dictable on seasonal timescales and thereby prevent future
improvement in forecast skill. There is also potential for
improvement in the Atlantic where model bias may be
degrading skill. This is perhaps not surprising given large
model biases in the tropical Atlantic, and nearby SST biases
that are often large enough to reverse the zonal SST gradient
(Richter, 2015). However, no significant relationship was
detectable between local biases and prediction skill in the
regions we examined. Instead, we point to the very clear
relationship between the strength of inter-basin rainfall con-
nections and the skill of model predictions. These connec-
tions are often misrepresented in models and focused model
development to improve inter-basin rainfall connections
would likely yield improved climate predictions.

Overall, our results demonstrate high levels of seasonal
predictability in tropical rainfall in all basins and across cur-
rent seasonal prediction systems. Finally, although there
may be some multidecadal variability in skill levels
(e.g., Weisheimer et al 2015; Kumar and Chen, 2017), links
between tropical rainfall and major modes of extratropical
variability such as the PNA and NAO indicate that these
highly skilful seasonal predictions of tropical rainfall can
drive highly skilful predictions for the extratropics if
models can accurately represent the mechanisms of tropical—
extratropical interaction.
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