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THE RECENT STATUS OF THE

VOLUME PRODUCT PROBLEM

E. Makai, Jr.*

Abstract. In this small survey we consider the volume product, and sketch some of

the best upper and lower estimates known up to now, based on our paper [BMMR].

The author thanks the organizers of the conference in Jurata, March 2010, for their
kind invitation, and the excellent atmosphere there. This paper is based on the talk

of the author on that conference.

I. Introduction

For a finite dimensional Banach space X (we always consider only real Banach
spaces), the volume product of X is the product of the volumes of the unit balls
of the space X and its dual X ′. (Of course, for this to make sense, we have to
identify X and X ′, which can be done via the usual scalar product. However, the
volume product is independent of the scalar product used.) This concept has a great
importance in the local theory of Banach spaces, i.e., the asymptotical (functional
analytical) investigation of Banach spaces of high finite dimension, cf. e.g., Pisier’s
book [Pi]. Moreover, it lies on the cross-road of several disciplines of mathematics,
even seemingly unrelated, which points out its great importance and usefulness.

In more geometric terms, in R
n we have an 0-symmetric convex body K, and

we consider its polar body K∗, and the product of their volumes V (K)V (K∗).
Here a set K ⊂ R

n is a convex body, if it is a compact convex set with non-empty
interior. We denote by V (K) its volume.

Let us suppose that 0 ∈ intK. Then the polar body K∗ of K is defined as
K∗ := {x ∈ R

n | ∀k ∈ K 〈x, k〉 ≤ 1}. This is also a convex body, with 0 ∈ intK∗.
We have (K∗)∗ = K. If K is 0-symmetric, hence is the unit ball of an n-dimensional
Banach space X , then K∗ is the unit ball of the dual space X ′. (Of course, for this
to make sense, we have to identify X and X ′, via the usual scalar product.)

We call in the above situation (i.e., when 0 ∈ intK) the quantity V (K)V (K∗) the
volume product of K. This is invariant under non-singular linear transformations.

The investigation of this quantity was originated by Blaschke [Bl], who used this
concept for the affine geometry of convex bodies (i.e., investigation of properties
of convex bodies that are invariant under — possibly volume preserving — affine
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2 E. MAKAI, JR.

transformations, i.e., maps of the form x 7→ Tx+ a, where T : Rn → R
n is a non-

singular linear map, and a ∈ R
n is a vector), and Mahler [Ma38] and [Ma39], who

used this concept in the geometry of numbers (i.e., a common part of geometry and
number theory, dealing, among others, with relation of convex bodies, and also of
their polars, to lattices in R

n, i.e., non-singular linear images of Zn in R
n).

Later it became obvious, that the volume product is a very important quantity in
the local theory of Banach spaces, it has relations to a number of other characteris-
tics of these Banach spaces (cf., e.g., [Pi]). This fact drew the interest of functional
analysts to the volume product problem, which later resulted in the solution of the
problem of the lower estimate of the volume product for an n-dimensional Banach
space in a way satisfactory for applications in the local theory of Banach spaces.
(The problem of the sharp upper estimate had already been solved by this time.)

Several other mathematical disciplines also need the volume product. We men-
tion stochastic geometry, i.e., geometric probability (in several different ways), and
the geometry of Minkowski spaces (these are just finite dimensional Banach spaces,
but the object is not their analytic properties, but their geometric properties, which
are interesting already for the case n = 2). It is interesting enough, that the theory
of functions of several complex variables is also connected to the volume product
problem. Still one area is discrete geometry, that is the branch of geometry dealing
with density estimates of systems of convex sets in R

d satisfying various hypotheses.
The density of such a system is the “percentage of the volume of the whole space
covered by the system, taken with multiplicity (i.e., doubly covered parts count
doubly, etc.)”.

So the question is: what is the minimum, and the maximum of the volume
product V (K)V (K∗). Seemingly a bit more generally (but in fact equivalently): for
x ∈ intK we consider V (K)V ((K − x)∗), and investigate this quantity. Here, for
the upper estimate one has to be a bit careful, since for dist (x, bdK) → 0 we have
V (K)V ((K − x)∗) → ∞. Therefore we have to take rather minx∈intK V (K)V ((K−
x)∗) (for the 0-symmetric case this is just V (K)V (K∗)). This quantity is affine
invariant.

We give some examples. For K the Euclidean unit ball, whose volume is denoted
by κn, we have

V (K)V (K∗) = κ2
n = n−n (2eπ + o(1))

n
= n−n (17.0794...+ o(1))

n
.

If K is the cube [−1, 1]n, or its polar, the regular cross-polytope conv {±ei} (with
ei the standard unit vectors), then

V (K)V (K∗) = 4n/n! = n−n (4e+ o(1))
n
= n−n (10.8731...+ o(1))

n
.

For x ∈ intK one has the simple formula

V ((K − x)∗) =
1

n

∫

Sn−1

(hK(u)− 〈x, u〉)−ndu ,
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where hK(u) := max{〈k, u〉 | k ∈ K} is the support function of K, defined for
u ∈ Sn−1. This readily implies that the second differential of V ((K − x)∗) with
respect to x ∈ intK is a positive definite quadratic form, hence V ((K − x)∗) is a
strictly convex function of x ∈ intK. Hence there is a unique point x ∈ intK, such
that V ((K − x)∗) is minimal: this point x is called the Santaló point of K, and is
denoted by s(K). If K is 0-symmetric, we have s(K) = 0.

As a further example, for K a simplex, we have that s(K) is the barycentre of
K, and

{

V (K)V [(K − s(K))∗] = (n+ 1)n+1/(n!)2 = n−n
(

e2 + o(1)
)n

=

n−n (7.3890...+ o(1))
n
.

In geometry it is unnatural to restrict ourselves to 0-symmetric bodies, which
is natural in the local theory of Banach spaces. Actually, the importance of the
Santaló point shows up only in the asymmetric case, and also leads to proofs, even in
the 0-symmetric case, which would be hardly guessed if we would restrict ourselves
to the 0-symmetric case only.

So, the correct question is: what is the minimum, and the maximum of V (K)×
V [(K − s(K))

∗
]. This quantity is invariant under affinities.

In all our theorems K ⊂ R
n will be a convex body.

II. Upper bound

Theorem 1. ([Bl], [San], [SR], [Pe], [Ba], [MP]) We have

V (K)V [(K − s(K))
∗
] ≤ κ2

n ,

with equality if and only if K is an ellipsoid.

III. Lower bound

Conjecture A. (Mahler-Guggenheimer-Saint Raymond, [Ma39], [G], [SR]) If K
is 0-symmetric, we have

V (K)V [(K − s(K))
∗
] = V (K)V (K∗) ≥ 4n/n! ,

with equality exactly for the unit balls of the Hanner-Hansen-Lima spaces.

The Hanner-Hansen-Lima spaces are inductively defined from lower dimensions,
by taking, for some decomposition n1+n2 = n (where ni ≥ 1), either the l1, or l∞-
sums of the already defined Hanner-Hansen-Lima spaces in n1 and n2 dimensions
(in other words, we take in R

n = R
n1 ⊕R

n2 for the unit ball either the convex hull,
or the sum of the unit balls of Rn1 and R

n2). The basis of induction is n = 1, when
there is a unique 1-dimensional Banach space, which is by definition a Hanner-
Hansen-Lima space. The unit balls of these spaces include, among others, the cube
[−1, 1]n, the regular
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cross-polytope conv {±ei}, but also many other bodies. A Hanner-Hansen-Lima
body is the unit ball of a Hanner-Hansen-Lima space. For all these bodies K we
have V (K)V (K∗) = 4n/n!.

Conjecture B. (Mahler, [Ma39]) We have

V (K)V [(K − s(K))
∗
] ≥ (n+ 1)n+1/(n!)2 ,

with equality exactly for the simplex.

III.1. General theorems

Theorem 2A. ([BMi], [K], [N]) If K is 0-symmetric, we have

V (K)V (K∗) ≥ κ2
n/2

n = n−n (eπ + o(1))
n
= n−n (8.5397...+ o(1))

n
.

Theorem 2B. ([BMi], [K]) We have

V (K)V [(K − s(K))
∗
] ≥ an−n(eπ/2)n = n−n (4.2698...+ o(1))

n
,

for some constant a > 0.

We remark that [BMi] proved only κ2
n/A

n, for a non-explicit constant A > 0, in
both theorems. They have used for this aim the so called quotient of subspace theo-
rem of V. D. Milman (cf., e.g., [Pi]) that is another very important theorem in the
local theory of Banach spaces. This says the following. Any n-dimensional Banach
space X has a subspace X1, and X1 has a quotient X2, such that dimX2 ≥ cn,
and such that the Banach-Mazur distance of X2 and the Hilbert space of dimen-
sion dimX2 is at most C. Here c ∈ (0, 1), and C ∈ (1,∞) are some constants.
More exactly: for any c ∈ (0, 1) there exists a C = C(c) ∈ (1,∞), such that
the previous statement is true, and conversely, for any C ∈ (1,∞) there exists a
c = c(C) ∈ (0, 1), such that the previous statement is true. Moreover, [N] proved
only (4n/n!)(π/4)3n, and for this aim he used the theory of functions of several
complex variables.

III.2. Sharp theorems for special bodies

III.2.A. Bodies with high symmetry

Theorem 3A. ([SR], [Me86], [R87]) If K is symmetric with respect to all coordi-
nate hyperplanes (thus, in particular, is 0-symmetric), then

V (K)V (K∗) ≥ 4n/n! ,

with equality exactly for the unit balls of the Hanner-Hansen-Lima spaces.



THE VOLUME PRODUCT PROBLEM 5

Bodies with the property in the hypothesis of this theorem, and also the corre-
sponding norms, are called unconditional.

Theorem 3B. ([BF]) If K has all the symmetries (i.e., congruences) of a regular
simplex, then

V (K)V [(K − s(K))
∗
] ≥ (n+ 1)n+1/(n!)2 ,

with equality exactly for a regular simplex.

III.2.B. Zonoids

A zonoid is a limit, in the Hausdorff-metric, of some sequence of finite sums of
segments.

Theorem 4. ([R85], [R86], [GMR]) Let K be a convex body, that is also an 0-
symmetric zonoid. Then

V (K)V (K∗) ≥ 4n/n! ,

with equality if and only if K is a parallelepiped, with centre at 0.

Of course, this also means that the other Hanner-Hansen-Lima bodies are not
zonoids.

III.2.C. Planar case

Theorem 5A. ([Ma38], [R86]) Let n = 2 and let K be 0-symmetric. Then

V (K)V (K∗) ≥ 8 ,

with equality if and only if K is a parallelogram with centre at 0.

Theorem 5B. ([Ma38], [Me91]) Let n = 2. Then

V (K)V [(K − s(K))
∗
] ≥ 27/4 ,

with equality if and only if K is a triangle.

III.2.D. Local minima

Theorem 6A. ([NPRZ]) Among 0-symmetric bodies K, the volume product V (K)
×V (K∗) has a strict local minimum for 0-symmetric parallelepipeds.

Theorem 6B. ([KR]) The volume product V (K)V [(K − s(K))
∗
] has a strict local

minimum for simplices.

III.2.E. Polyhedra with small numbers of vertices, or of (n− 1)-faces
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Theorem 7A. ([LR]) Let n ≤ 8, and let K be an 0-symmetric convex polyhedron,
with at most n+1 opposite (i.e., symmetric w.r.t. 0) pairs of vertices, or of (n−1)-
faces. Then

V (K)V (K∗) ≥ 4n/n! ,

with equality if and only if K is a Hanner-Hansen-Lima body, with at most n + 1
opposite pairs of vertices, or of (n− 1)-faces.

Theorem 7B. ([MR]) Let K be a convex polyhedron, with at most n+ 3 vertices,
or (n− 1)-faces. Then

V (K)V [(K − s(K))
∗
] ≥ (n+ 1)n+1/(n!)2 ,

with equality if and only if K is a simplex.

Polyhedra (parallelepipeds) in higher dimensional Euclidean spaces are usually
called polytopes (parallelotopes) in geometry.

IV. Stability variants

If one proves an inequality, and also determines the cases of equality, that is not
yet the end of the story. One can further ask the following. If a convex body has a
volume product V (K)V [(K − s(K))

∗
] (or V (K)V (K∗) for the 0-symmetric case) ε-

close to the extremal value, does it follow, that K is (1 + f(ε))-close, in the Banach-
Mazur distance, to some of the extremal bodies. Here f is some positive function,
with limε→0 f(ε) = 0. (Of course, in case of compactness, the existence of such a
function f is evident, but the aim is to give an explicit such function.) Typically, at
such theorems, f(ε) is some constant times some power of ε, sometimes also with
some logarithmic factor, also on some power. At such theorems it is considered as
satisfactory, if the sharp order of magnitude of the function f is determined.

The Banach-Mazur distance δBM (K,L) of two 0-symmetric convex bodies K
and L is the Banach-Mazur distance of the Banach spaces with these unit balls. In
geometrical terms, this can be described as follows.

{

δBM (K,L) = min{λ2/λ1 | λ1, λ2 > 0, ∃ T non-singular linear map,

such that λ1K ⊂ TL ⊂ λ2K} .

One can extend this naturally to the not 0-symmetric case as follows. For K and
L convex bodies,

{

δBM (K,L) := min{λ2/λ1 | λ1, λ2 > 0, ∃ T non-singular linear map,

∃ a1, a2 vectors, such that λ1K + a1 ⊂ TL ⊂ λ2K + a2} .

For K and L both 0-symmetric, this reduces to the previous formula. (We recall
that actually log δBM (K,L) is a metric.)
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Then, for Theorem 1, we have stability, but probably not with the sharp order
([Bo], [BB], [BMa]). Concerning the theorems with lower estimates, we have stabil-
ity of Theorem 4 ([BH]), Theorem 5A ([BH],[BMMR]), of Theorem 5B ([BMMR]),
of Theorem 6A ([NPRZ]), and of Theorem 6B ([KR]), at each of these with the
sharp order, namely, with linear order.

V. Functional variants

Recently there have appeared several functional variants of the volume product
problem. We discuss here only one of these. The objects of investigation are the log-
concave functions, i.e., functions f : Rn → [0,∞), whose logarithm is concave. To a
convex body K, with 0 ∈ intK, we associate the function f(x) := exp (−‖x‖2

K
/2),

where ‖ · ‖K means the asymmetric norm (i.e., ‖ − x‖K 6= ‖x‖K) associated to
the “unit ball” K (i.e., ‖x‖K := min{λ ≥ 0 | x ∈ λK}). Then V (K) = constn ·
∫

Rn
f(x) dx, so here the right hand side is the proper generalization of V (K).
Moreover, polarity of K and K∗ goes over to the following. The corresponding

functions f and f∗ have their negative logarithms, with values in (−∞,∞], which
are the Legendre transforms of each other. The Legendre transform of a function
ϕ : Rn → [−∞,∞] is the function Lϕ : Rn → [−∞,∞], defined by

(Lϕ)(y) := sup{〈x, y〉 − ϕ(x) | x ∈ R
n} .

Thus, the object of investigation is

∫

Rn

f(x) dx ·

∫

Rn

f∗(x) dx ,

where one supposes
∫

Rn

f(x) dx ∈ (0,∞) .

Cf. the nice exposition in [A-AKM].
Unfortunately, translations of convex bodies have no (good) generalizations to

log-concave functions. Thus, in place of a translation K 7→ K−x, where x ∈ intK,
one considers an arbitrary translate of the function f (i.e., x 7→ f(x − x0)), and
proves the sharp upper bound for a suitable translate of the original function f .
Here, for even functions f , one may choose x0 = 0 (as for 0-symmetric bodies one
may choose x = s(K) = 0), cf. [A-AKM]. Of course, the problem of translations
does not concern the question of the lower bound (as it is a minimum problem),
but, in case of the upper bound, only the 0-symmetric case of the volume product
problem generalizes this way to even log-concave functions. For the upper bound,
in the even case, the sharp upper bound for the functional variant (cf. [Ba], [A-
AKM], [FM07]) immediately implies the sharp upper bound for the 0-symmetric
case of the volume product problem. Namely, the extremal even functions (up to
constant factors) are ones associated to 0-symmetric convex bodies,
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more exactly, to 0-symmetric ellipsoids. For the lower bound, the best, known
lower bound for the functional variant (cf., [FM08a], Theorem 7) implies the best,
known lower bound for the volume product problem, apart from the actual value
of the base of the exponential (when the second lower bound is written in the form
n−n (const+o(1))

n
). In the case of unconditional functions (i.e., f(x1, ..., xn) =

f(|x1, ..., |xn|)), with f > 0, the sharp lower bound is known (cf., [FM08a], Theorem
6).

Still we note that the conjecture in R
n about the lower bound for the functional

variant, for the even, or the general case (cf., [FM08b]), would imply Conjecture A
or Conjecture B, about the lower bound for the volume product, in the 0-symmetric,
or the general case, for R

n, or R
n−1, respectively (cf., [FM08b]). However, the

conjecture about the lower bound for the functional variant, for the even, or the
general case, for all n, is equivalent to Conjecture A, or Conjecture B, for all n,
respectively (cf. [FM08b], Propositions 1, 2).
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