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Abstract

Every graph G = (V,E) is an induced subgraph of some Kneser graph of rank k, i.e.,
there is an assignment of (distinct) k-sets v 7→ Av to the vertices v ∈ V such that Au and
Av are disjoint if and only if uv ∈ E. The smallest such k is called the Kneser rank of G
and denoted by fKneser(G). As an application of a result of Frieze and Reed concerning
the clique cover number of random graphs we show that for constant 0 < p < 1 there
exist constants ci = ci(p) > 0, i = 1, 2 such that with high probability

c1n/(log n) < fKneser(G) < c2n/(log n).

We apply this for other graph representations defined by Boros, Gurvich and Meshulam.
A k-min-difference representation of a graph G is an assignment of a set Ai to each

vertex i ∈ V (G) such that

ij ∈ E(G) ⇔ min{|Ai \Aj |, |Aj \Ai|} ≥ k.

The smallest k such that there exists a k-min-difference representation of G is denoted
by fmin(G). Balogh and Prince proved in 2009 that for every k there is a graph G with
fmin(G) ≥ k. We prove that there are constants c′′1 , c

′′
2 > 0 such that c′′1n/(log n) <

fmin(G) < c′′2n/(log n) holds for almost all bipartite graphs G on n+ n vertices.
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1 Kneser representations

A representation of a graph G is an assignment of mathematical objects of a given kind
(intervals, disks in the plane, finite sets, vectors, etc.) to the vertices of G in such a way
that two vertices are adjacent if and only if the corresponding sets satisfy a certain condition
(intervals intersect, vectors have different entries in each coordinate, etc.). Representations
of various kinds have been studied extensively, see, e.g., [7], [10], the monograph [15], or
from information theory point of view [13]. The representations considered in this paper are
assignments v 7→ Av to the vertices v ∈ V of a graph G = (V,E) such that the Av’s are
(finite) sets satisfying certain relations.

The Kneser graph Kn(s, k) (for positive integers s ≥ 2k) is a graph whose vertices are
all the k-subsets of the set [s] := {1, 2, . . . , s}, and whose edges connect two sets if they are
disjoint. An assignment (A1, . . . , An) for a graph G = (V,E) (where V = [n]) is called a
Kneser representation of rank k if each Ai has size k, the sets are distinct, and Au and Av
are disjoint if and only if uv ∈ E.

Every graph on n vertices with minimum degree δ < n− 2 has a Kneser representation of
rank (n− 1− δ). To see that, define the co-star representation (A′1, . . . , A

′
n) of G. For every

i ∈ V (G), let A′i be the set of the edges adjacent to i in the complement of G (this is the

graph G with V (G) = V (G) and E(G) =
(
V (G)
2

)
\E(G)). We have A′i ∩A′j = 1 if ij 6∈ E(G),

otherwise A′i ∩ A′j = 0, and the maximum size of A′i is n − 1 − δ(G). To turn the co-star
representation into a Kneser representation add pairwise disjoint sets of labels to the sets
A′1, . . . , A

′
n to increase their cardinality to exactly n−1−δ(G). The resulting sets A1, . . . , An

are all distinct, they have the same intersection properties as A′1, . . . , A
′
n, and form a Kneser

representation of G of rank n− 1− δ(G).

Let G(n) denote the set of 2(n2) (labelled) graphs on [n] and let G(n, k,Kneser) denote
the family of graphs on [n] having a Kneser representation of rank k. G ∈ G(n, k,Kneser)
is equivalent to the fact that G is an induced subgraph of some Kneser graph Kn(s, k). We
have

G(n, 1,Kneser) ⊆ G(n, 2,Kneser) ⊆ · · · ⊆ G(n, n− 1,Kneser) = G(n).

Let fKneser(G) denote the smallest k such that G has a Kneser representation of rank k. We
have seen that fKneser(G) ≤ n − δ. We show that there are better bounds for almost all
graphs.

Theorem 1. There exist constants c2 > c1 > 0 such that for G ∈ G(n) with high probability

c1
n

log n
< fKneser(G) < c2

n

log n
.

We will prove a stronger version as Corollary 12.
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2 Minimum difference representations

In difference representations, generally speaking, vertices are adjacent if the represent-
ing sets are sufficiently different. As an example consider Kneser graphs, where the vertices
are adjacent if and only if the representing sets are disjoint. There are other type of repre-
sentations where one joins sets close to each other, e.g., t-intersection representations were
investigated by M. Chung and West [6] for dense graphs and Eaton and Rödl [7] for sparse
graphs. But these are usually lead to different type of problems, one cannot simply consider
the complement of the graph.

This paper is mostly focused on k-min-difference representations (and its relatives), de-
fined by Boros, Gurvich and Meshulam in [5] as follows.

Definition 2. Let G be a graph on the vertices [n] = {1, . . . , n}. A k-min-difference repre-
sentation (A1, . . . , An) of G is an assignment of a set Ai to each vertex i ∈ V (G) so that

ij ∈ E(G) ⇔ min{|Ai \Aj |, |Aj \Ai|} ≥ k.

Let G(n, k,min) be the set of graphs with V (G) = [n] that have a k-min-difference represen-
tation. The smallest k such that G ∈ G(n, k,min) is denoted by fmin(G).

The co-star representation (which was investigated by Erdős, Goodman, and Pósa [8] in
their classical work on clique decompositions) shows that fmin(G) exists and it is at most
n− 1− δ(G).

Boros, Collado, Gurvits, and Kelmans [4] showed that many n-vertex graphs, including
all trees, cycles, and line graphs, the complements of the above, and P4-free graphs, belong
to G(n, 2,min). They did not find any graph with fmin(G) ≥ 3. Boros, Gurvitch and
Meshulam [5] asked whether the value of fmin over all graphs is bounded by a constant.
This question was answered in the negative by Balogh and Prince [3], who proved that for
every k there is an n0 such that whenever n > n0, then for a graph G on n vertices we have
fmin(G) ≥ k with high probability. Their proof used a highly non-trivial Ramsey-type result
due to Balogh and Bollobás [2], so their bound on n0 is a tower function of k.

Our main result is a significant improvement of the Balogh-Prince result. Let G(n, n)
denote the family of 2n

2
bipartite graphs G with partite sets V1 and V2, |V1| = |V2| = n.

Theorem 3. There is a constant c > 0 such that for almost all bipartite graphs G ∈ G(n, n)
one has fmin(G) ≥ cn/(log n).

Let H be a graph on log n vertices with fmin(H) ≥ c log n/(log log n). One of the basic
facts about random graphs is that almost all graphs on n vertices contain H as an induced
subgraph. The following theorem is an easy consequence of this fact together with Theorem 3.

Corollary 4. There is a constant c > 0 such that almost all graphs G on n vertices satisfy

fmin(G) ≥ c log n

log log n
.
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3 On the number of graphs with k–min-dif representations

3.1 The structure of min-dif representations of bipartite graphs

Analogously to previous notation, G(n, k,min) (and G(n, n, k,min)) denotes the family
of (bipartite) graphs G with n labelled vertices V (partite sets V1 and V2, |V1| = |V2| = n,
respectively) with fmin(G) ≤ k. Our aim in this Section is to show that there exists a constant
c > 0 such that |G(n, n, k,min)| = o(2n

2
) if k < cn/(log n). This implies that for almost all

bipartite graphs on n+ n vertices fmin(G) ≥ cn/(log n).

A k-min-difference representation (Ai : i ∈ V ) of G is reduced if deleting any element x
from all sets that contain it yields a representation of a graph different from G. Note that

|Ai \Aj | − 1 ≤ |(Ai \ x) \ (Aj \ x)| ≤ |Ai \Aj |

so the graph G′ corresponding to the k-representation (Ai \x : i ∈ V ) has no more edges than
G, E(G′) ⊆ E(G). There is a natural partition of the elements of

⋃
Ai: for every ∅ 6= I ⊆ [n],

we have the subset (
⋂
i∈I Ai)∩ (

⋂
j 6∈I Aj) where Aj is the complement of the set Aj . We call

these subsets atoms. If a k-min-difference representation is reduced, then no atom has more
than k elements. It follows that the ground set

⋃
Ai of a reduced representation of an n-vertex

graph has no more than k2n elements. Lemma 5 improves on this observation.

Lemma 5. Let G be a graph with n vertices and (A1, . . . , An) a reduced k-min-difference
representation of G. Then ∣∣∣

⋃
Ai

∣∣∣ ≤ 2e(G)k ≤ kn2.

Proof. Define the sets Ai,j := Ai \ Aj in the cases ij ∈ E(G), and |Ai \ Aj | = k. Let
S :=

⋃
Ai,j . The number of elements in S is bounded above by the quantity |E(G)| · 2k. We

claim that S =
⋃
Ai. Otherwise, if there is an element x ∈ (

⋃
Ai)\S, then the representation

can be reduced, (Ai \ x : i ∈ V ) defines the same graph as (Ai : i ∈ V ). 2

The upper bound in Lemma 5 can be significantly improved for bipartite graphs.

Lemma 6. Let G ∈ G(n, n) be a bipartite graph with n + n labeled vertices, G ∈
G(n, n, k,min). Let (A1, . . . , An) and (B1, . . . , Bn) be the sets representing the two parts.
If (A1, . . . , An, B1, . . . , Bn) is a reduced k-min-difference representation of G, then

∣∣∣
(⋃

Ai

)
∪
(⋃

Bi

)∣∣∣ ≤ 4kn.

Proof. Suppose that |A1| ≤ · · · ≤ |An| and |B1| ≤ · · · ≤ |Bn|. Let A :=
⋃
Ai and B :=

⋃
Bi,

S := A ∪B. Define

A′ :=
n−1⋃

i=1

(Ai \Ai+1). (1)
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A
A

A
A i+1

A

1

2

n

i

... ...

... ...

A’

Figure 1: |A1| ≤ · · · ≤ |An| in a min-dif representation when {1, 2, . . . , n} is independent

For each i, the inequality |Ai \ Ai+1| ≤ |Ai+1 \ Ai| follows from the assumption that |Ai| ≤
|Ai+1|. The vertices in each part of G form an independent set, so for each i, we have
|Ai \Ai+1| ≤ k − 1. Hence |A′| ≤ (n− 1)k.

If x ∈ Aα \ Aβ for some α < β, then there is an index i such that x ∈ Ai \ Ai+1 and
therefore x ∈ A′. In other words, if x ∈ Aα \ A′ and α < β then x ∈ Aβ. Therefore the sets
Ai \A′ form a chain (see Figure 1),

A1 \A′ ⊆ A2 \A′ ⊆ · · · ⊆ An \A′.

Treat the other part of G analogously: define B′ and note the same bound on its size, and
note that the sets Bi \B′ form a chain.

Let us define D = S \ (A′ ∪B′). We will prove that there are at most 2(n+ 1) sets of the
form Am \B` and Bp \ Aq, each of cardinality k, covering D. Therefore D contains at most

2(n + 1)k elements. For each 1 ≤ i ≤ n, let us define Ãi = Ai ∩ D and B̃i = Bi ∩ D. Let

Ã0 = B̃0 = ∅ and Ãn+1 = B̃n+1 = D. The sets Ã0, Ã1, . . . , Ãn, Ãn+1 form a chain, same for

B̃0, B̃1 . . . , B̃n, B̃n+1. The elements of D belong to (n+1)2 atoms (as defined in the beginning
of this section), many of them possibly empty, corresponding to the squares in Figure 2.

For each i, j, 1 ≤ i, j ≤ n+1, (i, j) 6= (n+1, n+1), the atom Si,j is defined as (Ãi\Ãi−1)∩
(B̃j \ B̃j−1). Since the representation is reduced, no elements from the atom Si,j can be left
out, so e.g., S1,1 = ∅. It follows that either there are some m and ` such that |Am \ B`| = k
and the atom Si,j belongs in Am \B` (here n ≥ m ≥ i ≥ 1 and j > ` ≥ 1), or there are some

p, q such that |Bp \ Aq| = k and the atom Si,j is in Bp \ Aq. Since |Ãm \ B̃`| ⊆ Am \ B`, we

have |Ãm \ B̃`| ≤ k in the first case. Likewise in the second case, |B̃p \ Ãq| ≤ k. In Figure 2,
the first option corresponds to a rectangle containing the Si,j cell and the upper-right corner,
with all the squares in this rectangle together containing only at most k elements. The second
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B̃1 B̃2 B̃3

Ã1

Ã2

Ã3 Sij

Ãm \ B̃`

B̃p \ Ãq

Figure 2: The elements of S \ (A′ ∪B′) split into (n+ 1)2 atoms.

option corresponds to a similar rectangle with only at most k elements in it, containing the
Si,j square and the lower-left corner.

Call a subrectangle Ãm \ B̃` critical if |Am \ B`| = k, and similarly B̃p \ Ãq is critical
if |Bp \ Aq| = k. Our argument above can be reformulated that every (nonempty) cell Si,j
is covered by a critical rectangle. This implies that in each row one can find at most two
critical rectangles that cover all non-empty atoms in it. This yields the desired upper bound
|D| ≤ 2(n+ 1)k.

Finally, altogether |S| ≤ |A′|+ |B′|+ |D| ≤ 4kn. 2

3.2 Counting reduced matrices

Let S be a set of size |S| = 4kn. In this subsection we give an upper bound for the
number of sequences (A1, . . . , An) of subsets of S satisfying the following two properties

(P1) |A1| ≤ · · · ≤ |An|,
(P2) |Ai \Ai+1| ≤ k − 1 (for all 1 ≤ i ≤ n− 1).

Let M be the 0-1 matrix that has the characteristic vectors of the sets A1, . . . , An as
its rows (in this order). The positions in M where an entry 1 is directly above an entry 0
will be called one-zero configurations, while the positions where a 0 is directly above a 1 will
be called zero-one configurations. A column in a 0-1 matrix is uniquely determined by the
locations of the one-zero configurations and the zero-one configurations unless it is a full 0
or full 1 column. We count the number of possible matrices M by filling up the n × (4kn)
entries in three steps.
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Each one-zero configuration corresponds to an i < n and to an element x ∈ Ai \Ai+1. A
set Ai+1 \Ai can be selected in at most

(
4nk

0

)
+ · · ·+

(
4nk

k − 1

)
< (4en)k

ways (n > k ≥ 1). Do this for each i < n, altogether we have less than (4en)kn ways to write
in the one-zero configurations into M.

Select in each column the top 1. If there is no such element in a column we indicate
that it is blank, a full zero column. There are at most n + 1 outcomes for each column,
altogether there are at most (n + 1)4kn possibilities. Fill up with 0’s each column above its
top 1. Define A′ ⊂ S as in (1), A′ :=

⋃n−1
i=1 (Ai \ Ai+1). We have |A′| ≤ kn. The columns of

M that correspond to the elements of S \A′ have a (possibly empty) string of zeros followed
by a string of ones. We almost filled up M and we can finish this process by selecting the
remaining zero-one configurations.

There may be several zero-one configurations in a single column. Each of them has a
unique (closest, or smallest indexed) 1 above them. That element 1 is already written in into
our still partially filledM, because that element 1 (even if it is the top 1 element) belongs to
a unique one-zero configuration. This correspondence is an injection. So there are at most∑

i |Ai \ Ai+1| ≤ kn zero-one configurations in the columns corresponding to A′ which are
not yet identified. There are at most nkn ways to select them.

Since (for n > k ≥ 1)

(4en)kn × (n+ 1)4kn × nkn < n6kn+O(kn/ logn) = e6kn logn+O(kn),

we obtain the following

Claim 7. Altogether, there are eO(kn logn) ways to fill M with entries in {0, 1} according to
the rules (P1) and (P2).

3.3 Proofs of the lower bounds

Proof of the lower bound in Theorem 3. Let G = G(V1, V2) be a bipartite graph with both
parts of size n and suppose that G belongs to G(n, n, k,min). By Lemma 6 we may suppose
that G has a reduced k-min-difference representation (A1, . . . , An, B1, . . . , Bn) such that each
representing set is a subset of S, where |S| = 4kn. There are permutations π and ρ ∈ Sn which
rearrange the sets according their sizes |Aπ(1)| ≤ · · · ≤ |Aπ(n)| and |Bρ(1)| ≤ · · · ≤ |Bρ(n)|.
Consider the Vi × S matrices, Mi, i = 1, 2 whose i’th row is the 0-1 characteristic vector of
Aπ(i) and Bρ(i), respectively. The permutations π, ρ and the matrices M1, M2 completely
describe G. The matrices Mi satisfies properties (P1) and (P2), so Claim 7 yields the
following upper bound for the number of such fourtuples (π, ρ,M1,M2)

|G(n, n, k,min)| ≤ # of (π, ρ,M1,M2)
′s ≤ (n!)2n(12+o(1))kn = eO(kn logn). (2)
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Here the right hand side is o(2n
2
) if k ≤ 0.057n/(log n) implying that fmin(G) >

0.057n/(log n) for almost all the 2n
2

bipartite graphs. 2

Proof of the lower bound for the random bipartite graph.
Recall that in a random graph G ∈ G(n, p), each of the

(
n
2

)
edges occurs independently with

probability p. Similarly, G(n, n, p) denotes the class of graphs G(n, n) with the probability of
a given graph G ∈ G(n, n) is

pe(G)(1− p)n2−e(G).

Here the right hand side is at most (max{p, 1 − p})n2
. This implies that for any class of

graphs A ⊂ G(n, n) the probability Pr(G ∈ A) is at most |A| times this upper bound. If the
class of graphs A is too small, namely

|A| = o

(
(min{1

p
,

1

1− p})
n2

)
,

then for G(n, n, p) one has
Pr(G ∈ A)→ 0. (3)

Taking A := G(n, n, k,min) with a sufficiently small k, we obtain

Corollary 8. For constant 0 < p < 1 there exists a constant c = c1,min(p) > 0 such that the
following holds for G ∈ G(n, n, p) with high probability as n→∞

c
n

log n
< fmin(G).

4 Maximum and average difference representations

Boros, Gurvich and Meshulam [5] also defined k-max-difference representations and k-
average-difference representations of a graph G in a natural way, that is, the vertices i and j
are adjacent if and only if for the corresponding sets Ai, Aj we have max{|Ai\Aj |, |Aj \Ai|} ≥
k and (|Ai \Aj |+ |Aj \Ai|)/2 ≥ k, respectively. Analogously to fmin we can define fmax(G)
and favg(G). Since for every graph G a Kneser representation is a min-dif, average-difference,
and max-difference representation as well we get

fmin(G), favg(G), fmax(G) ≤ fKneser(G) ≤ n− 1. (4)

Let G(n, k,max), G(n, n, k,max), (G(n, k, avg), G(n, n, k, avg)) denote the family of graphs
G ∈ G(n) and in G(n, n) with n labeled vertices V or with partite sets V1 and V2, |V1| =
|V2| = n, respectively, such that fmax(G) ≤ k (favg(G) ≤ k, respectively).

It was proved in [5] that fmax and fmin are not bounded by a constant, for a matching of
size t one has fmax(tK2) = Θ(log t) and favg(tK2) = Θ(log t). (It turns out that fmin(tK2) =
1.) The proof of Theorem 3 can be easily adapted for these parameters for G(n, n, p) as well.
Even more, we can handle the general case G ∈ G(n, p), too.
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Corollary 9. For constant 0 < p < 1 there exists a constant c = c(p) > 0 such that the
following holds for G ∈ G(n, n, p) with high probability as n→∞

c
n

log n
< favg(G), fmax(G). (5)

Similarly for G ∈ G(n, p) with high probability we have

c
n

log n
< favg(G), fmax(G). (6)

These lower bounds together with the upper bounds from Corollary 14 below imply that
for almost all n vertex graphs, and for almost all bipartite graphs on n+ n vertices, favg(G)
and fmax(G) are Θ(n/(log n)).

Sketch of the proof. If G ∈ G(n, n, k,max) (and if G ∈ G(n, n, k, avg)) and (A1, . . . , An, B1,
. . . , Bn) is a k-max-difference (k-average-difference) representation then

|Ai 4Aj | ≤ 2k − 2 (≤ 2k − 1) (7)

holds for each pair i, j. If the representation is reduced, then we obtain (without the tricky
proof of Lemma 6) that |⋃iAi| < 2kn, and the same holds for |⋃iBi|, too. The conditions
of Claim 7 are satisfied implying

|G(n, n, k,max)|, |G(n, n, k, avg)| = eO(kn logn).

We complete the proof of (5) applying (3) as it was done at the end of the previous Section.

Consider a graph G ∈ G(n, k,max) and let (A1, . . . , An) be a reduced k-max-difference
representation. (The case of k-average-difference representation can be handled in the same
way, and the details are left to the reader). The only additional observation we need is that
since (7) holds for each non-edge {i, j}, we have |Ai 4 Aj | ≤ 4k − 4 for all pairs of vertices
whenever diam(G) ≤ 2. Thus for every reduced representation (in case of diam(G) ≤ 2) one
has |⋃iAi| ≤ (4k − 4)n. Also, |Ai \ Aj | ≤ 2k − 2 for |Ai| ≤ |Aj |. Then the conditions of
Claim 7 are fulfilled (with 2k − 2 instead of k) implying the following version of (2)

|G(n, n, k,min) \ G2(n)| = eO(kn logn),

where G2(n) denotes the class of graphs with G ∈ G(n), diam(G) > 2.

We complete the proof of (6) by applying (3) and the fact that

diam(G) ≥ 2

holds with high probability for G ∈ G(n, p). 2
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5 Clique covers of the edge sets of graphs

We need the following version of Chernoff’s inequality (see, e.g., [1]). Let Y1, . . . , Yn be
mutually independent random variables with E[Yi] ≤ 0 and all |Yi| ≤ 1. Let a ≥ 0. Then

Pr[Y1 + · · ·+ Yn > a] < e−a
2/(2n). (8)

A finite linear space is a pair (P,L) consisting of a set P of elements (called points) and
a set L of subsets of P (called lines) satisfying the following two properties.

(L1) Any two distinct points x, y ∈ P belong to exactly one line L = L(x, y) ∈ L.
(L2) Any line has at least two points.

In other words, the edge set of the complete graph K(P ) has a clique decomposition into the
complete graphs K(L), L ∈ L.

Lemma 10. For every positive integer n there exists a linear space L = Ln with lines
L1, . . . , Lm such that m = n+o(n), every edge has size (1+o(1))

√
n, and every point belongs

to (1 + o(1))
√
n lines.

Proof. (Folklore). If n = q2 where q > 1 is a power of a prime then we can take the q2 + q
lines of an affine geometry AG(2, q). Each line has exactly q =

√
n points and each point

belongs to q+ 1 lines. In general, one can consider the smallest power of prime q with n ≤ q2
(we have q = (1 + o(1))

√
n) and take a random n-set P ⊂ F2

q and the lines defined as P ∩L,
L ∈ L(AG(2, q)). 2

5.1 Thickness of clique covers

The clique cover number θ1(G) of a graph G is the minimum number of cliques required
to cover the edges of graph G. Frieze and Reed [9] proved that for p constant, 0 < p < 1,
there exist constants c′i = c′i(p) > 0, i = 1, 2 such that for G ∈ G(n, p) with high probability

c′1
n2

(log n)2
< θ1(G) < c′2

n2

(log n)2
.

They note that ‘a simple use of a martingale tail inequality shows that θ1 is close to its mean
with very high probability’. We only need the following consequence concerning the expected
value.

E(θ1(G)) < c′3
n2

(log n)2
. (9)

The thickness θ0 of a clique cover C := {C1, . . . , Cm} of G is the maximum degree of the
hypergraph C, i.e., θ0(C) := maxv∈V (G) degC(v). The minimum thickness among the clique
covers of G is denoted by θ0(G).

A clique cover C corresponds to a set representation v 7→ Av in a natural way Av := {Ci :
v ∈ Ci} with the property that Au and Av are disjoint if and only if {u, v} is a non-edge of G.
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The size of the largest Av is the thickness of C. For k > θ0(C) one can add k − |Av| distinct
extra elements to Av (for each v ∈ V (G)), thus obtaining a Kneser representation of rank k
of the complement of G, G. This relation can be reversed, yielding

θ0(G) ≤ fKneser(G) ≤ θ0(G) + 1. (10)

Theorem 11. For constant 0 < p < 1 there exist constants ci = ci(p) > 0, i = 1, 2 such that
for G ∈ G(n, p) with high probability

c1
n

log n
< θ0(G) < c2

n

log n
.

Proof. The lower bound is easy. The maximum degree ∆(G) of G ∈ G(n, p) with high
probability satisfies ∆ ≈ np. As usual we write an ≈ bn as n tends to infinity. Also for the
unproved but well-known statements concerning the random graphs see the monograph [12].
The size of the largest clique ω = ω(G) with high probability satisfies ω ≈ 2 log n/(log(1/p)).
Since θ0 ≥ ∆/(ω − 1) we may choose c1 ≈ p(log(1/p))/2.

The upper bound probably can be proved by analyzing and redoing the clever proof of
Frieze and Reed concerning θ1(Gn,p). Probably their randomized algorithm yields the upper
bound for the thickness, too. Although there are steps in their proof where they remove from
G (as cliques of size 2) an edge set of size O(n31/16) and one needs to show that these edges
are well-distributed. However, one can easily deduce the upper bound for θ0(Gn,p) directly
only from Equation (9).

Given n, fix a linear hypergraph L = Ln with point set [n] and hyperedges L1, . . . , Lm
provided by Lemma 10. We have m = n + o(n), `i := |Li| = (1 + o(1))

√
n, and every point

v belongs to bv = (1 + o(1))
√
n lines. Build the random graph G ∈ G(n, p) in m steps by

taking a Gi ∈ G(Li, p). Let Ci be a clique cover of Gi with θ1(Gi) members, C = ∪1≤i≤mCi.
Let Xi(v) denote the thickness of Ci at the point v ∈ Li. We consider Xi(v) as a random

variable, whose distribution is depending only on `i and p. For every Li, we have

∑

v;v∈Li

Xi(v) =
∑

C∈Ci

|C| ≤ θ1(Gi)ω(Gi).

Here with very high probability ωi = ω(Gi) satisfies ωi ≈ 2 log `i/(log(1/p)). Then (9) implies
that

E(
∑

v∈Li

Xi(v)) ≤ c′3
`2i

(log `i)2
× (1 + o(1))

2 log `i
log(1/p)

.

Since the distributions of Xi(u) and Xi(v) are identical (for u, v ∈ Li), and there are `i terms
on the left hand side, we obtain that

E(Xi(v)) ≤ (1 + o(1))
2c′3

log(1/p)
× `i

log `i
< c

√
n

log n
.

Here we chose c > 4c′3/(log(1/p)).
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Let X(v) be the thickness of C at v. We have X(v) =
∑

Li3vXi(v), where this is a
sum of b := bv = (1 + o(1))

√
n mutually independent random variables, and each term is

non-negative and is bounded by ` = maxi `i = (1 + o(1))
√
n. Define b independent random

variables

Yi :=
1

`

(
Xi(v)− c

√
n

log n

)

for each i with Li 3 v. We can apply Chernoff’s inequality (8) for any real a > 0

Pr




∑

Li3v
Yi


 > a


 < e−a

2/(2b).

Substituting a :=
√

4b log n the right hand side is 1/n2 and we get

Pr

[
X(v) > c

b
√
n

log n
+ `
√

4b log n

]
<

1

n2
.

Since this is true for all v ∈ [n], we obtain that (for large enough n) for any c2 > c

Pr

[
X(v) < c2

n

log n
for all v

]
> 1− 1

n
,

completing the proof of the upper bound for θ0(G). 2

Since the complement of a random graph G ∈ G(n, p) is a random graph from G(n, 1−p),
Theorem 11 and (10) imply that

Corollary 12. For constant 0 < p < 1, there exist constants ci,Kneser = ci,Kneser(p) > 0,
i = 1, 2 such that for G ∈ G(n, p) with high probability

c1,Kneser
n

log n
< fKneser(G) < c2,Kneser

n

log n
.

2

One can also prove a similar upper bound for the random bipartite graph.

Corollary 13. For constant 0 < p < 1 there exist a constant c3,Kneser = c3,Kneser(p) > 0 such
that for G ∈ G(n, n, p) with high probability

fKneser(G) < c3,Kneser
n

log n
.

Proof. Let G ∈ G(n, n, p) a random bipartite graph with partite sets |A| = |B| = n. Consider
a random graph GA ∈ G(A, p) and GB ∈ G(B, p), their union is H = G ∪GA ∪GB. We can
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consider H as a member of G(A∪B, 1− p). Since G can be obtained from H by adding two
complete graphs KA and KB, we obtain

fKneser(G)− 1 ≤ θ0(G) ≤ θ0(H) + 1 < 1 + c2(1− p)
2n

log(2n)
,

where the last inequality holds with high probability according to Theorem 11. 2

Recall (4), that for every graph G, fmin(G), favg(G), fmax(G) ≤ fKneser(G) holds. These
and the above two Corollaries imply the following upper bounds.

Corollary 14. For constant 0 < p < 1 the following holds for G ∈ G(n, p) with high proba-
bility as n→∞

fmin(G), favg(G), fmax(G) < c2,Kneser(p)
n

log n
,

and similarly for G ∈ G(n, n, p)

fmin(G), favg(G), fmax(G) < c3,Kneser(p)
n

log n
.

6 Prague dimension

The Prague dimension (it is also called product dimension) fPra(G) of a graph G is the
smallest integer k such that one can find vertex distinguishing good colorings ϕ1, . . . , ϕk :
V (G) → N. This means that ϕi(u) 6= ϕi(v) for every edge uv ∈ E(G) and 1 ≤ i ≤ k
but for every non-edge {u, v}, there exists an i with ϕi(u) = ϕi(v), moreover the vectors
(ϕ1(u), ϕ2(u), . . . , ϕk(u)) and (ϕ1(v), ϕ2(v), . . . , ϕk(v)) are distict for u 6= v. Two vertices are
adjacent if and only if their labels disagree in every ϕi. As Hamburger, Por, and Walsh [11]
observed, the Kneser rank never exceeds the Prague dimension, so one can extend (4) as
follows. For every graph G

fmin(G), favg(G), fmax(G) ≤ fKneser(G) ≤ fPra(G). (11)

The determination of fPra(G) is usually a notoriously difficult task. The results of Lovász,
Nešetřil, and Pultr [14] were among the first (non-trivial) applications of the algebraic method.
Hamburger, Por, and Walsh [11] observed that there are graphs where the difference of
fPra(G) − fKneser(G) is arbitrarily large, even for Kneser graphs Kn(s, k). Poljak, Pultr,
and Rödl [16] proved that fPra(Kn(s, k)) = Θ(log log s) (as k is fixed and s → ∞) while
fKneser(Kn(s, k)) = k for all s ≥ 2k > 0. Still we think that for most graphs these parameters
have the same order of magnitude.

Conjecture 15. For a constant probability 0 < p < 1 there exists a constant c2,Pra =
c2,Pra(p) > 0, such that for G ∈ G(n, p) with high probability

fPra(G) < c2,Pra
n

log n
.
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A matching lower bound c1,Kneser(n/(log n)) < fPra(G) (with high probability) follows
from (11) and Corollary 12. We think the same order of magnitude holds for the case when
G is bipartite.

Conjecture 16. For a constant probability 0 < p < 1 there exists a constant c3,Pra =
c3,Pra(p) > 0, such that for G ∈ G(n, n, p) with high probability

fPra(G) < c3,Pra
n

log n
.

6.1 Prague dimension and clique coverings of graphs

The chromatic index θ′0(C) of a clique cover C := {C1, . . . , Cm} of the graph G is the
chromatic index of the hypergraph C, i.e., θ′0(C) is the smallest k that one can decompose
the clique cover into k parts, C = C1 ∪ · · · ∪ Ck such that the members of each Ci are pairwise
(vertex)disjoint. The minimum chromatic index among the clique covers of G is denoted by
θ′0(G). In other words, E(G) can be covered by k subgraphs with complete graph components.
Obviously, the thickness is a lower bound θ0(G) ≤ θ′0(G). Here the left hand side is at most
O(n/(log n)) for almost all graphs by Theorem 11. We think that the Frieze–Reed [9] method
can be applied to find the correct order of magnitude of θ′0, too.

Conjecture 17. For p constant, 0 < p < 1, there exists a constants c4 = c4(p) > 0 such that
for G ∈ G(n, p) with high probability

θ′0(G) < c4
n

log n
.

One can observe that (similarly as fKneser and θ0 are related, see (10)) there is a remarkable
simple connection between Prague dimension and θ′0.

θ′0(G) ≤ fPra(G) ≤ θ′0(G) + 1.

So Conjectures 15 and 17 are in fact equivalent, and Conjecture 17 also implies Conjecture 16.

7 Conclusion

We have considered five graph functions fmin(G), favg(G), fmax(G), fKneser(G), and
fPra(G), which are hereditary (monotone for induced subgraphs) and two random graph
models G(n, p) and G(n, n, p). We gave an upper bound for the order of magnitude for eight
of the possible ten problems, and we have also have conjectures for the missing two upper
bounds (Conjectures 15 and 16). We also established matching lower bounds in seven cases,
which also gave probably the best lower bound in two more cases (concerning fPra). All of
these 19 estimates were Θ(n/(log n)). In the last case (in Corollary 4) we have a weaker
bound, so it is natural to ask that
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Problem 18. Is it true that for any fixed 0 < p < 1 for G ∈ G(n, p) with high probability
one has Ω(n/(log n)) ≤ fmin(G)?

Let us remark that if G is a complement of a triangle-free graph then the Kneser rank and
Prague dimension is ∆(G) or ∆(G) + 1. So it can be Ω(n). For example, fKneser(K1,n−1) =
n− 1. No such results are known for fmin.

Problem 19. What is the maximum of fmin(G) over the set of n-vertex graphs G? Is it true
that fρ(G) = o(n) for every ρ ∈ {min, avg,max} and G ∈ G(n) ∪ G(n, n)?
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Z. Füredi and I. Kantor: Kneser ranks and min-difference representations 16

[13] J. Körner and A. Monti, Compact representations of the intersection structure of
families of finite sets, SIAM J. Discrete Math., 14 (2001), pp. 181–192.
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