provided by Repository of the Academy's Library

A Note on the Linear Cycle Cover Conjecture of Gyárfás and Sárközy

Beka Ergemlidze

Department of Mathematics Central European University Budapest, Hungary.

 ${\tt beka.ergemlidze@gmail.com}$

Ervin Győri

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences and Central European University Budapest, Hungary.

gyori.ervin@renyi.mta.hu

Abhishek Methuku

Department of Mathematics Central European University Budapest, Hungary.

abhishekmethuku@gmail.com

Submitted: Sep 16, 2017; Accepted: Apr 14, 2018; Published: May 25, 2018 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A linear cycle in a 3-uniform hypergraph H is a cyclic sequence of hyperedges such that any two consecutive hyperedges intersect in exactly one element and non-consecutive hyperedges are disjoint. Let $\alpha(H)$ denote the size of a largest independent set of H.

We show that the vertex set of every 3-uniform hypergraph H can be covered by at most $\alpha(H)$ edge-disjoint linear cycles (where we accept a vertex and a hyperedge as a linear cycle), proving a weaker version of a conjecture of Gyárfás and Sárközy.

Mathematics Subject Classifications: 05C35, 05C69

1 Introduction

A well-known theorem of Pósa [3] states that the vertex set of every graph G can be partitioned into at most $\alpha(G)$ cycles where $\alpha(G)$ denotes the independence number of G (where a vertex or an edge is accepted as a cycle).

Definition 1. A (linear cycle) linear path is a (cyclic) sequence of hyperedges such that two consecutive hyperedges intersect in exactly one element and two non-consecutive hyperedges are disjoint.

An independent set of a hypergraph H is a set of vertices that contain no hyperedges of H. Let $\alpha(H)$ denote the size of a largest independent set of H and we call it the

independence number of H. Gyárfás and Sárközy [2] conjectured that the following extension of Pósa's theorem holds: One can partition every k-uniform hypergraph H into at most $\alpha(H)$ linear cycles (here, as in Pósa's theorem, vertices and subsets of hyperedges are accepted as linear cycles). In [2] Gyárfás and Sárközy prove a weaker version of their conjecture for weak cycles (where only cyclically consecutive hyperedges intersect, but their intersection size is not restricted) instead of linear cycles. Recently, Gyárfás, Győri and Simonovits [1] showed that this conjecture is true for k=3 if we assume there are no linear cycles in H.

In this note, we show their conjecture is true for k=3 provided we allow the linear cycles to be edge-disjoint, instead of being vertex-disjoint.

Theorem 2. If H is a 3-uniform hypergraph, then its vertex set can be covered by at most $\alpha(H)$ edge-disjoint linear cycles (where we accept a single vertex or a hyperedge as a linear cycle).

Our proof uses induction on $\alpha(H)$. However, perhaps surprisingly, in order to make induction work, our main idea is to allow the hypergraph H to contain hyperedges of size 2 (in addition to hyperedges of size 3). First we will delete some vertices, and add certain hyperedges of size 2 into the remaining hypergraph so as to ensure the independence number of the remaining hypergraph is smaller than that of H. Then applying induction we will find edge-disjoint linear cycles (which may contain these added hyperedges) covering the remaining hypergraph. It will turn out that the added hyperedges behave nicely, allowing us to construct edge-disjoint linear cycles in H covering all of its vertices. The detailed proof is given in the next section.

2 Proof of Theorem 2

We call a hypergraph *mixed* if it can contain hyperedges of both sizes 2 and 3. A linear cycle in a mixed hypergraph is still defined according to Definition 1. We will in fact prove our theorem for mixed hypergraphs (which is clearly a bigger class of hypergraphs than 3-uniform hypergraphs). More precisely, we will prove the following stronger theorem.

Theorem 3. If H is a mixed hypergraph, then its vertex set V(H) can be covered by at most $\alpha(H)$ edge-disjoint linear cycles (where we accept a single vertex or a hyperedge as a linear cycle).

Proof. We prove the theorem by induction on $\alpha(H)$. If |V(H)| = 1 or 2, then the statement is trivial. If $|V(H)| \geq 3$ and $\alpha(H) = 1$, then H contains all possible edges of size 2 and there is a Hamiltonian cycle consisting only of edges of size 2, which is of course a linear cycle covering V(H).

Let $\alpha(H) > 1$. If $E(H) = \emptyset$, then $\alpha(H) = V(H)$ and the statement of our theorem holds trivially since we accept each vertex as a linear cycle. If $E(H) \neq \emptyset$, then let P be a longest linear path in H consisting of hyperedges h_0, h_1, \ldots, h_l ($l \geq 0$). If h_i is of size 3, then let $h_i = v_i v_{i+1} u_{i+1}$ and if it is of size 2, then let $h_i = v_i v_{i+1}$. A linear subpath of P starting at v_0 (i.e., a path consisting of hyperedges h_0, h_1, \ldots, h_j for some $j \leq l$) is called an *initial segment* of P. Let C be a linear cycle in H which contains the longest initial segment of P. If there is no linear cycle containing h_0 , then we simply let $C = h_0$.

Let us denote the subhypergraph of H induced on $V(H) \setminus V(C)$ by $H \setminus C$. Let $R = \{v_k u_k \mid \{v_k, u_k\} \subseteq V(P) \setminus V(C) \text{ and } v_0 v_k u_k \in E(H)\}$ be the set of red edges. Let us construct a new hypergraph H' where $V(H') = V(H) \setminus V(C)$ and $E(H') = E(H \setminus C) \cup R$. We will show that $\alpha(H') < \alpha(H)$ and any linear cycle cover of H' can be extended to a linear cycle cover of H by adding C and extending the red edges by v_0 .

The following claim shows that the independence number of H' is smaller than the independence number of H. This fact will later allow us to apply induction.

Claim 4. If I is an independent set in H', then $I \cup v_0$ is an independent set in H.

Proof. Suppose by contradiction that $h \subseteq (I \cup v_0)$ for some $h \in E(H)$. Then, clearly $v_0 \in h$ because otherwise I is not an independent set in H'. Now let us consider different cases depending on the size of $h \cap (V(P) \setminus V(C))$. If $|h \cap (V(P) \setminus V(C))| = 0$ then, by adding h to P, we can produce a longer path than P, a contradiction. If $|h \cap (V(P) \setminus V(C))| = 1$, let $h \cap (V(P) \setminus V(C)) = \{x\}$. Then the linear subpath of P between v_0 and x together with h forms a linear cycle which contains a larger initial segment of P than C, a contradiction. If $|h \cap (V(P) \setminus V(C))| = 2$, then let $h \cap (V(P) \setminus V(C)) = \{x, y\}$. Let us take smallest i and j such that $x \in h_i$ and $y \in h_j$ (i.e., if $x \in h_i \cap h_{i+1}$ then let us take h_i). If $i \neq j$, say i < j without loss of generality, then the linear subpath of P between v_0 and x together with h forms a linear cycle with longer initial segment of P than C, a contradiction. Therefore, i = j but in this case, $\{x, y\}$ is a red edge and so at most one of them can be contained in I, contradicting the assumption that $h = v_0 x y \subseteq (I \cup v_0)$. Hence, $I \cup v_0$ is an independent set in H, as desired.

The following claim will allow us to construct linear cycles in H from red edges.

Claim 5. The set of hyperedges of every linear cycle in H' contains at most one red edge.

Proof. Suppose by contradiction that there is a linear cycle C' in H' containing at least two hyperedges which are red edges. Then there is a linear subpath P' of C' consisting of hyperedges h'_0, h'_1, \ldots, h'_m such that $h'_0 := v_s u_s$ and $h'_m := v_t u_t$ (where s > t) are red edges but h'_k is not a red edge for any $1 \le k \le m-1$. Let us first take the smallest i such that $V(P') \cap h_i \ne \emptyset$ and then the smallest j such that $h'_j \cap h_i \ne \emptyset$. It is easy to see that $|V(P') \cap h_i| \le 2$ (since i was smallest). If $|h'_j \cap h_i| = 1$, then the linear cycle consisting of hyperedges h'_1, \ldots, h'_j and $h_i, h_{i-1}, \ldots, h_0$ and $v_0 v_s u_s$ contains a larger initial segment of P than C (as $h'_j \cap h_i \in V(P) \setminus V(C)$), a contradiction. If $|h'_j \cap h_i| = 2$, then notice that $|h'_{j+1} \cap h_i| = 1$. Now the linear cycle consisting of the hyperedges $h'_{m-1}, h'_{m-2}, \ldots, h'_{j+1}$ and $h_i, h_{i-1}, \ldots, h_0$ and $v_0 v_t u_t$ contains a larger initial segment of P than C, a contradiction.

By Claim 4, $\alpha(H') \leq \alpha(H) - 1$. So by induction hypothesis, V(H') can be covered by at most $\alpha(H)-1$ edge-disjoint linear cycles (where we accept a single vertex or a hyperedge as a linear cycle). Now let us replace each red edge $\{x,y\}$ with the hyperedge xyv_0 of H. Claim 5 ensures that in each of these linear cycles, at most one of the hyperedges is a red edge. Therefore, it is easy to see that after the above replacement, linear cycles of H' remain as linear cycles in H and they cover $V(H') = V(H) \setminus V(C)$. Now the linear cycle C, together with these linear cycles give us at most $\alpha(H) - 1 + 1 = \alpha(H)$ edge-disjoint linear cycles covering V(H), completing the proof.

Acknowledgements

We thank the anonymous referee for carefully reading our article. The research of the authors is partially supported by the National Research, Development and Innovation Office NKFIH, grant K116769.

References

- [1] A. Gyárfás, E. Győri and M. Simonovits. "On 3-uniform hypergraphs without linear cycles." Journal of Combinatorics 7.1 (2016): 205–216.
- [2] A. Gyárfás and G. Sárközy "Monochromatic loose-cycle partitions in hypergraphs." The Electronic Journal of Combinatorics 21.2 (2014), #P2.36.
- [3] L. Pósa "On the circuits of finite graphs." Magyar Tud. Akad. Mat. Kutató Int. Küzl 8 (1963): 355–361.