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THE Lp-MINKOWSKI PROBLEM FOR −n < p < 1

GABRIELE BIANCHI, KÁROLY J. BÖRÖCZKY, ANDREA COLESANTI, DEANE YANG

Abstract. Chou and Wang’s existence result for the Lp-Minkowski problem on S
n−1 for p ∈

(−n, 1) and an absolutely continuous measure is discussed and extended to more general measures.
In particular, we provide an almost optimal sufficient condition for the case p ∈ (0, 1).

1. Introduction

The setting for this paper is the n-dimensional Euclidean space Rn. A convex body K in R
n is a

compact convex set that has non-empty interior. For any x ∈ ∂K, νK(x) (“the Gauß map”) is the
family of all unit exterior normal vectors at x; in particular νK(x) consists of a unique vector for
Hn−1 almost all x ∈ ∂K (see, e.g., Schneider [78]), where Hn−1 stands for the (n− 1)-dimensional
Hausdorff measure.

The surface area measure SK of K is a Borel measure on the unit sphere S
n−1 of Rn, defined,

for a Borel set ω ⊂ S
n−1 by

SK(ω) = Hn−1
(
ν−1
K (ω)

)
= Hn−1 ({x ∈ ∂K : νK(x) ∩ ω 6= ∅})

(see, e.g., Schneider [78]).
As one of the cornerstones of the classical Brunn-Minkowski theory, the Minkowski’s existence

theorem can be stated as follows (see, e.g., Schneider [78]): If the Borel measure µ is not concen-
trated on a great subsphere of Sn−1, then µ is the surface area measure of a convex body if and
only if the following vector condition is verified

∫

Sn−1

udµ(u) = 0.

Moreover, the solution is unique up to translation. The regularity of the solution has been also
well investigated, see e.g., Lewy [54], Nirenberg [72], Cheng and Yau [20], Pogorelov [75], and
Caffarelli [14, 15].

The surface area measure of a convex body has a clear geometric significance. In [59], Lutwak
showed that there is an Lp analogue of the surface area measure (known as the Lp-surface area
measure). For a convex compact set K in R

n, let hK be its support function:

hK(u) = max{〈x, u〉 : x ∈ K} for u ∈ R
d,

where 〈·, ·〉 stands for the Euclidean scalar product.
Let Kn

0 denote the family of convex bodies in R
n containing the origin o. Note that if K ∈ Kn

0 ,
then hK ≥ 0. If p ∈ R and K ∈ Kn

0 , then the Lp-surface area measure is defined by

dSK,p = h1−pK dSK
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where for p > 1 the right hand side is assumed to be a finite measure. In particular, if p = 1, then
SK,p = SK , and if p < 1 and ω ⊂ S

n−1 is a Borel set, then

SK,p(ω) =

∫

x∈ν−1
K

(ω)

〈x, νK(x)〉1−pdHn−1(x).

In recent years, the Lp-surface area measure appeared in, e.g., [1,5,16,32,33,35,36,41,56–58,61–
63, 66, 68, 70, 71, 73, 74, 81]. In [59], Lutwak posed the associated Lp-Minkowski problem for p ≥ 1
which extends the classical Minkowski problem. In addition, the Lp-Minkowski problem for p < 1
was publicized by a series of talks by Erwin Lutwak in the 1990’s, and appeared in print in Chou
and Wang [22] for the first time.

Lp-Minkowski problem: For p ∈ R, what are the necessary and sufficient conditions on a
finite Borel measure µ on S

n−1 in order that µ is the Lp-surface area measure of a convex body
K ∈ Kn

0?

Besides discrete measures, an important special class is that of Borel measures µ on S
n−1 which

have a density with respect to Hn−1:

(1) dµ = f dHn−1

for some non-negative measurable function f on S
n−1. If (1) holds, then the Lp-Minkowski problem

amounts to solving the Monge-Ampère type equation

(2) h1−p det(∇2h+ hI) = f

where h is the unknown non-negative (support) function on S
n−1 to be found, ∇2h denotes the

(covariant) Hessian matrix of h with respect to an orthonormal frame on S
n−1, and I is the

identity matrix. Recent extensions of the Lp-Minkowski problem are the Lp dual Minkowski
problem proposed by Lutwak, Yang, Zhang [67], and the Orlicz Minkowski problem discussed by
Haberl, Lutwak, Yang, Zhang [34] (extending the case p > 1, for even measures), Huang, He [44]
(extending the case p > 1) and Jian, Lu [52] (extending the case 0 < p < 1).

The case p = 1, namely the classical Minkowski problem, was solved by Minkowski [69] in the
case of polytopes, and in the general case by Alexandrov [2], and Fenchel and Jessen [25]. The
case p > 1 and p 6= n was solved by Chou and Wang [22], Guan and Lin [31] and Hug, Lutwak,
Yang, and Zhang [47]; Zhu [93] investigated the dependence of the solution on p for a given target
measure. We note that the solution is unique if p > 1 and p 6= n, and unique up to translation
if p = 1. In addition, if p > n, then the origin lies in the interior of the solution K; however, if
1 < p < n, then possibly the origin lies on the boundary of the solution K even if (1) holds for a
positive continuous f .

The goal of this paper is to discuss the Lp-Minkowski problem for p < 1. The case p = 0 is the
so called logarithmic Minkowski problem see, e.g., [9–12, 56–58, 70, 71, 73, 79–81, 89]. Additional
references regarding the Lp Minkowski problem and Minkowski-type problems can be found in,
e.g., [19, 22, 30–34, 43, 45, 46, 51, 53, 55, 59, 60, 65, 69, 79, 80, 90, 91]. Applications of the solutions to
the Lp Minkowski problem can be found in, e.g., [3, 4, 21, 23, 26, 37–39, 48, 49, 64, 84, 85, 88].

We note that if p < 1, then non-congruent n-dimensional convex bodies may give rise to the
same Lp-surface area measure, see Chen, Li, and Zhu [18] for examples when 0 < p < 1, Chen, Li,
and Zhu [17] for examples when p = 0 and Chou and Wang [22] for examples when p < 0.

If 0 < p < 1, then the Lp-Minkowski problem is essentially solved by Chen, Li, and Zhu [18].

Theorem 1.1 (Chen, Li, and Zhu). If p ∈ (0, 1), and µ is a finite Borel measure on S
n−1 not

concentrated on a great subsphere, then µ is the Lp-surface area measure of a convex body K ∈ Kn
0 .
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We believe that the following property characterizes Lp-surface area measures for p ∈ (0, 1).

Conjecture 1.2. Let p ∈ (0, 1), and let µ be a non-trivial Borel measure on S
n−1. Then µ is the

Lp-surface area measure of a convex body K ∈ Kn
0 if and only if suppµ is not a pair of antipodal

points.

Conjecture 1.2 is proved in the planar case n = 2 independently by Böröczky and Trinh [13] and
Chen, Li,and Zhu [18]. Here we prove a slight extension of the result proved in [18]. We note that
Lemma 11.1 of the present paper implies that suppSK,p is not a pair of antipodal points for any
convex body K ∈ Kn

0 and p < 1. For X ⊂ R
n, its positive hull is

posX =

{
k∑

i=1

λixi : λi ≥ 0, xi ∈ X and k ≥ 1 integer

}
,

which is closed if X ⊂ S
n−1 is compact. We prove the following result.

Theorem 1.3. Let p ∈ (0, 1), let µ be a non-trivial finite Borel measure on S
n−1, and let L =

lin supp µ. If either suppµ spans Rn, or dimL ≤ n−1 and pos supp µ 6= L, then µ is the Lp-surface
area measure of a convex body K ∈ Kn

0 . In addition, if µ is invariant under a closed subgroup G
of O(n) acting as the identity on L⊥, then K can be chosen to be invariant under G.

The assumption in Theorem 1.3 can be equivalently stated in term of the subset conv ({o} ∪ suppµ)
in R

n (here convA denotes the convex hull of the set A). We require that either conv ({o} ∪ supp µ)
has non-empty interior or, if this is not the case, that conv ({o} ∪ suppµ) does not contain o in its
relative interior.

The case p = 0 concerns the cone volume measure. We say that a Borel measure µ on S
n−1

satisfies the subspace concentration condition if for any non-trivial linear subspace L we have

µ(L ∩ S
n−1) ≤ dimL

n
µ(Sn−1),

and equality holds if and only if there exists a complementary linear subspace L′ such that supp µ ⊂
L ∪ L′. Böröczky, Lutwak, Yang, and Zhang [10] proved that even cone volume measures are
characterized by the subspace concentration condition. The sufficiency part has been extended to
all Borel measures on S

n−1 by Chen, Li, and Zhu [17]. The part of Theorem 1.4 concerning the
action of a closed subgroup G of O(n) is not actually in [17] but could be verified easily using the
methods of our paper.

Theorem 1.4 (Chen, Li, Zhu). If µ is a Borel measure on S
n−1 satisfying the subspace concen-

tration condition, then µ is the L0-surface area measure of a convex body K ∈ Kn
0 . In addition, if

µ is invariant under a closed subgroup G of O(n), then K can be chosen to be invariant under G.

If p = 0, then not even a conjecture is known concerning which properties may characterize
L0-surface area measures. Note that Böröczky and Hegedűs [7] characterized the restriction of an
L0-surface area measure to a pair of antipodal points.

The main new result of this paper is the following statement regarding the case p ∈ (−n, 0).
Theorem 1.5. If p ∈ (−n, 0), and µ is a non-trivial Borel measure on S

n−1 satisfying (1) for a
non-negative function f in L n

n+p
(Sn−1), then µ is the Lp-surface area measure of a convex body

K ∈ Kn
0 . In addition, if µ is invariant under a closed subgroup G of O(n), then K can be chosen

to be invariant under G.

It is not clear whether the analogue of Theorem 1.5 can be expected in the critical case p = −n.
If ∂K is C2

+ and o ∈ intK, then L−n surface area measure is

(3) dSK,−n =
hK(u)

n+1

κ(u)
dHn−1,
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where κ(u) is the Gaussian curvature of ∂K at the point x ∈ ∂K with u ∈ νK(x). Note that
κ0(u) = κ(u)/hK(u)

n+1 is the so called centro-affine curvature (see Ludwig [57] or Stancu [81]),
which is equi-affine invariant in the following sense. For any A ∈ SL(n), if Ã(u) = Au

‖Au‖ is the

corresponding projective transformation of Sn−1, and κ̃0 is the centro-affine curvature function of
A−tK, then

κ̃0(Ã(u)) = κ0(u), ∀ u ∈ S
n−1.

In particular, Chou and Wang [22] proved the following formula for the L−n surface area measure.

Proposition 1.6 (Chou and Wang). Let K ∈ Kn
0 be such that o ∈ intK and ∂K is C3

+, so that
dSK,−n = f dHn−1 for a C1 function f according to (3). If V(ξ) = ξjA

ij∂i is a projective vector
field on S

n−1 for A ∈ GL(n), then
∫

Sn−1

h−n Vf dHn−1 = 0.

For the sake of completeness, we provide a proof of Proposition 1.6 in Section 12.
We will prove Theorems 1.3 and 1.5 via an approximation argument based on Theorem 1.7,

proved by Chou and Wang [22]. Of the latter, we will also provide a simplified and clarified
argument. Again, the part of Theorem 1.7 concerning the action of a closed subgroup G of O(n)
is not actually in [17] but could be verified easily using the methods of our paper.

Theorem 1.7 (Chou and Wang). If p ∈ (−n, 1), and µ is a Borel measure on S
n−1 satisfying (1)

where f is bounded and infu∈Sn−1 f(u) > 0, then µ is the Lp-surface area measure of a convex body
K ∈ Kn

0 . In addition, if µ is invariant under the closed subgroup G of O(n), then K can be chosen
to be invariant under G, and o ∈ intK provided p ∈ (−n, 2 − n].

Remark Theorems 1.3, 1.4 and 1.5 show that Theorem 1.7 holds for any p ∈ (−n, 1) and non-
negative bounded f with

∫
Sn−1 f dHn−1 > 0.

As already mentioned, if p = 0, then Böröczky and Hegedűs [7] provides some necessary condition
on an L0 surface area measure, more precisely, on the restriction of an L0-surface area measure
to pairs of antipodal points. Unfortunately, no necessary condition concerning Lp-surface area
measures is known to us for the case p < 0.

We conclude by mentioning the related paper by G. Bianchi, K. J. Böröczky and A. Colesanti [6]
which deals with the strict convexity and the C1 smoothness of the solution to the Lp Minkowski
problem when p < 1 and µ satisfies (1) for some function f which is bounded from above and from
below by positive constants.

2. Preparation

Let κn be the volume of the n-dimensional unit Euclidean ball Bn, and let σ(K) be the centroid
of a convex body K.

Lemma 2.1. For a convex body K in R
n,

(i): −1
n
(x− σ(K)) + σ(K) ∈ K for any x ∈ K;

(ii): (Blaschke-Santaló inequality)
∫

Sn−1

1

n(hK(u)− 〈σ(K), u〉)n dH
n−1(u) ≤ κ2n

V (K)
.

(iii): If ̺ > 0 is maximal and R > 0 is minimal such that σ(K) + ̺Bn ⊂ K and K ⊂
σ(K) +RBn, then

V (K) ≤ (n+ 1)κn−1̺R
n−1.
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Proof. In the case of the Blaschke-Santaló inequality, we note that if the origin is the centroid of
K, then the left hand side of (ii) is the volume of the polar body K∗, and the origin is the Santaló
point of K∗. Therefore (i) and (ii) are well-known facts, see Lemma 2.3.3 and (10.28) in [78].

For (iii), we assume that σ(K) = o. Let x0 ∈ ̺Bn ∩ ∂K, and let H be the common tangent
hyperplane to K and ̺Bn at x0. Since −x/n ∈ K for any x ∈ K as σ(K) = o, we deduce that
K lies between the parallel hyperplanes H and −nH whose distance is (n + 1)̺. Note that x0
is orthogonal to H . Now the projection ofK into x⊥0 is contained in RBn, we conclude (iii). Q.E.D.

For v ∈ S
n−1 and α ∈ (0, π

2
], let Ω(v, α) be the family of all u ∈ S

n−1 with ∠(u, v) ≤ α, where
∠(u, v) is the (smaller) angle formed by u and v, i.e. their geodesic distance on the unit sphere.
The following lemma is needed to show that with modified “energy function” ϕε (see next section),
the optimal “center” is in the interior.

Lemma 2.2. Let ε ∈ (0, 1
3
], R ≥ 1 and q ≥ n− 1; let K ∈ Kn

0 with o ∈ ∂K and diamK ≤ R, and
let v be an exterior unit normal at o.

(i): For α = arcsin ε
2R
, if ξ ∈ intK with ‖ξ‖ < ε/2 and u ∈ Ω(v, α), then hK(u)− 〈ξ, u〉 < ε.

(ii): If δ ∈ (0, sinα) and ξ ∈ intK satisfies ‖ξ‖ ≤ Rδ, then
∫

Ω(v,α)

(hK(u)− 〈ξ, u〉)−q dHn−1(u) ≥ (n− 2)κn−2

2qRq
log

sinα

δ
.

Proof. We may assume that K = {x ∈ RBn : 〈x, v〉 ≤ 0}, and hence hK(u) = R‖u|v⊥‖ =
R sin∠(u, v) if u ∈ Ω(v, π

2
). In particular, α = arcsin ε

2R
works in (i).

For (ii), if δ ∈ (0, sinα), u ∈ Ω(v, α) with ‖u|v⊥‖ > δ, and ‖ξ‖ < Rδ, then hK(u) − 〈ξ, u〉 <
2R||u|v⊥‖. We deduce that if ‖ξ‖ < Rδ for ξ ∈ intK, then
∫

Ω(v,α)

(hK(u)− 〈ξ, u〉)−q dHn−1(u) ≥
∫

[(sinα·Bn)\(δBn)]∩v⊥

1

2qRq‖x‖q dH
n−1(x)

=
(n− 2)κn−2

2qRq

∫ sinα

δ

tn−2−q dt ≥ (n− 2)κn−2

2qRq
log

sinα

δ
,

which in turn yields the lemma. Q.E.D.

Let K be a convex body in R
n. A point p in its boundary is said to be smooth if there exists a

unique hyperplane supporting K at p, and p is said to be singular if it is not smooth. We write
∂′K and ΞK to denote the set of smooth and singular points of ∂K, respectively. It is well known
that Hn−1(ΞK) = 0. We call K quasi-smooth if Hn−1(Sn−1\νK(∂′K)) = 0; namely, the set of
u ∈ S

n−1 that are exterior normals only at singular points has Hn−1-measure zero.
The following Lemma 2.3 will be used to prove first that the extremal convex body Kε is quasi-

smooth in Section 5, and secondly that it satisfies an Euler-Lagrange type equation in Section 6.
Let K and C be convex bodies containing the origin in their interior such that rC ⊂ K for some
r > 0. For t ∈ (−r, r), we consider the Wulff shape

Kt = {x ∈ R
n : 〈x, u〉 ≤ hK(u) + thC(u) for u ∈ S

n−1},
and we denote by ht the support function of Kt.

Lemma 2.3. Using the notation above, let u ∈ S
n−1.

(i): If K ⊂ RBn for R > 0 and t ∈ (−r, r), then |ht(u)− hK(u)| ≤ R
r
|t|.

(ii): If u is the exterior normal at some smooth point z ∈ ∂K, then

lim
t→0

ht(u)− hK(u)

t
= hC(u).
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Proof. If t ≥ 0 then ht = hK + thC , therefore we may assume that t < 0.
For (i), we observe that

(
1 +

t

r

)
K + |t|C ⊂

(
1 +

t

r

)
K +

|t|
r

·K = K.

In other words, K̃t = (1 + t
r
)K ⊂ Kt, which in turn yields that if u ∈ S

n−1, then

hK(u)− ht(u) ≤ hK(u)− hK̃t
(u) =

|t|
r

· hK(u) ≤
R

r
· |t|.

We turn to (ii). For u ∈ S
n−1, we have hK(u) − ht(u) ≥ |t| hC(u), and hence it is sufficient to

prove that if ε > 0 then

(4) hK(u)− ht(u) ≤ (hC(u) + ε)|t|
provided that t < 0 has small absolute value. Let D be the diameter of C, and let δ = ε√

D2+ε2
. If

u is an exterior normal to C at a point q ∈ ∂C, then w = q + εu satisfies

〈u, w〉 = hC(u) + ε(5)

〈u, x− w〉 ≤ −δ‖x− w‖ for all x ∈ C.(6)

Since z ∈ ∂K is a smooth point with exterior unit normal u, there exists ̺ > 0 such that if
‖x− z‖ ≤ ̺ and 〈u, x− z〉 ≤ −δ‖x− z‖, then x ∈ K. We deduce from (6) that if (D + ε)|t| < ̺,
then y + |t|C ⊂ K for y = z − |t|w, and hence y ∈ Kt. Therefore

hK(u)− ht(u) ≤ 〈u, z − y〉 = (hC(u) + ε)|t|,
proving (4). Q.E.D.

Remark. Results similar to those proved in the previous lemma are contained in [50, Section 3].

Using the notation of Lemma 2.3, if K is quasi-smooth, then

lim
t→0

ht(u)− hK(u)

t
= hC(u)

holds for Hn−1 almost all u ∈ S
n−1. In particular, Lemma 3.5 below applies.

3. The energy function and optimal center

Let p ∈ (−n, 1). For t > 0, we set

ϕ(t) =






tp if p ∈ (0, 1),

log t if p = 0,

−tp if p ∈ (−n, 0).
The reasons behind this choice of ϕ are that if t ∈ (0,∞), then

(7) ϕ′(t) =

{ |p|tp−1 if p ∈ (−n, 1)\{0}
tp−1 if p = 0

is positive and decreasing, ϕ is strictly increasing and ϕ′′ is negative and continuous, and hence ϕ
is strictly concave. In addition,

(8) lim
t→∞

ϕ(t) =

{
∞ if p ∈ [0, 1),
0 if p ∈ (−n, 0).

Let q = max{|p|, n − 1}. In order to force the “optimal center” of a convex body K into its
interior, we change ϕ(t) into a function of order −t−q if t is small (see Proposition 3.2). For
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t ∈ (0, 1), the equation ψ(s) = −t−(n−1) + (n − 1)t−n(s − t) of the tangent to the graph of
t 7→ −t−(n−1) satisfies ψ(3t) ≥ t−(n−1) ≥ 1. Thus for any ε ∈ (0, 1

3
), there exists an increasing

strictly concave function ϕε : (0,∞) → R, with continuous and negative second derivative, such
that

(9) ϕε(t) =

{
ϕ(t) if t ≥ 3ε,

−t−q if 0 < t ≤ ε,

and in addition

(10) ϕε(t) ≥ −t−q if t ∈ (0, 1).

Let us observe that if p ∈ (−n,−(n− 1)], we may choose ϕε = ϕ.
Let f be a measurable function on S

n−1 such that there exist τ2 > τ1 > 0 satisfying

(11) τ1 < f(u) < τ2 for u ∈ S
n−1,

and let µ be the Borel measure defined by dµ = f dHn−1. We remark that, even when not explicitly
stated, in all the results contained in Sections 3, 4, 5, 6 and 7 it is always assumed that (11) holds.

For ε ∈ (0, 1
3
), a convex body K and ξ ∈ intK, we define

Φε(K, ξ) =

∫

Sn−1

ϕε(hK(u)− 〈u, ξ〉) dµ(u).

The proofs of Proposition 3.2 and Lemma 3.4 depend on the concavity of ϕε and the following
Lemma 3.1. Here and throughout the paper, the convergence of sequence of convex bodies is
always meant in the sense of the Hausdorff metric.

Lemma 3.1. Let {Km} be a sequence of convex bodies tending to a convex body K in R
n, and let

ξm ∈ intKm be such that limm→∞ ξm = z0 ∈ ∂K. Then

lim
m→∞

Φε(Km, ξm) = −∞.

Proof. Let rm > 0 be maximal such that ξm + rmB
n ⊂ Km, and let ym ∈ (ξm + rmB

n) ∩ ∂Km.
The condition z0 ∈ ∂K implies that rm = ‖ym − ξm‖ tends to zero. Let vm ∈ S

n−1 be an exterior
normal at ym to Km. For R = 1 + diamK, we have diamKm ≤ R for large m; let α = arcsin ε

2R
be the constant of Lemma 2.2. It follows from Lemma 2.2 (i) that if u ∈ Ω(vm, α) (the geodesic
ball on S

n−1, centered at vm with opening α), then hKm
(u)− 〈u, ξm〉 < ε for all m, and hence

ϕε(hKm
(u)− 〈u, ξm〉) = −(hKm

(u)− 〈u, ξm〉)−q.
Therefore Lemma 2.2 (ii) and (11) yield that

(12) lim
m→∞

∫

Ω(vm,α)

ϕε(hKm
(u)− 〈u, ξm〉) dµ(u) = −∞.

On the other hand, ϕε(hKm
(u)− 〈u, ξm〉) ≤ ϕε(R) holds for all m and u ∈ S

n−1. We deduce from
(11) that

(13)

∫

Sn−1\Ω(v,α)

ϕε(hKm
(u)− 〈u, ξm〉) dµ(u) < τ2nκnϕε(R)

for all m. Combining (12) and (13) we conclude the proof. Q.E.D.

Now we single out the optimal ξ ∈ intK.

Proposition 3.2. For ε ∈ (0, 1
3
) and a convex body K in R

n, there exists a unique ξ(K) ∈ intK
such that

Φε(K, ξ(K)) = max
ξ∈intK

Φε(K, ξ).
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Proof. Let ξ1, ξ2 ∈ intK, ξ1 6= ξ2, and let λ ∈ (0, 1). If u ∈ S
n−1\(ξ1 − ξ2)

⊥, then 〈u, ξ1〉 6= 〈u, ξ2〉,
and hence the strict concavity of ϕε yields that

ϕε(hK(u)− 〈u, λξ1 + (1− λ)ξ2〉) > λϕε(hK(u)− 〈u, ξ1〉) + (1− λ)ϕε(hK(u)− 〈u, ξ2〉).
We deduce from (11) that

Φε(K, λξ1 + (1− λ)ξ2) > λΦε(K, ξ1) + (1− λ)Φε(K, ξ2),

thus Φε(K, ξ) is a strictly concave function of ξ ∈ intK.
Let ξm ∈ intK such that

lim
m→∞

Φε(K, ξm) = sup
ξ∈intK

Φε(K, ξ).

We may assume that limm→∞ ξm = z0 ∈ K, and Lemma 3.1 yields z0 ∈ intK. Since Φε(K, ξ) is a
strictly concave function of ξ ∈ intK, we conclude Proposition 3.2. Q.E.D.

Since ξ 7→ Φε(K, ξ) is maximal at ξ(K) ∈ intK, we deduce

Corollary 3.3. For ε ∈ (0, 1
3
) and a convex body K in R

n, we have
∫

Sn−1

u ϕ′
ε

(
hK(u)− 〈u, ξ(K)〉

)
dµ(u) = o.

An essential property of ξ(K) is its continuity with respect to K.

Lemma 3.4. For ε ∈ (0, 1
3
), both ξ(K) and Φε(K, ξ(K)) are continuous functions of the convex

body K in R
n.

Proof. Let {Km} be a sequence convex bodies tending to a convex body K in R
n. We may assume

that limm→∞ ξ(Km) = z0 ∈ K. There exists r > 0 such that ξ(K) + 2r Bn ⊂ K, and hence we
may also assume that ξ(K) + r Bn ⊂ Km for all m. Thus

Φε(Km, ξ(Km)) ≥ Φε(Km, ξ(K)) ≥ Φε(ξ(K) + r Bn, ξ(K)),

and in turn Lemma 3.1 yields that z0 ∈ intK. It follows that ϕε(hKm
(u) − 〈u, ξ(Km)〉) tends

uniformly to ϕε(hK(u)− 〈u, z0〉). In particular,

Φε(K, z0) = lim
m→∞

Φε(Km, ξ(Km)) ≥ lim sup
m→∞

Φε(Km, ξ(K)) = Φε(K, ξ(K)).

Since ξ(K) is the unique maximum point of ξ 7→ Φε(K, ξ) on intK according to Proposition 3.2,
we have z0 = ξ(K). In turn, we conclude Lemma 3.4. Q.E.D.

The next lemma shows that if we perturb a convex body K in a differentiable way, then ξ(K)
changes also in a differentiable way.

Lemma 3.5. For ε ∈ (0, 1
3
), let c > 0 and t0 > 0, and let Kt be a family of convex bodies with

support function ht for t ∈ [0, t0). Assume that

(1) |ht(u)− h0(u)| ≤ ct for each u ∈ S
n−1 and t ∈ [0, t0),

(2) limt→0+
ht(u)−h0(u)

t
exists for Hn−1-almost all u ∈ S

n−1.

Then limt→0+
ξ(Kt)−ξ(K0)

t
exists.

Proof. We may assume that ξ(K0) = o. Since ξ(K) ∈ intK is the unique maximizer of ξ 7→
Φε(K, ξ), we deduce that

lim
t→0+

ξ(Kt) = o.



THE Lp-MINKOWSKI PROBLEM FOR −n < p < 1 9

Let g(t, u) = ht(u)−h0(u) for u ∈ S
n−1 and t ∈ [0, t0). In particular, there exists constant γ > 0

such that if u ∈ S
n−1 and t ∈ [0, t0), then

ϕ′
ε(ht(u)− 〈u, ξ(Kt)〉) = ϕ′

ε(h0(u)) + ϕ′′
ε(h0(u))

(
g(t, u)− 〈u, ξ(Kt)〉

)
+ e(t, u)

where, setting γ1 = 2γc2 and γ2 = 2γ, we have

|e(t, u)| ≤ γ(g(t, u)− 〈u, ξ(Kt)〉)2 ≤ γ(ct + ‖ξ(Kt)‖)2 ≤ γ1t
2 + γ2‖ξ(Kt)‖2.

In particular, e(t, u) = e1(t, u) + e2(t, u) where

(14) |e1(t, u)| ≤ γ1t
2 and |e2(t, u)| ≤ γ2‖ξ(Kt)‖2.

It follows from applying Corollary 3.3 to Kt and K0 that
∫

Sn−1

u
(
ϕ′′
ε(h0(u))

(
g(t, u)− 〈u, ξ(Kt)〉

)
+ e(t, u)

)
dµ(u) = o,

which can be written as
∫

Sn−1

u
(
ϕ′′
ε(h0(u)) g(t, u)+e1(t, u)

)
dµ(u) =

∫

Sn−1

u 〈u, ξ(Kt)〉ϕ′′
ε(h0(u)) dµ(u)−

∫

Sn−1

u e2(t, u) dµ(u).

Since ϕ′′
ε(s) < 0 for all s > 0, the symmetric matrix

A =

∫

Sn−1

u⊗ u ϕ′′
ε(h0(u)) dµ(u)

is negative definite because for any v ∈ S
n−1, we have

vTAv =

∫

Sn−1

〈u, v〉2 ϕ′′
ε(h0(u)) f(u) dHn−1(u) < 0.

In addition, A satisfies that
∫

Sn−1

u 〈u, ξ(Kt)〉 ϕ′′
ε(h0(u)) dµ(u) = Aξ(Kt).

It follows from (14) that if t is small, then

(15) A−1

∫

Sn−1

u ϕ′′
ε(h0(u)) g(t, u) dµ(u) + ψ1(t) = ξ(Kt)− ψ2(t),

where ‖ψ1(t)‖ ≤ α1t
2 and ‖ψ2(t)‖ ≤ α2‖ξ(Kt)‖2 for constants α1, α2 > 0. Since ξ(Kt) tends to

o, if t is small, then ‖ξ(Kt) − ψ2(t)‖ ≥ 1
2
‖ξ(Kt)‖, thus ‖ξ(Kt)‖ ≤ β t for a constant β > 0 by

g(t, u) ≤ ct. In particular, ‖ψ2(t)‖ ≤ α2β
2t2. Since there exists limt→0+

g(t,u)−g(0,u)
t

= ∂1g(0, u) for

µ almost all u ∈ S
n−1, and g(t,u)−g(0,u)

t
< c for all u ∈ S

n−1 and t > 0, we conclude that

d

dt
ξ(Kt)

∣∣∣∣
t=0

= A−1

∫

Sn−1

u ϕ′′
ε(h0(u)) ∂1g(0, u) dµ(u).

Q.E.D.

Corollary 3.6. Under the conditions of Lemma 3.5, and denoting K0 by K, we have

d

dt
Φε(Kt, ξ(Kt))

∣∣∣∣
t=0

=

∫

Sn−1

∂

∂t
hKt

(u)

∣∣∣∣
t=0

ϕ′
ε

(
hK(u)− 〈u, ξ(K)〉

)
dµ(u).



10 G. BIANCHI, K.J. BÖRÖCZKY, A. COLESANTI, D. YANG

Proof. We write h(t, u) = hKt
(u) and ξ(t) = ξ(Kt); Corollary 3.3 and Lemma 3.5 yield

d

dt
Φε(Kt, ξ(Kt))

∣∣∣∣
t=0

=
d

dt

∫

Sn−1

ϕε
(
h(t, u)− 〈u, ξ(t)〉

)
dµ(u)

∣∣∣∣
t=0

=

∫

Sn−1

∂1h(0, u) ϕ
′
ε

(
hK(u)− 〈u, ξ(K)〉

)
dµ(u)−

∫

Sn−1

〈u, ξ′(0)〉 ϕ′
ε

(
hK(u)− 〈u, ξ(K)〉

)
dµ(u)

=

∫

Sn−1

∂1h(0, u) ϕ
′
ε

(
hK(u)− 〈u, ξ(K)〉

)
dµ(u).

Q.E.D.

4. The existence of the minimum convex body Kε

Let p ∈ (−n, 1), and let K1 ⊂ Kn
0 be the set of convex bodies with volume one and containing

the origin.

We observe that κ
−1/n
n > 1

2
, κ

−1/n
n Bn ∈ K1 and the diameter of κ

−1/n
n Bn is 2κ

−1/n
n . It follows

from ϕε ≤ ϕ and the monotonicity of ϕ, that if ε ∈ (0, 1
6
), then

Φε(κ
−1/n
n Bn, ξ(κ−1/n

n Bn)) ≤
∫

Sn−1

ϕ(2κ−1/n
n )dµ = ϕ(2κ−1/n

n )µ(Sn−1)(16)

≤





2pκ
−p

n
n nκn · τ2 if p ∈ (0, 1),

log
(
2κ

−1
n
n

)
nκn · τ2 if p = 0,

−2pκ
−p

n
n nκn · τ1 if p ∈ (−n, 0).

For K ∈ K1, let R(K) = max{‖x − σ(K)‖ : x ∈ K}. We define the measure of the empty set
to be zero. We note that if α ∈ (0, π

2
) and v ∈ S

n−1, then

(17) Hn−1
(
{u ∈ S

n−1 : 〈u, v〉 ≥ cosα}
)
≥ (sinα)n−1κn−1.

Lemma 4.1. Let p ∈ [0, 1). There exists R0 > 1, depending on n, p, τ1 and τ2, such that if
K ∈ K1, R(K) > R0 and ε ∈ (0, 1

6
), then

Φε(K, ξ(K)) > Φε(κ
−1/n
n Bn, ξ(κ−1/n

n Bn)).

Proof. Let K ∈ K1. We may assume σ(K) = o and R = R(K) > 2n. Let v ∈ S
n−1 satisfy Rv ∈ K.

It follows from Lemma 2.1 (i) that (−R/n)v ∈ K, as well.
We write c0, c1 to denote positive constants depending on n, p, τ1, τ2. We consider

Ξ0 = {u ∈ S
n−1 : hK(u) < 1},

and Ξ1 = S
n−1\Ξ0. We observe that if u ∈ Ω(v, π

3
), then hK(u) ≥ 〈u,Rv〉 ≥ R/2, and in turn

Ω(v, π
3
) ⊂ Ξ1. Since µ(Ω(v,

π
3
)) ≥ τ1(

√
3
2
)n−1κn−1 by (17) and ϕε(t) = ϕ(t) > 0 for t > 1, we have

(18)

∫

Ξ

ϕε ◦ hK dµ ≥
∫

Ω(v,π
3
)

ϕε ◦ hK dµ ≥ τ1

(√
3

2

)n−1

κn−1ϕ(R/2) = c1ϕ(R/2).

However, if u ∈ Ξ0, then |〈u, v〉| < n/R as 1 > hK(u) ≥ |〈(R/n)v, u〉|. It follows that

(19) Hn−1(Ξ0) ≤ (n− 1)κn−1 ·
2n

R
< (n− 1)κn−1.
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We deduce from (10), the Hölder inequality, the Blaschke-Santaló inequality Lemma 2.1 (ii) and
(19) that

∫

Ξ0

ϕε ◦ hK dµ ≥ −τ2
∫

Ξ0

h
−(n−1)
K dHn−1

≥ −τ2
(∫

Ξ0

h−nK dHn−1

)n−1
n

Hn−1(Ξ0)
1
n

≥ −τ2(nκ2n)
n−1
n ((n− 1)κn−1)

1
n = −c0.(20)

Writing c(n, p, τ1, τ2) to denote the constant on the right hand side of (16), comparing (16), (18)
and (20) yields

c1ϕ(R/2)− c0 ≤ c(n, p, τ1, τ2),

and, in turn, the existence of R0 as limR→∞ ϕ(R/2) = ∞ by (8). Q.E.D.

The argument in the case p ∈ (−n, 0) is similar to the previous one, but it needs to be refined
as now limt→∞ ϕ(t) = 0.

Lemma 4.2. Let p ∈ (−n, 0). There exists R0 > 1, depending on n, p, τ1 and τ2, such that if
K ∈ K1, R(K) > R0, and ε ∈ (0, 1

6
), then

Φε(K, ξ(K)) > Φε(κ
−1/n
n Bn, ξ(κ−1/n

n Bn)).

Proof. Let K ∈ K1. We may assume σ(K) = o and R = R(K) > 4n2. Let v ∈ S
n−1 satisfy

Rv ∈ K. It follows from Lemma 2.1 (i) that (−R/n)v ∈ K, as well.
In this case, we divide S

n−1 into three parts:

Ξ0 = {u ∈ S
n−1 : hK(u) < 1},

Ξ1 = {u ∈ S
n−1 : 1 ≤ hK(u) <

√
R},

Ξ2 = {u ∈ S
n−1 : hK(u) ≥

√
R}.

If u ∈ Ξ0 ∪ Ξ1, then
√
R > hK(u) ≥ max{〈u,Rv〉, 〈u, (−R/n)v〉} ≥ (R/n)|〈u, v〉|.

Thus |〈u, v〉| ≤ n/
√
R, which in turn yields that

(21) Hn−1(Ξ0 ∪ Ξ1) ≤
4n(n− 1)κn−1√

R
.

We write c0, c1, c2 to denote positive constants depending on n, p, τ1, τ2. If u ∈ Ξ0, then ϕε(hK(u)) ≥
−hK(u)−q according to (10), and hence we deduce from the Hölder inequality, the Blaschke-Santaló
inequality Lemma 2.1 (ii) and (21) that

∫

Ξ0

ϕε ◦ hK dµ ≥ −τ2
∫

Ξ0

h−qK dHn−1

≥ −τ2
(∫

Ξ0

h−nK dHn−1

) q

n

Hn−1(Ξ0)
n−q

n

≥ −τ2(nκ2n)
q

n

(
4n(n− 1)κn−1√

R

)n−q

n

= −c0R−n−q

2n .(22)
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Next if u ∈ Ξ1, then ϕε(hK(u)) = −hK(u)−|p|, and hence we deduce from the Hölder inequality,
the Blaschke-Santaló inequality Lemma 2.1 (ii) and (21) that

∫

Ξ1

ϕε ◦ hK dµ ≥ −τ2
∫

Ξ1

h
−|p|
K dHn−1

≥ −τ2
(∫

Ξ1

h−nK dHn−1

) |p|
n

Hn−1(Ξ1)
n−|p|

n

≥ −τ2(nκ2n)
|p|
n

(
4n(n− 1)κn−1√

R

)n−|p|
n

= −c1R−n−|p|
2n .(23)

Finally, if u ∈ Ξ2, then ϕε(hK(u)) ≥ ϕε(
√
R), and hence

(24)

∫

Ξ2

ϕε ◦ hK dµ ≥ τ2nκn · ϕε(
√
R) = c2ϕε(

√
R).

Writing c(n, p, τ1, τ2) < 0 to denote the constant on the right hand side of (16) in the case p ∈
(−n, 0), comparing (16), (22), (23) and (24) yields

−c0R−n−q

2n − c1R
−n−|p|

2n + c2ϕε(
√
R) ≤ c(n, p, τ1, τ2) < 0,

and in turn the existence of R0 as limR→∞ ϕ(
√
R) = 0 by (8). Q.E.D.

We deduce from the Blaschke selection theorem and the continuity of Φε(K, ξ(K)) (see Lemma 3.4)
the existence of the extremal body Kε.

Corollary 4.3. For every ε ∈ (0, 1
6
), if R0 > 0 is the number depending on n, p, τ1 and τ2 of

Lemma 4.1 and Lemma 4.2, there exists Kε ∈ K1 with R(Kε) ≤ R0, such that

Φε(K
ε, ξ(Kε)) = min

K∈K1

Φε(K, ξ(K)).

5. Kε is quasi-smooth

Lemma 5.1 below is essential in order to apply Lemma 3.5. For any convex bodyK and ω ⊂ S
n−1,

we define
ν−1
K (ω) = {x ∈ ∂K : νK(x) ∩ ω 6= ∅}.

For u ∈ S
n−1, we write F (K, u) to denote the face of K with exterior unit normal u; in other

words,
F (K, u) = {x ∈ ∂K : 〈x, u〉 = hK(u)}.

Lemma 5.1. Let K be a convex body with rBn ⊂ intK for r > 0, let ω ⊂ S
n−1 be closed, and let

Kt = {x ∈ K : 〈x, v〉 ≤ hK(v)− t for every v ∈ ω}
for t ∈ (0, r). If ht is the support function of Kt, then limt→0+

ht(u)−hK(u)
t

exists for all u ∈ S
n−1.

Remark Readily, limt→0+
ht(u)−hK(u)

t
≤ −1 if u ∈ ω.

Proof. We set X = ν−1
K (ω); this is a compact set. We consider two cases: either u is an exterior

unit normal at some y 6∈ X , or F (K, u) ⊂ X .

In the first case ht(u) = hK(u) for sufficiently small t, and hence limt→0
ht(u)−hK(u)

t
= 0.

Next let F (K, u) ⊂ X for u ∈ S
n−1, and let z ∈ relintF (K, u). We define Σ to be the support

cone at z; namely,

Σ = cl{α(y − z) : y ∈ K and α ≥ 0} = {y ∈ R
n : 〈y, v〉 ≤ 0 for v ∈ νK(z)}.
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For small t > 0, let
Ct = {x ∈ Σ : 〈x, v〉 ≤ −t for v ∈ ω ∩ νK(z)};

note that Ct is a closed convex set satisfying Kt − z ⊂ Ct, and Ct = tC1. We define

ℵ = sup{〈x, u〉 : x ∈ C1} ≤ 0,

and claim that for any τ > 0 there exists t0 > 0 depending on z, K and τ such that if t ∈ (0, t0),
then

(25) (ℵ − τ)t ≤ ht(u)− hK(u) ≤ ℵt.
To prove (25), we may assume that z = o, and hence hK(v) = 0 for all v ∈ νK(z). For the upper
bound in (25), we observe that Kt ⊂ Ct, and hence

ht(u)− hK(u) = ht(u) ≤ sup{〈x, u〉 : x ∈ Ct} = ℵt.
For the lower bound, let yτ ∈ intC1 be such that

〈yτ , u〉 > ℵ − τ.

Since ω ∩ νK(o) is compact, there exists δ > 0 such that

〈yτ , v〉 ≤ −1 − δ for v ∈ ω ∩ νK(o).
Moreover, yτ ∈ int Σ yields the existence of t1 > 0 such that tyτ ∈ K if t ∈ (0, t1].

We also need one more constant reflecting the boundary structure of K near o. Recall that
hK(w) ≥ 0 for all w ∈ S

n−1, and hK(w) = 0 if and only if w ∈ νK(o). Since ω is compact, there
exists γ > 0 such that

if w ∈ ω and ‖w − v‖ ≥ δ/‖yτ‖ for all v ∈ ω ∩ νK(o), then hK(w) ≥ γ.

We finally define t0 ∈ (0, t1] by the condition t0‖yτ‖+ t0 < γ.
Let t ∈ (0, t0), and hence tyτ ∈ K. If w ∈ ω satisfies ‖w − v‖ ≥ δ/‖yτ‖ for all v ∈ ω ∩ νK(o),

then
〈tyτ , w〉 ≤ t0‖yτ‖ < γ − t0 < hK(w)− t.

However, if w ∈ ω and there exists v ∈ ω ∩ νK(o) satisfying ‖w − v‖ < δ/‖yτ‖, then
〈tyτ , w〉 = 〈tyτ , w − v〉+ 〈tyτ , v〉 ≤ tδ + t(−1 − δ) = −t ≤ hK(w)− t.

We deduce that tyτ ∈ Kt, thus

ht(u)− hK(u) ≥ 〈tyτ , u〉 ≥ (ℵ − τ)t,

concluding the proof of (25).

In turn, (25) yields that limt→0+
ht(u)−hK(u)

t
= ℵ. Q.E.D.

A crucial fact for us is Alexandrov’s Lemma 5.2 (see Lemma 7.5.3 in [78]). To state this, let
g : (−r, r)× S

n−1 → R, r > 0, verify

• g(0, u) = hK(u) for a convex body K;

• for every u ∈ S
n−1 the limit limt→0

g(t,u)−g(0,u)
t

= ∂1g(0, u) exists (finite) and the convergence
is uniform with respect to u ∈ S

n−1; moreover ∂1g(0, u) is continuous with respect to
u ∈ S

n−1;
• Kt = {x ∈ R

n : 〈x, u〉 ≤ g(t, u) for any u ∈ S
n−1} is a convex body for t ∈ (−r, r).

Lemma 5.2 (Alexandrov). In the notation introduced above, we have

lim
t→0

V (Kt)− V (K)

t
=

∫

Sn−1

∂1g(0, u) dSK(u).

Next we present a way to improve on Φε(K, ξ(K)) while staying in the family K1.
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Proposition 5.3. If for K ∈ K1 there exists a closed set ω ⊂ S
n−1 with Hn−1(ω) > 0, such that

SK(ω) = 0, then there exists a convex body K̃ ∈ K1 such that Φε(K̃, ξ(K̃)) < Φε(K, ξ(K)).

Proof. For small t ≥ 0, we consider

Kt = {x ∈ K : 〈x, u〉 ≤ hK(u)− t for u ∈ ω},
and

K̃t = V (Kt)
−1/nKt ∈ K1.

We define α(t) = V (Kt)
−1/n, so that in particular α(0) = 1. We claim that

(26) α′(0) = 0.

Since α is monotone decreasing, it is equivalent to prove that if η ∈ (0, 1), then

(27) lim inf
t→0+

V (Kt)− V (K)

t
≥ −η.

Since SK(ω) = 0 and ω is closed, we can choose a continuous function ψ : Sn−1 → [0, 1] such that
ψ(u) = 1 if u ∈ ω, and ∫

Sn−1

ψ dSK ≤ η.

For small t > 0, we consider γt = hK − tψ and

Kψ,t = {x ∈ K : 〈x, u〉 ≤ γt(u) for u ∈ ω},
and hence Kψ,t ⊂ Kt. Using Lemma 5.2, we deduce that

lim inf
t→0+

V (Kt)− V (K)

t
≥ d

dt
V (Kψ,t)

∣∣∣∣
t=0+

= −
∫

Sn−1

ψ dSK ≥ −η.

We conclude (27), and in turn (26).
We set h(t, u) = hKt

(u). As

K0,t = {x ∈ K : x+ tBn ⊂ K} ⊂ Kt,

Lemma 2.3 (i), with C = Bn, yields that there is c > 0 such that if t > 0 is small, then

−ct ≤ hK0,t(u)− hK(u) ≤ h(t, u)− h(0, u) ≤ 0

for any u ∈ S
n−1. In addition, we deduce from Lemma 5.1 that limt→0+

h(t,u)−h(0,u)
t

= ∂1h(0, u) ≤
0 exists for any u ∈ S

n−1 where ∂1h(0, u) ≤ −1 for u ∈ ω by definition. Next let h̃(t, u) =
α(t)h(t, u) = hK̃t

(u) for u ∈ S
n−1 and small t > 0. Therefore there exists c̃ > 0 such that if t > 0

is small, then |h̃(t, u)− h̃(0, u)| ≤ c̃t for any u ∈ S
n−1, and α(0) = 1 and (26) implies that

lim
t→0+

h̃(t, u)− h̃(0, u)

t
= ∂1h̃(0, u) = ∂1h(0, u) ≤ 0

exists for any u ∈ S
n−1, where ∂1h̃(0, u) ≤ −1 for u ∈ ω. We may assume that ξ(K) = o and

K ⊂ RBn for R > 0 where K = K̃0. As ϕ
′
ε is positive and monotone decreasing, Hn−1(ω) > 0 and

Corollary 3.6 imply

d

dt
Φε(K̃t, ξ(K̃t))

∣∣∣∣
t=0

=

∫

Sn−1

∂1h̃(0, u) · ϕ′
ε(hK(u)) dµ(u) ≤

∫

ω

(−1)ϕ′
ε(R) dµ(u) < 0.

Therefore Φε(K̃t, ξ(K̃t)) < Φε(K, ξ(K)) for small t > 0, which proves Lemma 5.3. Q.E.D.

Corollary 5.4. Kε is quasi-smooth.
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Proof. Let ∂′K and ΞK be as in the definition of quasi-smooth body, immediately after the proof
of Lemma 2.2. If K ∈ K1 is not quasi-smooth, then Hn−1(Sn−1\νK(∂′K)) > 0. Now there exists a
closed set ω ⊂ S

n−1\νK(∂′K) such that Hn−1(ω) > 0. If an exterior normal at x ∈ ∂K lies in ω,
then x ∈ ΞK , and hence SK(ω) ≤ Hn−1(ΞK) = 0. Thus Proposition 5.3 yields the existence of a

convex body K̃ ∈ K1 such that Φ(K̃, ξ(K̃)) < Φ(K, ξ(K)). We conclude that Kε is quasi-smooth
by its extremality property. Q.E.D.

6. The variational formula (to get λε)

We define

(28) λε =
1

n

∫

Sn−1

hKε−ξ(Kε)(u) · ϕ′
ε(hKε−ξ(Kε)(u)) dµ(u).

Proposition 6.1. ϕ′
ε(hKε(u)− 〈ξ(Kε), u〉) dµ(u) = λε dSKε as measures on S

n−1.

Proof. To simplify the argument, we write K = Kε, and assume that ξ(K) = o. First we claim
that if C is any convex body with o ∈ intC, then

(29)

∫

Sn−1

hCλε dSK =

∫

Sn−1

hC(u)ϕ
′
ε(hK(u)) dµ(u).

Assuming rC ⊂ K for r > 0, if t ∈ (−r, r), then we consider

Kt = {x ∈ K : 〈x, u〉 ≤ hK(u) + thC(u) for u ∈ S
n−1},

and
K̃t = V (Kt)

−1/nKt ∈ K1.

We define α(t) = V (Kt)
−1/n, so that in particular α(0) = 1. Lemma 5.2 yields that

d

dt
V (Kt)

∣∣∣∣
t=0

=

∫

Sn−1

hC dSK ,

and hence

(30) α′(0) =
−1

n

∫

Sn−1

hC dSK .

We write h(t, u) = hKt
(u). Since K is quasi-smooth, Lemma 2.3 (i) and (ii) imply that there

exists c > 0 such that if t ∈ (−r, r), then |h(t, u) − h(0, u)| ≤ c|t| for any u ∈ S
n−1, and

limt→0
h(t,u)−h(0,u)

t
= hC(u) exists for Hn−1-a.e. u ∈ S

n−1. Next let h̃(t, u) = α(t)h(t, u) = hK̃t
(u)

for u ∈ S
n−1 and t ∈ (−r, r). From the properties of h(t, u) mentioned above and (30) it follows

the existence of c̃ > 0 such that if t ∈ (−r, r), then |h̃(t, u)− h̃(0, u)| ≤ c̃|t| for any u ∈ S
n−1, and

lim
t→0

h̃(t, u)− h̃(0, u)

t
= ∂1h̃(0, u) = α′(0)hK(u) + hC(u)

for any u ∈ S
n−1. As Φ(K̃t, ξ(K̃t)) has a minimum at t = 0 by the extremal property of Kε =

K̃0 = K, Corollary 3.6 implies

0 =
d

dt
Φ(K̃t, ξ(K̃t))

∣∣∣∣
t=0

=

∫

Sn−1

∂1h̃(0, u) · ϕ′
ε(hK(u)) dµ(u)

=

∫

Sn−1

(α′(0)hK(u) + hC(u))ϕ
′
ε(hK(u)) dµ(u)

=

∫

Sn−1

hC(u)ϕ
′
ε(hK(u)) dµ(u)−

∫

Sn−1

hCλε dSK ,

and in turn we deduce (29).
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Since differences of support functions are dense among continuous functions on S
n−1 (see e.g.

[78]), we have ∫

Sn−1

gλε dSK =

∫

Sn−1

g(u)ϕ′
ε(hK(u)) dµ(u)

for any continuous function g on S
n−1. Therefore λε dSK = ϕ′

ε ◦ hK dµ. Q.E.D.

7. Proof of Theorem 1.7

We start recalling that, by Corollary 4.3, Kε ⊂ σ(Kε) +R0B
n where σ(Kε) is the centroid and

R0 > 1 depends on n, p, τ1 and τ2. The following lemma is a simple consequence of Lemma 2.1
(iii) and V (Kε) = 1.

Lemma 7.1. For r0 =
1

(n+1)Rn−1
0 κn−1

, we have σ(Kε) + r0B
n ⊂ Kε.

Next we show that λε is bounded and bounded away from zero.

Lemma 7.2. There exist τ̃2 > τ̃1 > 0 depending on n, p, τ1 and τ2 such that τ̃1 ≤ λε ≤ τ̃2 if
ε < min{ r0

6
, 1
6
}.

Proof. We assume ξ(Kε) = o. To simplify the notation, we set K = Kε and σ = σ(K). Let
w ∈ S

n−1 and ̺ ≥ 0 be such that σ = ̺w. Since r0w ∈ K, if u ∈ S
n−1 and 〈u, w〉 ≥ 1

2
, then

hK(u) ≥ r0/2. Moreover, since ϕ′
ε is monotone decreasing, we have ϕ′

ε(hK(u)) ≥ ϕ′
ε(2R0) =

ϕ′(2R0) for all u ∈ S
n−1, and hence (17) yields

∫

Sn−1

hK(u) ·ϕ′
ε(hK(u)) dµ(u) ≥

∫

u∈Sn−1

〈u,w〉≥ 1
2

(r0/2) ·ϕ′(2R0) dµ(u) ≥ (r0/2) ·ϕ′(2R0)τ1 · (
√
3/2)n−1κn−1,

which in turn yields the required lower bound on λε.
To have a suitable upper bound on λε, the key observation is that using ̺ ≤ R0, we deduce that

if u ∈ S
n−1 with 〈u, w〉 ≥ − r0

2R0
and ε < r0

6
then

hK(u) ≥ 〈u, ̺w + r0u〉 ≥ r0 −
r0̺

2R0

≥ r0/2,

therefore

(31) ϕ′
ε(hK(u)) ≤ ϕ′

ε(r0/2) = ϕ′(r0/2).

Another observation is that K ⊂ 2R0B
n implies

(32) hK(u) < 2R0 for any u ∈ Sn−1.

It follows directly from (31) and (32) that

(33)

∫

u∈Sn−1

〈u,w〉≥
−r0
2R0

hK(u)ϕ
′
ε(hK(u)) dµ(u) ≤ (2R0)ϕ

′(r0/2)τ2nκn.

However, if 〈u, w〉 < −r0
2R0

for u ∈ Sn−1, then ϕ′
ε(hKε(u)) can be arbitrary large as ξ(Kε) can be

arbitrary close to ∂Kε if ε > 0 is small, and hence we transfer the problem to the case 〈u, w〉 ≥ −r0
2R0

using Corollary 3.3. First we claim that

(34)

∫

u∈Sn−1

〈u,w〉<
−r0
2R0

ϕ′
ε(hK(u)) dµ(u) ≤

2R0

r0
· ϕ′(r0/2)τ2nκn.

On the one hand, first applying Corollary 3.3, and after that µ(Sn−1) ≤ τ2nκn and (31) imply
∫

u∈Sn−1

〈u,w〉<
−r0
2R0

〈u,−w〉ϕ′
ε(hK(u)) dµ(u) =

∫

u∈Sn−1

〈u,w〉≥
−r0
2R0

〈u, w〉ϕ′
ε(hK(u)) dµ(u) ≤ ϕ′(r0/2)τ2nκn.
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On the other hand, as 〈u, w〉 < −r0
2R0

is equivalent to 〈u,−w〉 > r0
2R0

, we have
∫

u∈Sn−1

〈u,w〉<
−r0
2R0

〈u,−w〉ϕ′
ε(hK(u)) dµ(u) ≥

r0
2R0

∫

u∈Sn−1

〈u,w〉<
−r0
2R0

ϕ′
ε(hK(u)) dµ(u),

and in turn deduce (34).
Now (32) and (34) yield

∫

u∈Sn−1

〈u,w〉<
−r0
2R0

hK(u)ϕ
′
ε(hK(u)) dµ(u) ≤

(2R0)
2

r0
· ϕ′(r0/2)τ2nκn,

which estimate combined with (33) leads to λε <
(2R0)2+2R0

r0
ϕ′(r0/2)τ2nκn. In turn, we conclude

Lemma 7.2. Q.E.D.

Proof of Theorem 1.7 We assume that ξ(Kε) = o for all ε ∈ (0,min{1
6
, r0

6
}). It follows from

Lemma 6.1 that

(35) ϕ′
ε(hKε(u)) dµ(u) = λε dSKε

as measures on S
n−1.

Using the constants r0, R0 of Lemma 7.1, if ε is small then Kε ⊂ 2R0B
n and Kε contains a ball

of radius r0. According to the Blaschke selection Theorem and Lemma 7.2, there exists a sequence
{εm} tending to zero, εm > 0, such thatKεm tends to a convex bodyK0, and limm→∞ λεm = λ0 > 0.
In particular, the surface area measure of Kεn tends weakly to SK0 , and we may assume that

(36) λεmS(K
εm) ≤ (λ0 + 1)S(K)

for all m. Here, for a convex body K, S(K) denotes its surface area: S(K) = SK(S
n−1).

We claim that the closed set X = {u ∈ S
n−1 : hK0(u) = 0} satisfies

(37) µ(X) = 0.

We may assume that X 6= ∅. It follows from (7) that: setting c = |p| if p ∈ (−n, 1)\{0} and c = 1
if p = 0, we have

ϕ′(t) = c tp−1 if t ∈ (0, 1).

Let τ ∈ (0, 1). We can choose m sufficiently large such that 3εm < τ and |hKεm (u)− hK0(u)| < τ
for u ∈ S

n−1; thus, if 0 < t < τ , then

ϕ′
εm(t) ≥ ϕ′

εm(τ) = ϕ′(τ) = c τ p−1.

In particular, ϕ′
εm(hKεm (u)) ≥ c τ p−1 holds for u ∈ X . It follows from (35) and (36) that

µ(X) ≤ (λ0 + 1)S(K)

c τ p−1
=

(λ0 + 1)S(K)

c
· τ 1−p

holds for any τ ∈ (0, 1), and in turn we conclude (37) as 1− p > 0.
Next, for δ ∈ (0, 1), we define the closed set

Ξδ = {u ∈ S
n−1 : hK0(u) ≥ δ},

so that Sn−1\X = ∪δ∈(0,1)Ξδ. For large m, we have ϕ′
εm ◦ hKεm = ϕ′ ◦ hKεm on Ξδ, and the latter

sequence tends uniformly to ϕ′ ◦ hK0 on Ξδ. Therefore, if g : S
n−1 → R is a continuous function,

then (35) and the convergence of Kεm to K0 imply
∫

Ξδ

g(u)ϕ′(hK0(u)) dµ(u) = λ0

∫

Ξδ

g(u) dSK0(u).
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We define

λ =

{
(λ0/|p|)

1
n−p if p ∈ (−n, 1)\{0},

λ
1

n−p

0 if p = 0,

and hence (7) yields

(38)

∫

Ξδ

g(u)hK0(u)
p−1 dµ(u) = λn−p

∫

Ξδ

g(u) dSK0(u).

For any continuous ψ : S
n−1 → R, ψ(u)/hK0(u)

p−1 is a continuous function on Ξδ that can be
extended to a continuous function on S

n−1. Using this function in place of g in (38), we deduce
that ∫

Ξδ

ψ(u) dµ(u) = λn−p
∫

Ξδ

ψ(u)hK0(u)
1−p dSK0(u).

As this holds for all δ ∈ (0, 1), it follows that

(39)

∫

Sn−1\X
ψ(u) dµ(u) =

∫

Sn−1\X
ψ(u)hλK0(u)

1−p dSλK0(u).

Combining (37) and (39) implies that
∫

Sn−1

ψ(u) dµ(u) =

∫

Ξδ

ψ(u)hλK0(u)
1−p dSλK0(u),

for any continuous function ψ : S
n−1 → R, and hence dµ = hM(u)1−p dSM(u) for M = λK0.

Q.E.D.

We still need to address the case when µ is invariant under certain closed subgroup G of O(n).
Here the main additional difficulty is that we always have to deform the involved bodies in a
G-invariant way.

Proposition 7.3. If −n < p < 1 and the Borel measure µ satisfies dµ = f dHn−1 where f is
bounded, infu∈Sn−1 f(u) > 0 and f is invariant under the closed subgroup G of O(n), then there
exists M ∈ Kn

0 invariant under G such that µ = SM,p.

To indicate the proof of Proposition 7.3, we only sketch the necessary changes in the argument
leading to Theorem 1.7.

In this case, we consider the family KG
1 of convex bodies K ∈ K1 satisfying AK = K for any

A ∈ G. It follows from the uniqueness of ξ(K) (see Proposition 3.2) that if K ∈ KG
1 and A ∈ G,

then Aξ(K) = ξ(K).
The argument for Corollary 4.3 carries over to yield the following analogue statement. For the

R0 > 0 depending on n, p, τ1 and τ2 of Lemma 4.1 and Lemma 4.2, there exists Kε ∈ KG
1 with

R(Kε) ≤ R0 for any ε ∈ (0, 1
6
) such that

Φε(K
ε, ξ(Kε)) = min

K∈KG
1

Φε(K, ξ(K)).

Let us discuss how to prove a G invariant version of Corollary 5.4; namely, that Kε is quasi-
smooth. In this case, a more subtle modification is needed.

Lemma 7.4. Kε ∈ KG
1 is quasi-smooth.

Proof. We suppose that K = Kε ∈ KG
1 is not quasi-smooth, and seek a contradiction. We have

Hn−1(Sn−1\νK(∂′K)) > 0, therefore there exists a closed set ω̃ ⊂ S
n−1\νK(∂′K) with Hn−1(ω̃) > 0.

We define
ω = ∪A∈GAω̃,
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which is compact as both G and ω̃ are compact. Readily, Hn−1(ω̃) > 0 and ω is G invariant. Since
K is G invariant, we deduce that even ω ⊂ S

n−1\νK(∂′K), and hence SK(ω) = 0. Thus we can
apply Lemma 5.3. We observe that the set Kt defined in Lemma 5.3 is now G invariant, and hence

there exists a convex body K̃ ∈ KG
1 such that Φε(K̃, ξ(K̃)) < Φε(K, ξ(K)). This contradiction

with the extremality of K = Kε proves Lemma 7.4. Q.E.D.

Let us turn to the G-invariant version of Proposition 6.1.

Proposition 7.5. ϕ′
ε(hKε(u)− 〈ξ(Kε), u〉) dµ(u) = λε dSKε as measures on S

n−1.

Proof. The key statement in the proof of Proposition 6.1 is (29), claiming that, if we assume
K = Kε and ξ(K) = o, for any convex body C with o ∈ intC we have

(40)

∫

Sn−1

hCλε dSK =

∫

Sn−1

hC(u)ϕ
′
ε(hK(u)) dµ(u).

To prove (40), we write ϑG to denote the G-invariant Haar probability measure on S
n−1. We define

the G-invariant convex body C0 by

hC0 =

∫

G

hAC dϑG(A).

Running the proof of (29), using C0 in place of C, and observing that

Kt = {x ∈ K : 〈x, u〉 ≤ hK(u) + thC0(u) for u ∈ S
n−1}

is G-invariant, we deduce that

(41)

∫

Sn−1

hC0λε dSK =

∫

Sn−1

hC0(u)ϕ
′
ε(hK(u)) dµ(u).

Therefore the G-invariance of K and µ, the Fubini theorem and (41) imply that
∫

Sn−1

hCλε dSK =

∫

G

∫

Sn−1

hACλε dSK dϑG(A)

=

∫

Sn−1

hC0λε dSK =

∫

Sn−1

hC0(u)ϕ
′
ε(hK(u)) dµ(u)

=

∫

G

∫

Sn−1

hAC(u)ϕ
′
ε(hK(u)) dµ(u) dϑG(A)

=

∫

Sn−1

hC(u)ϕ
′
ε(hK(u)) dµ(u),

yielding (40). The rest of the proof of Proposition 6.1 carries over without any change. Q.E.D.

Having these tailored statements, the rest of the proof of Theorem 1.7 yields Proposition 7.3.
The only part we do not prove here is that o ∈ intK when p ≤ −n + 2, which fact is verified

using a simple argument by Chou and Wang [22], and is also proved as Lemma 4.1 in [6]. Q.E.D.

8. Some more simple facts needed to prove Theorems 1.3 and 1.5

In order to prove Theorems 1.3 and 1.5, we continue our study using the same notation. How-
ever we now drop the assumption (11) on f , unless explicitly stated. The following is a simple
consequence of the proof of Theorem 1.7.
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Lemma 8.1. Let p ∈ (−n, 1) and µ be a measure on S
n−1 with a bounded density function f with

respect to Hn−1, such that inf f > 0; then there exists a convex body M with o ∈M , SM,p = µ and
∫

Sn−1

ϕ
(
V (M)

−1
n hM−σ(M)(u)

)
dµ ≤ ϕ(2κ−1/n

n )µ(Sn−1).

In addition, if µ is invariant under a closed subgroup G of O(n), then M can be chosen to be
invariant under G.

Proof. We recall that for any small ε > 0, Kε ∈ K1 satisfies
∫

Sn−1

ϕε ◦ hKε−ξ(Kε) dµ = min
K∈K1

max
ξ∈intK

∫

Sn−1

ϕε ◦ hK−ξ dµ

where ξ(Kε) ∈ intKε. In addition, if µ is invariant under the closed subgroup G of O(n), then Kε

can be chosen to be invariant under G, and hence σ(Kε) is invariant under G, as well. We deduce
that (16) yields

(42)

∫

Sn−1

ϕε ◦ hKε−σ(Kε) dµ ≤
∫

Sn−1

ϕε ◦ hKε−ξ(Kε) dµ ≤ ϕ(2κ−1/n
n )µ(Sn−1)

for any small ε > 0. In the proof of Theorems 1.7 in Section 7, we have proved that there exist
a sequence εm with limm→∞ εm = 0 and convex body M with o ∈ M and SM,p = µ such that

Kεm tends to some K̃ ∈ K1 where K̃ = V (M)
−1
n M . As σ(Kεm) tends to σ(K̃), we have that

Kεm − σ(Kεm) tends to K̃ − σ(K̃). Therefore we conclude Lemma 8.1 from σ(K̃) ∈ int K̃ and
(42). Q.E.D.

The following lemma bounds the inradius in terms of the Lp-surface area.

Lemma 8.2. Let p < 1, and let K be a convex body in R
n which contains o and a ball of radius

r, then

SK,p(S
n−1) ≥ κn−1r

n−p.

Proof. Let x0 ∈ R
n be such that x0 + rBn ⊂ K. If x0 6= o let x0 = θv for θ > 0 and v ∈ S

n−1,
otherwise let v be any unit vector and let θ = 0. We define a subset of ∂K as follows:

Ξ = {x ∈ ∂K : x = y + sv for y ∈ r (intBn) ∩ v⊥ and s > θ}.
Let x ∈ Ξ, with x = y + sv for some y ∈ r (intBn)∩ v⊥ and s > θ, and let νK(x) be an outer unit
normal of K at x. Since x0 + rνK(x) ∈ K and x0 + y ∈ K we have

〈νK(x), x0 + rνK(x)− x〉 ≤ 0,(43)

〈νK(x), x0 + y − x〉 ≤ 0.(44)

Formula (44) implies 〈νK(x), v〉 ≥ 0, and, as a consequence,

(45) 〈νK(x), x0〉 ≥ 0.

Formula (43) implies 〈νK(x), x〉 ≥ 〈νK(x), x0〉+ r, and, in view of (45),

〈νK(x), x〉 ≥ r.

It follows from Hn−1(Ξ) ≥ κn−1r
n−1 that

SK,p(S
n−1) ≥

∫

Ξ

〈νK(x), x〉1−p dHn−1(x) ≥ r1−pκn−1r
n−1,

which proves Lemma 8.2. Q.E.D.
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9. Proof of Theorem 1.5

We have a non-trivial measure µ on S
n−1 satisfying that dµ = f dHn−1 for a non-negative L n

n+p

function f . For any integer m ≥ 2, we define fm on S
n−1 as follows

fm(u) =






m if f(u) ≥ m,

f(u) if 1
m
< f(u) < m,

1
m

if f(u) ≤ 1
m

and define the measure µm on S
n−1 by dµm = fm dHn−1. Since f is also in L1 by Hölder’s inequality,

it follows from Lebesgue’s Dominated Convergence theorem that µm tends weakly to µ. We choose
m0 such that

(46)
µ(Sn−1)

2
< µm(S

n−1) < 2µ(Sn−1) for m ≥ m0.

According to Lemma 8.1, there exists a convex body Km with o ∈ K, SKm,p = µm and

−V (Km)
|p|
n

∫

Sn−1

hpKm−σ(Km) dµm =

∫

Sn−1

−
(
V (Km)

−1
n hKm−σ(Km)

)p
dµm(47)

≤ −(2κ−1/n
n )pµm(S

n−1) ≤ −(2κ
−1/n
n )p

2
· µ(Sn−1).(48)

In addition, if µ is invariant under the closed subgroup G of O(n), then each µm is invariant under
G, and hence Km can be chosen to be invariant under G.

Lemma 9.1. {Km} is bounded.

Proof. We set

̺m = max{̺ : σ(Km) + ̺Bn ⊂ Km}
Rm = min{‖x− σ(Km)‖ : x ∈ Km}

tm = min

{
1

2
, R

−1
2n
m

}
,

choose vm ∈ S
n−1 such that σ(Km) +Rmvm ∈ ∂Km, and define

Ξm = {u ∈ S
n−1 : |〈u, vm〉| ≤ tm}.

Lemma 8.2 and (46) imply

̺m ≤
(
SK,p(S

n−1)

κn−1

) 1
n−p

≤
(
2µ(Sn−1)

κn−1

) 1
n−p

.

Thus, by Lemma 2.1 (iii), we have

(49) V (Km) ≤ (n+ 1)κn−1̺mR
n−1
m ≤ (n+ 1)κn−1

(
2µ(Sn−1)

κn−1

) 1
n−p

Rn−1
m ≤ c0R

n−1
m

for a c0 > 0 depending on µ, n, p.
We suppose that {Km} is unbounded, thus there exists a subsequence {Rm′} of {Rm} tending

to infinity, and seek a contradiction. We may assume that {vm′} tends to v ∈ S
n−1. In addition,

the definition of tm yields

(50) lim
m′→∞

tm′ = 0.
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We claim that

(51) lim
m′→∞

∫

Ξm′

f
n

n−|p| dHn−1 = 0,

which is equivalent to show that the left hand side in (51) is at most τ for any small τ > 0. For
s ∈ (0, 1), we set

Ξ̃(s) = {u ∈ S
n−1 : 〈u, v〉 ≤ s}.

Since f is in L n
n+p

with respect to Hn−1, there exists δ ∈ (0, 1
2
) such that

(52)

∫

Ξ̃(2δ)

f
n

n−|p| dHn−1 < τ.

Now if m′ is large, then tm′ < δ by (50), and hence Ξm′ ⊂ Ξ̃(2δ) as vm′ tends to v. Therefore (52)
implies (51).

Next we claim

(53) lim
m′→∞

V (Km′)
|p|
n

∫

Ξm′

hpKm′−σ(Km′ )
dµ = 0.

We deduce from the Hölder inequality and the form of the Blaschke-Santaló inequality given in
Lemma 2.1 (ii)

∫

Ξm′

hpKm′−σ(Km′ )
dµ =

∫

Ξm′

h
−|p|
Km′−σ(Km′ )

f dHn−1

≤
(∫

Ξm′

h−nKm′−σ(Km′ )
dHn−1

) |p|
n
(∫

Ξm′

f
n

n−|p| dHn−1

)n−|p|
n

≤ κ
2|p|
n
n n

|p|
n V (Km′)

−|p|
n

(∫

Ξm′

f
n

n−|p| dHn−1

)n−|p|
n

.

In turn, (51) yields (53).
We also prove

(54) lim
m′→∞

V (Km′)
|p|
n

∫

Sn−1\Ξm′

hpKm′−σ(Km′ )
dµ = 0.

We observe that if u ∈ S
n−1\Ξm′ , then |〈u, vm′〉| > tm′ . Since σ(Km′)− Rm′

n
vm′ ∈ K according to

Lemma 2.1 (i), we deduce that

hKm′−σ(Km′ )(u) ≥ max

{〈
u,−Rm′

n
vm′

〉
, 〈u,Rm′ vm′〉

}
≥ Rm′tm′

n
.

It follows, by (49) and the definition of tm′ , that

V (Km′)
|p|
n

∫

Sn−1\Ξm′

hpKm′−σ(Km′ )
dµ ≤ n|p|c

|p|
n

0 R
|p|(n−1)

n

m′ (Rm′tm′)−|p|µ(Sn−1) = n|p|c
|p|
n

0 µ(Sn−1)R
−|p|
2n

m′

proving (54).
We deduce from (53) and (54) that

lim
m′→∞

V (Km′)
|p|
n

∫

Sn−1

hpKm′−σ(Km′ )
dµ = 0,

contradicting (47), and proving Lemma 9.1. Q.E.D.
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Proof of Theorem 1.5. It follows from Lemma 9.1 that there is a subsequence {Km′} of {Km} that
tends to a compact convex set K0. Since SKm′ ,p tends weakly to SK0,p, we deduce that µ = SK0,p.
Since SK,p is the null measure when p < 1 and K has empty interior, we deduce that intK0 6= ∅.
We note that if µ is invariant under the closed subgroup G of O(n), then K0 is invariant under G.
Q.E.D.

10. Proof of Theorem 1.3 when any open hemisphere has positive measure

Let p ∈ (0, 1), and let µ be a non-trivial measure on S
n−1 such that that any open hemisphere of

S
n−1 has positive measure. In addition, we assume that µ is invariant under the closed subgroup G

of O(n) (possibly G is a trivial subgroup). For a finite set Z, we write #Z to denote its cardinality.
First we construct a sequence {µm} of G invariant Borel measures weakly approximating µ. For

any u ∈ S
n−1, we write Γu = {Au : A ∈ G} to denote its orbit. The space of orbits is X = S

n−1/ ∼
where u ∼ v if and only if v = Au for some A ∈ G; let ψ : Sn−1 → X be the quotient map. Since
G is compact, X is a metric space with the metric

d(ψ(u), ψ(v)) = min{∠(y, z) : y ∈ Γu and z ∈ Γv}.
For m ≥ 2, let x1, . . . , xk ∈ X be an 1/m-net; namely, for any x ∈ X , there exists xi with
d(x, xi) ≤ 1/m. For any xi, i = 1, . . . , k, we consider its Dirichlet-Voronoi cell

Di = {x ∈ X : d(x, xi) ≤ d(x, xj) for j = 1, . . . , k},
and hence d(x, xi) ≤ 1/m for x ∈ Di. We set U0 = ∅ and, for i = 1, . . . , k − 1, we define

Ui =
⋃

{ψ−1(Dj) : j = 1, . . . , i}.

We subdivide S
n−1 into the pairwise disjoint Borel sets

Dm = {ψ−1(Di)\Ui−1 : i = 1, . . . , k}
where each Π ∈ Dm satisfies that Π is G invariant, Hn−1(Π) > 0 and for any u ∈ Π, there exists
A ∈ G with ∠(Au, z(Π)) ≤ 1/m for a fixed z(Π) ∈ Π with ψ(z(Π)) ∈ {x1, . . . , xk}.

It is time to define the density function for µm by

fm(u) =
µ(Π)

Hn−1(Π)
+

1

(#Dm)2
if u ∈ Π and Π ∈ Dm,

in other words, dµm = fm dHn−1. It follows that each µm is invariant under G, each fm is bounded
with infu∈Sn−1 fm(u) > 0.

Let us show that the sequence {µm} tends weakly to µ. For any continuous g : S
n−1 → R, we

define the G invariant function g0 : S
n−1 → R by

g0(u) =

∫

G

g(Au) dϑG(A)

where ϑG is the invariant Haar probability measure on G. Since µ is G invariant, the Fubini
theorem yields ∫

Sn−1

g dµ =

∫

Sn−1

g0 dµ and

∫

Sn−1

g dµm =

∫

Sn−1

g0 dµm

for m ≥ 2. The construction of Dm implies that limm→∞
∫
Sn−1 g0 dµm =

∫
Sn−1 g0 dµ, and hence

{µm} tends weakly to µ.
We may assume that m0 is large enough to ensure that

(55) µm(S
n−1) < 2µ(Sn−1) for m ≥ m0.
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According to Lemma 8.1, there exists a convex body Km with o ∈ Km, SKm,p = µm and

V (Km)
−p

n

∫

Sn−1

hpKm−σ(Km) dµm =

∫

Sn−1

(
V (Km)

−1
n hKm−σ(Km)

)p
dµm(56)

≤ (2κ−1/n
n )pµm(S

n−1) ≤ 2(2κ−1/n
n )pµ(Sn−1).

In addition, each Km can be chosen to be invariant under G.

Lemma 10.1. {Km} is bounded.

Proof. For m ≥ m0, we set

̺m = max{̺ : σ(Km) + ̺Bn ⊂ Km}
Rm = min{‖x− σ(Km)‖ : x ∈ Km},

and choose vm ∈ S
n−1 such that σ(Km)+Rmvm ∈ ∂Km. It follows from Lemma 2.1 (iii), Lemma 8.2

and (55) that

(57) V (Km) ≤ (n+ 1)κn−1̺mR
n−1
m ≤ (n+ 1)κn−1

(
2µ(Sn−1)

κn−1

) 1
n−p

Rn−1
m ≤ c0R

n−1
m

for a c0 > 0 depending on µ, n, p.
We suppose that {Km} is unbounded, thus there exists a subsequence {Rm′} of {Rm} tending

to infinity, and seek a contradiction. We may assume that {vm′} tends to v ∈ S
n−1.

For w ∈ S
n−1 and α ∈ (0, π

2
], we recall that Ω(w, α) is the family of all u ∈ S

n−1 with ∠(u, w) ≤ α.
Since the µ measure of the open hemisphere centered at v is positive, there exists δ > 0 and
γ ∈ (0, π

6
) such that µ(Ω(v, π

2
− 3γ)) > 2δ. As µm tends to µ weakly, there exists m1 ≥ m0 such

that if m′ ≥ m1, then µm′(Ω(v, π
2
− 2γ)) > δ and ∠(vm′ , v) < γ. Therefore if m′ ≥ m1, then

µm′

(
Ω
(
vm′ ,

π

2
− γ
))

> δ.

If u ∈ Ω(vm,
π
2
− γ) then 〈u, vm〉 ≥ sin γ. Therefore hKm′−σ(Km′ )(u) ≥ Rm′ sin γ and

∫

Ω(vm′ ,π2−γ)
hpKm′−σ(Km′ )

dµm′ ≥ (Rm′ sin γ)pδ.

Inequality (57) yields

lim
m′→∞

V (Km′)
−p

n

∫

Sn−1

hpKm′−σ(Km′ )
dµm′ ≥ lim

m′→∞
c

−p

n

0 R
−p(n−1)

n

m′ · (Rm′ sin γ)pδ = ∞.

This contradicts (56), and proves Lemma 10.1. Q.E.D.

Proof of Theorem 1.3 under the assumption that µ(Σ) > 0, for each open hemisphere Σ of Sn−1.
It follows from Lemma 10.1 that there is a subsequence {Km′} of {Km} that tends to a compact
convex set K0. Since SKm′ ,p tends weakly to SK0,p, we deduce that µ = SK0,p and intK0 6= ∅. We
note that if µ is invariant under the closed subgroup G of O(n), then K0 is invariant under G.
Q.E.D.

11. Proof of Theorem 1.3 when the measure is concentrated on a closed
hemisphere

Let p ∈ (0, 1). First we show that the assumption required in Conjecture 1.2 is necessary.

Lemma 11.1. If p < 1 and K ∈ K0, then suppSK,p is not a pair of antipodal points.
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Proof. We suppose that suppSK,p = {w,−w} for some w ∈ S
n−1, and seek a contradiction. Since

the surface area measure of any open hemi-sphere is positive, we have o ∈ ∂K. Let σ be the
exterior normal cone at o; namely,

σ = {y ∈ R
n : 〈x, y〉 ≤ 0 ∀x ∈ K} = {y ∈ R

n : hK(y) = 0}.
It follows that w,−w 6∈ σ by p < 1, therefore the orthogonal projection σ′ of σ into w⊥ does not
contain the origin in its interior. We deduce from the Hanh-Banach theorem the existence of a
(n − 2)-dimensional linear subspace L0 ⊂ w⊥ supporting σ′. Therefore the (n − 1)-dimensional
linear subspace L = L0 + Rw is a supporting hyperplane to σ at o. We write L+ to denote the
open halfspace determined by L not containing σ. We have SK(L

+ ∩ S
n−1) > 0 on the one hand,

and hK(u) > 0 if u ∈ L+ ∩ S
n−1 on the other hand. We deduce that

SK,p(L
+ ∩ S

n−1) =

∫

L+∩Sn−1

h1−pK dSK > 0.

In particular, suppSK,p ∩ (L+ ∩ S
n−1) 6= ∅, contradicting suppSK,p = {w,−w}. Q.E.D.

We remark that suppSK,p can consist of a single point, as the example of a pyramid with apex
at o shows.

Now we prove a sufficient condition ensuring that a measure µ on S
n−1 is an Lp-surface area

measure. For any closed convex set X ⊂ R
n, we write relintX to denote the interior of X with

respect to affX .
Completion of the proof of Theorem 1.3. The idea is that we associate a measure µ0 on S

n−1 to
µ such that the µ0 measure of any open hemisphere is positive, construct a convex body K0 whose
Lp-surface area measure is µ0, and then take a suitable section of K0.

Let C = pos suppµ and L = lin supp µ, and let v0 ∈ relintC ∩ S
n−1. For

σ = {y ∈ L 〈y, v〉 ≤ 0 for v ∈ C},
the condition L 6= C yields that σ ∩ L 6= {o}.

We claim that (−σ) ∩ relintC 6= ∅. If it didn’t hold, then the Hahn-Banach theorem applied to
C and σ yields a w ∈ Sn−1 ∩ L such that 〈w, x〉 ≤ 0 for x ∈ C, and 〈w, y〉 ≥ 0 for y ∈ −σ. In
particular, w ∈ σ, and as y = −w ∈ σ, we have

−1 = 〈w, y〉 ≥ 0.

This contradiction proves that there exists a v0 ∈ (−σ) ∩ relintC ∩ Sn−1. In particular, we have

(58) 〈u, v0〉 ≥ 0 for all u ∈ supp µ.

We write L̃ = L ∩ v⊥0 , and set d = n − dim L̃ where 1 ≤ d ≤ n. We observe that supp µ

is contained in the half space of L bounded by L̃ and containing v0 by (58). We consider a d-

dimensional regular simplex S0 in L̃⊥ with vertices v0, . . . , vd ∈ S
n−1 ∩ L̃⊥, and the A ∈ O(n)

that acts as the identity map on L̃, and satisfies Avi = vi+1 for i = 0, . . . , d − 1. We consider the

cyclic group G0 of the isometries of S0 of order d+1 generated by A, and the subgroup G̃ of O(n)

generated by G and G0. We define the Borel measure µ0 invariant under G̃ in a way such that if
ω ⊂ S

n−1 is Borel, then

µ0(ω) =

d∑

i=0

µ(Aiω).

In particular, supp µ0 = ∪di=0A
isupp µ.

We prove that for any w ∈ S
n−1, there exists

(59) u ∈ supp µ0 such that 〈w, u〉 > 0.
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Since v0+ . . .+ vd = 0, either there exists i ∈ {0, . . . , d} such that 〈w, vi〉 > 0, or w ∈ L̃, and hence

〈w, vi〉 = 0. For Li = lin{vi, L̃} = AiL, we write w = wi+w̃i where wi ∈ Li and w̃i ∈ L⊥
i , and hence

either 〈wi, vi〉 > 0, or wi = w ∈ L̃, which in turn also yield that wi 6= 0. Since vi ∈ relintAiC,
there exists u ∈ Aisupp µ with 〈wi, u〉 > 0, and hence 〈wi, u〉 > 0. In turn, we conclude (59),
therefore the µ0 measure of any open hemisphere of Sn−1 is positive.

Now the argument in Section 10 provides a convex body K0 ∈ Kn
0 whose Lp-surface area is µ0

and is invariant under G̃. For i = 0, . . . , d, the Dirichlet-Voronoi cell of vi is defined by

D(vi) = {x ∈ R
n : 〈x, vi〉 ≥ 〈x, vj〉 for j = 0, . . . , d},

which is a polyhedral cone with vi ∈ intD(vi). Readily, AD(vi) = D(vi+1) for i = 0, . . . , d− 1 and

R
n =

⋃d
j=0A

jD(v0), where the sets in the union have disjoint interiors.
We define

K = K0 ∩D(v0)

and prove that Sp(K,ω) = µ(ω) for each Borel set ω ⊂ S
n−1. Let

N =
⋃

x∈intD(v0)

νK(x) =
⋃

x∈intD(v0)

νK0(x).

First we observe that

(60) Sp(K,ω) = Sp(K,ω ∩N).

Indeed, if u /∈ N then either u ∈ νK(o) and, as a consequence, hK(u) = 0, or u ∈ νK(x) for
some x in the intersection of ∂D(v0) and of the closure of (∂K) ∩ intD(v0), an intersection whose
(n− 1)-dimensional Hausdorff measure is zero. These facts imply Sp(K,ω \N) = 0 and (60).

Then we prove that if u ∈ supp µ0 \ L̃ and u ∈ νK0(x) for some x ∈ ∂K0 \D(vj) then

(61) u /∈ Ajsuppµ.

We prove (61) for j = 0 arguing by contradiction; the other cases can be proved similarly. Assume
that u ∈ suppµ. Since x /∈ D(v0) we have that x ∈ D(vi) \ D(v0), for some i ∈ {1, . . . , d}, that
is 〈x, v0〉 < 〈x, vi〉. The symmetries of K0 imply that x = Aiy for some y ∈ K0. The inclusion

supp µ ⊂ C and (58) imply u = αv0 + p for some α > 0 and p ∈ L̃. It follows that

〈y, u〉 = α〈y, v0〉+ 〈y, p〉 = α〈Aiy, Aiv0〉+ 〈Aiy, Aip〉 = α〈x, vi〉+ 〈x, p〉
> α〈x, v0〉+ 〈x, p〉 = 〈x, u〉.

This contradicts the fact that u is an exterior unit normal at x to ∂K0 and conclude the proof of
(61). The previous claim easily implies

(62) N ∩ suppµ0 ⊂ supp µ and ν−1
K0

(N ∩ supp µ0 \ L̃) ⊂ D(v0).

Formulas (62) imply

(63) Sp(K,ω ∩N \ L̃) = Sp(K0, ω ∩N \ L̃) = µ(ω ∩N \ L̃).

On the other hand, if u ∈ L̃ then Aiν−1
K0

(u) = ν−1
K0

(u), for each i, and

ν−1
K0

(u) =
d⋃

i=0

ν−1
K0

(u) ∩AiD(v0) =
d⋃

i=0

Ai
(
ν−1
K0

(u) ∩D(v0)
)
=

d⋃

i=0

Ai
(
ν−1
K (u)

)
,
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where the sets in the last union have disjoint relative interiors. Moreover hK0(u) = hK(u). Thus

(64)

Sp(K,ω ∩N ∩ L̃) =
∫

ν−1
K

(ω∩N∩L̃)
〈x, νK(x)〉1−pdHn−1(x)

=
1

d+ 1

∫

ν−1
K0

(ω∩N∩L̃)
〈x, νK0(x)〉1−pdHn−1(x)

=
1

d+ 1
µ0

(
ω ∩N ∩ L̃

)

=µ
(
ω ∩N ∩ L̃

)

Formulas (60), (63) and (64) imply that Sp(K,ω) = µ(ω), or in other words, that µ is the Lp-
surface area measure of K. Q.E.D.

Example 11.2. If L ⊂ R
n is a linear d-subspace with 2 ≤ d ≤ n − 1, then there exists a convex

body K such that L = pos supp µ for the Lp-surface area measure of K. To construct such a K,
we take a d-ball B ⊂ L such that o ∈ ∂B, and the exterior unit normal v to B at o. We also
consider an (n − d + 1)-dimensional convex cone σ ⊂ lin{L⊥, v} with v ∈ relintσ and 〈v, w〉 > 0
for w ∈ σ\{o}. We define K with the formula

K = {x ∈ B + L⊥ : 〈x, y〉 ≤ 0 for y ∈ σ}.

12. The critical case p = −n
Let K ∈ Kn

0 with o ∈ intK and ∂K is C3
+, and hence

dSK,−n = f dHn−1

for a C1 function f(u) = hK(u)
n+1/κ(u) on S

n−1 (see (3)), where κ(u) is the Gaussian curvature at
x ∈ ∂K with νK(x) = u. For basic notions in this section, we refer to Schneider [78] and Yang [87].

Let h = hK , and let h̃ = hK∗ be the support function of the polar body K∗, defined as follows:

K∗ = {x ∈ R
n : 〈x, y〉 ≤ 1 ∀y ∈ K}.

In particular, hK∗(u)
−1u ∈ ∂K for u ∈ S

n−1, and both h and h̃ are C2 on R
n\{o}. We write

f̃ to denote the curvature function on R
n, that is the (−n − 1) homogeneous function satisfying

f̃(u) = κ(u)−1 for u ∈ S
n−1.

We also recall some definitions and results from [87]. Given a function φ : Rn\{o} → R, let
∇φ : Rn\{0} → R

n denote its gradient and ∇2φ : Rn\{0} → S2
R
n its Hessian, where S2

R
n stands

for symmetric 2 tensors. Let

(65) H =
1

2
h2 : Rn → (0,∞).

Under the assumptions above, the gradient map, ∇H = h∇h : R
n\{o} → R

n\{o}, is a C1

diffeomorphism, and, by Lemma 5.5 in [87], the following relations hold for any ξ ∈ R
n\{o} and

x = ∇H :

h(ξ) = h̃(∇H(ξ))(66)

h(ξ)∇h(ξ) = x(67)

ξ = h(ξ)∇h̃(∇H(ξ))(68)

det∇2H(ξ) = hn+1(ξ)f̃(ξ).(69)
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The homogeneous contour integral of a function φ : Rn\{0} → R, with homogeneity degree −n,
is defined as

(70)

∮
φ(x) dx =

∫

Sn−1

φ(u) dHn−1(u).

The volume of K is given by

(71) V (K) =
1

n

∫

Sn−1

h̃(u)−n du =
1

n

∮
h̃(x)−n dx =

1

n

∮
h(ξ)f(ξ) dξ.

We also use the following integration by parts and change of variables lemmas.

Lemma 12.1. (Corollary 6.6, [87]) Given a C1 function φ : Rn\{0} → R, homogeneous of degree
−n + 1, we have, for every j ∈ {1, . . . , n},

∮
∂jφ(x) dx = 0.

Lemma 12.2. (Corollary 6.8, [87]) Given a C1 function φ : Rn\{o} → R homogeneous of degree
−n and a C1 diffeomorphism Φ : Rn\{o} → R

n\{o} homogeneous of degree 1, we have

∮
φ(x) dx =

∮
φ(Φ(ξ)) det∇Φ(ξ) dξ.

The following is the core result leading to Proposition 1.6 where δij stands for the usual Kronecker
symbols δ.

Lemma 12.3. Given 1 ≤ i, j ≤ n and p 6= 0,

(72)

∫

Sn−1

uih
p(u)∂jfp(u) du = −(n + p)V (K)δij,

where fp = h1−pf .

Proof. By (70) and Lemma 12.1,

∫

Sn−1

ui∂j h̃(u)(h̃(u))
−n−1 du =

∮
xi∂j h̃(x)(h̃(x))

−n−1 dx

= −1

n

∮
xi∂j(h̃(x))

−n dx

=
1

n

∮
∂j(xi)(h̃(x))

−n dx

=
1

n

∮
δij(h̃(x))

−n dx

= V (K)δij .

(73)
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On the other hand, using the change of variable x = ∇H(ξ), it follows by Lemma 12.2, (67), (68),
(69), Lemma 12.1, and (71) that

∮
xi∂j h̃(x)(h̃(x))

−n−1 dx =

∮
(h(ξ)∂ih(ξ))ξjh

−n−2(ξ) det∇2H(ξ) dξ

=

∮
∂ih(ξ)ξj f̃(ξ) dξ

=

∮
(hp−1∂ih)ξjh

1−pf̃ dξ

=
1

p

∮
∂i(h

p(ξ))ξj(h
1−pf̃) dξ

= −1

p

∮
hp(ξ)∂i(ξjh

1−pf̃) dξ

= −1

p

∮
δijh(ξ)f̃(ξ) + ξjh

p(ξ)∂ifp(ξ) dξ

= −n
p
V (K)δij −

1

p

∮
ξjh

p(ξ)∂ifp(ξ) dξ

= −n
p
V (K)δij −

1

p

∫

Sn−1

ujh
p(u)∂ifp(u) du

(74)

The lemma now follows by (73) and (74). �

Setting p = −n in Lemma 12.3, we get Proposition 1.6.
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