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Abstract
Properly designed (randomized and/or balanced) experiments are standard in ecologi-
cal research. Molecular methods are increasingly used in ecology, but studies generally 
do not report the detailed design of sample processing in the laboratory. This may 
strongly influence the interpretability of results if the laboratory procedures do not 
account for the confounding effects of unexpected laboratory events. We demon-
strate this with a simple experiment where unexpected differences in laboratory pro-
cessing of samples would have biased results if randomization in DNA extraction and 
PCR steps do not provide safeguards. We emphasize the need for proper experimental 
design and reporting of the laboratory phase of molecular ecology research to ensure 
the reliability and interpretability of results.
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1  | INTRODUCTION

Ecological studies regularly ensure that the experimental setup is ran-
domized and/or balanced. This allows to interpret results with respect 
to the original questions and to minimize the influence of confounding 
factors. The importance of randomized experimental setups (Fisher, 
1936) along with balanced designs (Student & Student 1938) is well 
known. Consequently, such designs are enforced today in manipu-
lative or observational ecological research (Hurlbert, 1984; Smith, 
Anderson, & Pawley, 2017).

This is often handled differently with laboratory experiments in 
molecular biology. By laboratory experiments, we mean the labora-
tory processing (versus obtaining) of samples to generate quantitative 
molecular genetic data: DNA extractions, polymerase chain reactions, 
DNA sequencing, etc., in order to obtain haplotype frequencies, 

taxonomically informative marker gene counts, gene expression mea-
sures, SNP tables, etc. Although methodological errors associated with 
molecular data are frequently discussed (e.g., Aird et al., 2011; Leray 
& Knowlton, 2017; Robasky, Lewis, & Church, 2014; Schirmer et al., 
2015; Schnell, Bohmann, & Gilbert, 2015), batch effects have received 
considerably less attention. Early genome-wide association studies 
(GWAS) are examples of how they may be ignored in basic experimen-
tal design and what the consequences are: The analyses are expensive, 
but the obtained data cannot be interpreted (or are misinterpreted) 
due to confounding effects of laboratory procedures (Sebastiani et al., 
2010). The early problems lead to the current recognition of random-
ized and/or balanced laboratory experimental designs in medical ge-
nomics (Lambert & Black, 2012; Leek et al., 2010; Yang et al., 2008).

Complex and expensive molecular genetic datasets are increasingly 
generated in ecology. It is important that these data are generated 
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appropriately as important conclusions and recommendations are 
drawn from them, often addressing issues of global importance for na-
ture, society, and economy. Randomization or balancing in laboratory 
experiments is essential to avoid batch effects and other nondemonic 
intrusions (see Hurlbert, 1984). This issue has been already raised by 
Meirmans (2015) in a recent opinion paper on population genetics. 
Meirmans (2015) notes that “It is perfectly possible that such random-
ization is already practised in genotyping laboratories everywhere and 
I am simply unaware of it. […], if this is the case, this is nowhere evident 
in the literature”. We have similar impressions and the screening of one 
randomly selected 2016 issue from each of five relevant journals sup-
ports this assumption (Molecular Ecology, The ISME Journal, Ecology 
and Evolution, Journal of Biogeography, Soil Biology and Biochemistry, 
Appendix S1). Only two of the 59 relevant studies report some form of 
randomization during the laboratory processing of samples. This small 
literature survey is surely not representative of overall molecular ecol-
ogy research, but the pattern is worrying as a simple Web of Science 
search for the keyword combination “molecul* AND ecol*” resulted in 
over 1,740 hits only from 2016.

The omission of randomization in the laboratory may allow chance 
events to systematically influence results. Such chance events are 
common everytime and everywhere: electric fallouts happen, sudden 
flaws incapacitate laboratory personnel, DNA extraction kits are not 
delivered in time or have been stored inappropriately, just to mention 
some. If samples are processed in batches, the coincidence of these 
events confounds the results and renders interpretations unreliable. 
The potential diversity of such events is so high that nothing can 
protect against them except randomization of laboratory procedures, 
potentially in combination with balanced designs.

Hurlbert (1984) notes that most of the time chance events have 
immeasurably small effects on the results. However, by nature, they 
are also completely unpredictable, both in frequency and effect size. 

As molecular ecology studies mostly work with high observation num-
bers (thousands of SNPs over genomes, thousands of operational 
taxonomic units—OTUs—in hundreds of samples, etc.), even small 
chance events may result in statistically significant results (Carver, 
1993). Here, we demonstrate this with taxonomically informative 
marker gene fragments amplified from environmental DNA (eDNA 
metabarcoding). The eDNA was preserved in lake sediments and pro-
vides a perspective on lake ecosystem history over several decades. 
We looked at three aspects of methodological or biological interest: 
extracted DNA concentration, PCR efficiency, and community proper-
ties (Figure 1). We evaluated several sources of variation: (1) expected 
laboratory biases (DNA extraction kit, Deiner, Walser, Mächler, & 
Altermatt, 2015; Barlow et al., 2016), (2) unexpected laboratory biases 
(e.g., a sudden change in laboratory personnel), and (3) an ecologically 
interesting predictor (either the age of the sediment or the effects of 
a power plant).

2  | MATERIALS AND METHODS

2.1 | Sampling

Two sediment cores of the same location from Lake Stechlin were 
taken on 14 May 2015 with a gravity corer (UWITEC®, Mondsee, 
Austria) and Perspex tubes (inner diameter 9 cm, lengths 60 cm). Lake 
Stechlin (latitude 53°10′N, longitude 13°02′E) is a dimictic meso-
oligotrophic lake (maximum depth 69.5 m; area 4.5 km2) in the low-
lands of northern Germany. GDR’s first nuclear power plant was built 
here between 1960 and 1966 and operated until 1990, connecting 
the lake with the nearby mesotrophic Lake Nehmitz and discharging 
its cooling water into Lake Stechlin. After coring, the cores were sliced 
immediately in the field in approximately 0.5-cm intervals. The first 
core was designated to eDNA. All sampling tools were H2O2-sterilized 

F IGURE  1 Analysis scheme with 
predictors of variation in high- 
throughput-sequenced eDNA amplicon 
data. The first column lists typical 
analysis steps and the endpoints of these, 
the second column contains options 
to evaluate these endpoints through 
measurements, the third column lists 
several laboratory biases that may exert 
batch effects, and the fourth column 
contains biological factors of interest
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after cutting each horizon. Sediment for DNA extraction was taken 
only from the central part of the core to avoid contamination by con-
tact with the corer’s wall. Samples were immediately stored in 15-ml 
Falcon tubes (NeoLab Migge GmbH, Heidelberg, Germany) at −20°C 
until DNA extraction. Horizons from the second core were used for 
organohalogenic pesticide measurements.

2.2 | Date approximation

Approximate dates were obtained by comparing DDT decomposition 
compound concentrations with sedimentation rates inferred with 137Cs 
(Casper, 1994): 1.2 mm/year between 1986 and 1996 and 1.7 mm/
year between 1963 and 1986. We assumed that DDT deposition 
started with World War II when a military training camp was operated 
near the lake and it effectively stopped in 1990 when agrochemical 
subventions of the GDR ceased with the reunification of Germany. 
The pesticide concentrations, sedimentation rates, and inferred dates 
can be consulted in the file Stechlin_organohalogene.csv, deposited 
in Figshare (https://figshare.com/s/32dbca0a906c7f06449b, https://
doi.org/10.6084/m9.figshare.4579681).

Halocarbon compound extraction was performed by shaking 
300 mg freeze-dried sediment sample once in acetone and petro-
leum ether (40–60°C) and then only in petroleum ether (40–60°C), 
based on ISO 10382:2002. The clear supernatants were unified and 
vortexed after centrifugation, then a 10 ml aliquot was transferred to 
SPME amber screw top vials and evaporated under a gentle stream of 
nitrogen until dry and dissolved again in 100 μl methanol and mixed 
with 10 ml of a 0.01 mol CaCl2 *2H2O/3.4 mol NaCl salt solution. As 
internal standards, 13C 2.4 DDT, 13C 4.4 DDT, α-HCH D6, Trifluralin 
D14, 4.4 DDD D8, 4.4 DDE D8, and 13C HCB were used. Finally, 
samples were extracted by Head Space Solid Phase Microextraction 
(SPME- HS) with a PDMS 100 fiber and analyzed by GC/MS ion trap 
in selected ion monitoring mode (SIM). Separation and detection were 
accomplished using a Trace Ultra Gas Chromatograph (Thermo Fisher 
Scientific Inc., Schwerte, Germany) provided with a RTX-Dioxin 2 
fused-silica capillary column with 0.25 μm film thickness, 0.25 mm ID, 
and 60 m length coupled with an ion trap mass spectrometer in SIM 
(Thermo Fisher Scientific Inc.).

2.3 | DNA extraction

We selected the youngest 21 horizons (the upper 13.5 cm of the 
core) for DNA extractions. Sample order was randomized before 
DNA extraction to minimize sampling biases. Four DNA extrac-
tions were carried out from each horizon with two commercial kits  
(two replicated extractions with both Macherey-Nagel NucleoSpin 
Soil—Macherey-Nagel, Düren, Germany, and MoBio PowerSoil—
Carlsbad, CA, USA). The protocols of both kits were modified to 
specifically target extracellular DNA: Instead of lysis, a saturated 
phosphate buffer was used to extract sediment-bound DNA (Taberlet 
et al., 2012). All four extraction replicates of a horizon were per-
formed in the same DNA extraction batch (24 extractions, see  
column extract_order in sample_infos.csv deposited in Figshare 

(https://figshare.com/s/32dbca0a906c7f06449b, https://doi.org/10. 
6084/m9.figshare.4579681). We altogether included four DNA ex-
traction negative controls into the experiment (dH2O instead of 
sediment), and these were randomly distributed within the extraction 
batches. No controls for field contamination were taken. Extracted 
DNA concentrations were estimated on a Qubit 3.0 Fluorometer 
(Thermo Fisher Scientific, Waltham, MA, USA). We could not measure 
DNA in any of the extraction controls.

2.4 | PCR amplifications

DNA templates were rerandomized before PCR setup. Four PCR neg-
ative controls (with dH2O instead of DNA template) and two positive 
controls (containing DNA from tissues or cell cultures of Hypsiboas 
punctatus (66.5 ng/μl), Ponticola kessleri (306 ng/μl), Aspius aspius 
(280 ng/μl), Coregonus sp. (398 ng/μl), Pacifastacus leniusculus (425 ng/
μl), Aphanomyces astaci (104 ng/μl), a parasitic Chytridiomycota 
(4.5 ng/μl), a saprotrophic Chytridiomycota (25.3 ng/μl), Yamagishiella 
sp. (15.7 ng/μl), Fragilaria crotonensis (3.3 ng/μl), Staurastrum plank-
tonicum (2.7 ng/μl), Chaetomium sp. (7.6 ng/μl), and Lutra lutra 
(17.4 ng/μl)) were included. The first positive control was an equimo-
lar mixture, with a nominal concentration of 5 ng/μl from each source. 
The second positive control was a complex nonequimolar mixture 
with the following dilutions: Hypsiboas punctatus (32x), Ponticola kes-
sleri (90x), Aspius aspius (4x), Coregonus sp. (1x), Pacifastacus leniusculus 
(2x), Aphanomyces astaci (50x), a parasitic Chytridiomycota (256x), a 
saprotrophic Chytridiomycota (8x), Yamagishiella sp. (64x), Fragilaria 
crotonensis (500x), Staurastrum planktonicum (520x), Chaetomium sp. 
(128x), and Lutra lutra (16x). We used AmpliTaq MasterMix for the 
PCRs (Thermo Fisher Scientific). We used general eukaryote primers 
that amplify a short fraction of the V7 region of the 18S gene region 
(Guardiola et al., 2015): forward—TYTGTCTGSTTRATTSCG, reverse—
CACAGACCTGTTATTGC. The primers contained the Illumina se-
quencing primers (TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 
and GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG). The PCRs  
were run in 15 μl reaction volume (AmpliTaq MasterMix: 7.5 μl, 
water: 4 μl, each 5 μmol/L primer 1 μl, DNA template 1.5 μl). DNA 
concentrations of individual templates are provided in the “conc” 
column sample_infos.csv file (accessible through https://figshare. 
com/s/32dbca0a906c7f06449b, https://doi.org/10.6084/m9.figsha 
re.4579681). The cycling conditions were 95°C (10 min), 44 cycles 
of 95°C (30 s), 45°C (30 s), 72°C (30 s), and final extension at 72°C 
(10 min). The PCR products were visualized on a 2% agarose gel and 
purified with Agencourt AMPure XP beads (Beckman Coulter GmbH, 
Krefeld, Germany).

2.5 | Multiplexing strategy and sequencing

We indexed all samples for multiplexed sequencing in a subsequent 
short PCR with primers that contained a fraction of the Illumina se-
quencing primer (TCGTCGGCAGCGTC and GTCTCGTGGGCTCGG), 
an eight-bp nucleotide index, and the Illumina plate adapters  
(P5: AATGATACGGCGACCACCGAGATCTACAC, P7: CAAGCAGAA 
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GACGGCATACGAGAT). The final products are indexed, ready to 
sequence Illumina libraries. Index combinations and sequences are 
provided in the file multiplexing_indices.xlsx at Figshare (https://
figshare.com/s/32dbca0a906c7f06449b, https://doi.org/10.6084/
m9.figshare.4579681). The procedure follows the Illumina 16S me-
tabarcoding protocol (Illumina 2016). This protocol eliminates index 
jumps during library preparation (although a few index jumps are 
still known to happen on the sequencing plate (Schnell et al., 2015). 
The indexing PCRs were run in 15 μl reaction volume (AmpliTaq 
MasterMix: 7.5 μl, each 5 μmol/L primer 1 μl, PCR product 6.5 μl). 
The cycling conditions were 95°C (10 min), 8 cycles of 95°C (30 s), 
52°C (30 s), 72°C (30 s), and final extension at 72°C (10 min). We 
checked the efficiency of each PCR run on a 2% agarose gel. The 
indexed libraries were purified with Agencourt AMPure XP beads 
(Beckman Coulter GmbH, Krefeld, Germany). The indexed libraries 
were mixed and purified on four QIAamp MinElute columns (Qiagen, 
Hilden, Germany). We did not normalize the PCR template concen-
trations to obtain a rough estimate of PCR and sequencing efficiency 
through the read numbers. Our sequencing kit potentially produces 
about 1 million paired-end reads with 2 × 150 bp length. Illumina 
sequencing was performed at the Berlin Center for Genomics in 
Biodiversity Research (www.begendiv.de) with the MiSeq sequenc-
ing kit v2 nano (300 cycles). Unprocessed sequence data were 
deposited in the European Nucleotide Archive as PRJEB19403.

2.6 | Sequence processing and data analysis

Raw sequence data were processed with OBITools (Boyer et al., 
2015). Potential contamination and false detection biases were con-
trolled for by following the recommendations of (Boyer et al., 2015; 
Giguet-Covex et al., 2014; Pansu et al., 2015) in R 3.3.1. (“R: The R 
Project for Statistical Computing”). All OBITools and R commands 
are documented in the file stechlin_analyses.pdf at Figshare (https://
figshare.com/s/32dbca0a906c7f06449b, https://doi.org/10.6084/
m9.figshare.4579681), with the full code accessible through the GitHub re-
pository https://github.com/MikiBalint/LaboratoryDesign.git. Commands 

were run with GNU “parallel” when possible (Tange, 2011). The resulting 
OTU abundance table is provided in the stechlin_assigned_190915.tab 
file through Figshare (https://figshare.com/s/32dbca0a906c7f06449b, 
https://doi.org/10.6084/m9.figshare.4579681).

We fitted linear mixed-effect models with lme4 (Bates, Mächler, 
Bolker, & Walker, 2015) on extracted DNA concentration, PCR effi-
ciency, and measures of diversity (the first three integers from Hill’s 
diversity series (Hill, 1973) to estimate the effects of potential labora-
tory biases and biological factors of interests. The first three Hill num-
bers correspond to species richness (H1), the exponent of Shannon 
diversity (H2), and the inverse of the Simpson diversity (H3). The iden-
tity of the sediment horizon was used as the random effect in these 
models. We used multispecies generalized linear models (GLMs) with 
the “mvabund” R package (Wang, Naumann, Wright, & Warton, 2012) 
to investigate the effects of the predictors on community composition. 
The multispecies GLM cannot handle random effects. The community 
composition effects were visualized with a latent variable model-
based ordination performed with the boral R package (Hui, 2016). 
Both compositional analyses assume a negative binomial distribution 
of the data, accounting for the sparse and overdispersed nature of 
read counts (Bálint et al., 2016). The input data matrices are accessible 
through Figshare (https://figshare.com/s/32dbca0a906c7f06449b, 
https://doi.org/10.6084/m9.figshare.4579681).

The models can be written up as

1.	 conc ~ weight + kit + person + age + I(age2) + (1|depth.nominal)
2.	 PCR efficiency ~ conc + kit + person + age + (1|depth.nominal)
3.	 diversities ~ PCR efficiency + person + kit + nuclear + (1|depth.nominal)
4.	 Community composition ~ reads + kit + person + nuclear,

where conc is the extracted DNA concentration, weight is the sedi-
ment weight used for DNA extraction, kit is the DNA extraction kit, 
person is the laboratory personnel, depth.nominal is the identity of the 
sediment horizon, PCR efficiency is estimated from HTS read num-
bers, and nuclear is the operational period of the nuclear power plant 
(Figure 1).

TABLE  1 Summary of predictor contributions to variation

DNA concentration PCR efficiency H1 H2 H3
Community 
composition

Sediment weight 0.1*** — — — —

Extraction kit 12.9*** 2,719,604*** 672.6*** 197.9*** 67.8*** 906

Laboratory 
personnel

1.7** 81,413,118** 37.9 0.9 1.9 2,018*

DNA concentration — 58,222*** — — — —

PCR efficiency — — 14,834.7*** 1,156.3*** 172.3*** 1,163**

Age/power plant 
effect

1.8*** 198,964*** 1,758.3*** 867*** 435.5*** 5,488*

*Statistically marginally significant result (p < .1).
**Statistically significant result (p < .05).
***Statistical significance not tested.

https://figshare.com/s/32dbca0a906c7f06449b
https://figshare.com/s/32dbca0a906c7f06449b
https://doi.org/10.6084/m9.figshare.4579681
https://doi.org/10.6084/m9.figshare.4579681
http://www.begendiv.de
https://figshare.com/s/32dbca0a906c7f06449b
https://figshare.com/s/32dbca0a906c7f06449b
https://doi.org/10.6084/m9.figshare.4579681
https://doi.org/10.6084/m9.figshare.4579681
https://github.com/MikiBalint/LaboratoryDesign.git
https://figshare.com/s/32dbca0a906c7f06449b
https://doi.org/10.6084/m9.figshare.4579681
https://figshare.com/s/32dbca0a906c7f06449b
https://doi.org/10.6084/m9.figshare.4579681


1790  |     BÁLINT et al.

3  | RESULTS

The results are summarized in Table 1 and Figure 2. Regarding DNA 
concentrations, the DNA extraction kit (equivalent to the expected 
laboratory biases) accounted for most variation, followed by the age 
of the sediment horizon (biological signal) and the laboratory person-
nel (equivalent to the unexpected laboratory bias). The starting weight 
(amount) of the sediment had limited effects on the extraction effi-
ciency, and the effect of the laboratory personnel was marginally signif-
icant. PCR efficiency (evaluated as non-normalized HTS read numbers 
from PCR amplification) was mostly explained by the personnel iden-
tity (unexpected laboratory bias), followed by the DNA extraction kit 
(expected laboratory biases), the age of the sediment horizon, and the 
DNA template concentration used for the PCR. Here, the effect of the 
laboratory personnel was statistically significant. The most important 
contributors to variation in the first three Hill numbers consisted of 
PCR efficiency and the effects of the nuclear power plant. The DNA 
extraction kit contributed relatively little to the observed variation in 
the diversity indices. The nuclear power plant effects, however, repre-
sented the largest contributors to the explained variation in community 
composition, followed by the identity of the laboratory personnel and 
PCR efficiency. The DNA extraction kits contributed the least to the ex-
plained compositional variation (Figure 3). The effects of the laboratory 
personnel were statistically marginally significant. Additional results 
and effect plots are available in file stechlin_analyses.pdf at Figshare.

4  | DISCUSSION

Our results demonstrate that nondemonic intrusions (Hurlbert, 1984) 
in the laboratory may produce in strong, statistically significant effects 

that may severely confound results. Such effects render equivocal in-
terpretations impossible if they coincide with effects targeted by the 
study. For example, interpretation of power plant effects on com-
munity composition would be difficult if samples are processed in 
batches and the sudden change in laboratory personnel coincides with 
a shift between operation periods. Similarly, strong personnel effects 
are well known when scoring microsatellite genotypes (or allozyme 
electrophoresis patterns): they are well known to be influenced by 
personal judgments and authors should also report how they dealt 
with it. Different pipelines and/or processing parameters (e.g., thresh-
olds to discard rare OTUs) may produce different results in metabar-
coding, for example, in diversity measures (Golob, Margolis, Hoffman, 
& Fredricks, 2017). We expect that all samples within a study are 
processed with the same pipeline or parameters; thus, the pipeline 
effect is uniform among all samples, allowing comparisons. However, 
differences in results caused by pipelines and parameters may influ-
ence metastudies. We hypothesize that these effects may reflect the 
study date due to developments in pipeline use. The uniform repro-
cessing of the data before such interstudy comparisons is thus impor-
tant (Meiser, Bálint, & Schmitt, 2014).

The results allow to evaluate whether observed community 
properties are differentially influenced by methodological biases 
and biological signal. The first three Hill numbers correspond with 
commonly used indices of biodiversity (H1: richness, H2: the expo-
nent of Shannon diversity, and H3: inverse of Simpson diversity), and 
they differ only in the way they penalize rare species. The variation 
explained by the biological signal increases as rare species are in-
creasingly penalized (Figure 2), and this points to the importance of 
handling rare sequence variants during the analyses (Bálint et al., 
2016).

We do not state that biases with comparable extent always ap-
pear in unrandomized, not balanced laboratory experiments, but they 
certainly have the potential to do so. This is clear in our example: The 
effects of unexpected laboratory biases exceed the effects of known 
laboratory biases (DNA extraction kit effects) and biological signal in 
several models (Figure 2). Such effects potentially influence all molec-
ular ecology studies and threaten the interpretability of results. Their 
importance and extent are known in biomedicine (Fungtammasan 
et al., 2015; Lambert & Black, 2012; Leek et al., 2010; Yang et al., 
2008), and it needs to be urgently considered in molecular ecology.

Generally, randomization of samples before major laboratory 
steps (particularly DNA extraction) is simple and low cost. The only 
case where this might be disputable is the processing of highly 
contamination-prone materials where it is almost a laboratory rule 
that DNA extraction is performed consecutively from the most 
contamination-prone toward the least contamination-prone sam-
ples (although to our knowledge, the validity of this still needs to be 
tested). Obviously, nondemonic intrusions (including contamination) 
in the laboratory easily become collinear with the processing order 
and this makes biological signals difficult to interpret (Salter et al., 
2014). Rearrangement (e.g., a new randomization) of DNA extracts 
before PCR reactions or sequencing might be more difficult and error-
prone, especially with large numbers of samples. Trade-offs between 

F IGURE  2 Partitioning of variance explained by expected 
and unexpected laboratory biases, and biological signal. The 
bars represent explained variance in DNA concentration (conc), 
PCR efficiency (PCR), diversity indices (hill1–3), and community 
composition (comp). Predictors: biological signal; effects of sediment 
age (conc, PCR) or the power plant operation periods (hill1–3, comp); 
unexpected bias: effects of laboratory personnel; expected bias: 
effects of DNA extraction kit; other factors: sediment weight (conc), 
DNA concentration (PCR); PCR efficiency (hill1–3, comp)
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rerandomization and possible contaminations should be considered in 
this case.

We recommend the followings: First, researchers involved in mo-
lecular ecology laboratory work need to properly design and report 
laboratory procedures. Guidelines in biomedicine exist and may be 
readily adapted, for example, how and why samples were assigned to 
certain processing batches and processing timeframes, evaluation of 
technical differences among equipment, and blinding the experiment 
by concealing information about sample identity from the laboratory 
personnel (Masca et al., 2015). Second, ecologists who rely on molec-
ular data generated by laboratory personnel or companies must ensure 
(and should not take for granted) that principles of experimental design 
are followed in the laboratory. This is the easiest when giving samples 
to a laboratory as the ecologist can already rearrange and relabel his/
her samples (but controls of PCR, sequencing, orders, etc. may require 
further communication). Third, editors and reviewers of manuscripts 
and grants should enforce the reporting of laboratory experimental 
design. This is as much necessary for reproducible research as the 
proper presentation of sampling schemes, details of manipulative ex-
periments, and data analysis. We do not intend to provide a list of 
important laboratory biases as there are potentially infinite variations, 
but some that easily come to mind are (1) the order in which DNA 
extractions are performed (one may expect a “learning effect” that 
may change the results even of the same person as he/she processes 
more samples), (2) the position of the sample on PCR plate (reactions 
placed on the outer part of plates sometimes tend to evaporate more 
water during PCR), (3) PCR machine (especially if a different brand, or 
purchased at a different time), and (4) the lane of a high-throughput 
sequencer. Therefore, molecular ecologists must ensure randomiza-
tion or properly balanced designs in every step of laboratory work and 
present the details. There is no excuse for avoiding this as more and 
more globally important decisions require reliable molecular ecology 
data in nature and biodiversity conservation.
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DATA SOURCES

(accessible through Figshare, https://figshare.com/s/32dbca0a906c 
7f06449b, https://doi.org/10.6084/m9.figshare.4579681):

sample_infos.csv: the description of samples, negative, and posi-
tive controls.

multiplexing_indices.xlsx: PCR plate setup and nucleotide indices 
used for sample multiplexing.

stechlin_assigned_190915.tab: OTU abundance table.

F IGURE  3 Compositional changes in historic communities explained by expected and unexpected laboratory biases, and biological signal. 
Points represent communities reconstructed from replicated DNA extractions from 21 sediment horizons, representing the last ~70 years of 
the lake’s history. Symbol color indicates age: Dark brown is the oldest, and light green is the youngest communities. Replicated DNA extracts 
of a horizon are connected by gray lines. The operational phases of the nuclear power plant are marked with hulls: green—before building the 
plant, orange—during power plant operation, and yellow—after operation. (a) Symbols mark the effects of laboratory personnel on community 
composition, and the two ellipses show the 95% confidence interval of the corresponding group centroids. (b) Symbols and ellipses mark the 
effects of the DNA extraction kits
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Stechlin_organohalogene.csv: organohalogen pesticide concentra-
tions in the sediments.

lab-methods_OTU_anova.RData: ANOVA table of the multispecies 
generalized linear model (100 bootstraps).

Lab_LV_model_40000-iter.RData: ordination results with a latent 
variable model (40 000 iterations).
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