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Abstract

Field-aligned diffusion of energetic ions in the Earth’s foreshock is investigated by using the quasi-linear theory
(QLT) and test particle simulation. Non-propagating MHD turbulence in the solar wind rest frame is assumed to be
purely transverse with respect to the background field. We use a turbulence model based on a multi-power-law
spectrum including an intense peak that corresponds to upstream ULF waves resonantly generated by the field-
aligned beam (FAB). The presence of the ULF peak produces a concave shape of the diffusion coefficient when it
is plotted versus the ion energy. The QLT including the effect of the ULF wave explains the simulation result well,
when the energy density of the turbulent magnetic field is 1% of that of the background magnetic field and the
power-law index of the wave spectrum is less than 2. The numerically obtained e-folding distances from 10 to
32 keV ions match with the observational values in the event discussed in the companion paper, which contains an
intense ULF peak in the spectra generated by the FAB. Evolution of the power spectrum of the ULF waves when
approaching the shock significantly affects the energy dependence of the e-folding distance.
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1. Introduction

A collisionless shock is thought to be an efficient particle
accelerator in space. One of the most plausible acceleration
models of galactic cosmic rays is the diffusive shock
acceleration (DSA) model (Bell 1978; Blandford & Ostriker
1978). In that model, turbulent electromagnetic waves that are
present both upstream and downstream of the shock scatter
some charged particles back and force across the shock.
Because the turbulent waves are convected by background
flows with different flow speeds upstream and downstream, the
particles gain energy through the scattering process. The
process occurs stochastically, leading not only to diffusion in
momentum space, but also to diffusion in real space. The
spatial diffusion has an especially important role in the DSA
model. A smaller spatial diffusion coefficient leads to a larger
maximum energy attained by the model. This is because that
the particles are well-confined near the shock, due to the
smaller diffusion, and have a better chance of crossing the
shock many times.

Quasi-linear theory (QLT) can provide the spatial diffusion
coefficient, or alternatively, mean free path as a function of the
wave turbulence spectrum. The spatial diffusion takes place as
a result of pitch-angle scattering across 90° in pitch angle.
Mathematically, the spatial diffusion coefficient is calculated
by integrating the pitch-angle diffusion coefficient. Jokipii
(1966) first developed the QLT in a so-called magnetostatic
slab turbulence model. In the slab model non-propagating
Alfvén wave, i.e., time stationary and purely transverse
fluctuating field with wave vector along the ambient field, is
considered. That theory combined with the slab model is often
referred to as the Standard QLT. After Jokipii (1966), many
authors discussed the validity of the QLT, and developed
several theories in various turbulence models, such as a purely
two-dimensional model and a composite model of 1D slab and
2D geometries (see Shalchi 2009 for details). The QLT has
often assumed a simple power-law spectrum of the wave

turbulence, and has been successfully applied to problems of
diffusion and acceleration of cosmic rays in interplanetary and
interstellar media. Near the Earth’s foreshock, however, wave
spectra have an intense peak rather than a simple power-law
(Fairfield 1969; Childers & Russell 1972; Trattner et al. 1994;
Kis et al. 2007, 2017).
Quasi-monochromatic waves categorized as terrestrial fore-

shock ULF waves with a period of about 30 sec are often
observed in the Earth’s foreshock. A number of studies have
discussed the characteristics of the foreshock waves and their
associated ion populations, such as field-aligned beams (FABs)
and diffuse ions. There are a number of reviews on the physics
of foreshock (e.g., Greenstadt et al. 1995; Eastwood et al. 2005;
Burgess et al. 2012; Burgess & Scholer 2015). The foreshock
ULF waves often lead to a peak in wave spectrum. The quasi-
monochromatic 30 s waves are often observed near the
foreshock boundary. They are nearly transverse fluctuations,
propagating sunward away from the shock, and have
intrinsically right-handed polarity in the solar wind frame.
Hence, these ULF waves are identified as waves generated by
FAB ions backstreaming away from the shock through
resonant mode instability (Gary et al. 1981; Winske &
Leroy 1984). This wave generation mechanism has been
confirmed by in situ observations of low-frequency waves and
ion distributions detected by Cluster spacecraft (Mazelle et al.
2003; Meziane et al. 2003; Kis et al. 2007). This fact indicates
that the FAB ions generate the monochromatic ULF waves. As
one moves deeper into the foreshock, the quasi-monochromatic
waves steepen into shocklets with whistler-mode wave trains
(Hoppe et al. 1981). Also, during convection, these waves grow
in amplitude into pulsations, termed short large-amplitude
magnetic structures (SLAMS) (Lucek et al. 2008). According
to the changes in waveform, the peak of the ULF power
spectrum becomes broader when the spacecraft further
approaches the shock (Greenstadt et al. 1995). These ULF
waves will efficiently scatter foreshock energetic ions whose
parallel velocities are comparable to that of FAB ions.
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The diffusion of upstream energetic ions is described by the
so-called diffusion-convection equation (e.g., Skilling 1975). In
steady state, the diffusion-convection equation tells us that
density of energetic particles increases exponentially when
approaching the shock from the upstream side; density reaches
its maximum at the shock, then keeps a constant value
downstream (e.g., Jokipii 1971). Here, the e-folding distance is
determined by the balance between upstream spatial diffusion
and solar wind convection. This feature was confirmed by a
number of in situ observations of Earth’s bow shock. Trattner
et al. (1994) showed the result of statistical analysis of about
300 events where the AMPTE/IRM satellite observed fore-
shock energetic ions. The analyzed energy range was
10–67 keV e−1. Later, Kis et al. (2004) and Kronberg et al.
(2009) improved a specific event by using multi-spacecraft
data. They used data obtained by Cluster satellites in the same
period when two of the four satellites separate almost along the
upstream magnetic field line. Using the Cluster data, one can
estimate the parallel spatial gradient of energetic ion density for
a single event. Kis et al. (2004) analyzed the data of lower-
energy protons from 10 to 32 keV, whereas Kronberg et al.
(2009) analyzed those of higher energy ions from 42 to
123 keV protons and helium.

All these in situ observations showed an exponential profile
of upstream energetic ion density, as expected from the
classical diffusion-convection theory. Kronberg et al. (2009)
demonstrated that the values of e-folding distances obtained by
Kis et al. (2004) and Kronberg et al. (2009) lie approximately
on the line as a function of ion energy, confirming that these
two observations are actually from the same single event.
Further, the e-folding distances estimated by Kis et al. (2004)
are ∼0.5–2.8 Re for ∼11–27 keV ions—apparently smaller
than the values obtained by Trattner et al. (1994). This fact
reveals that the efficient scattering of ions takes place in the
event analyzed by Kis et al. (2004). The events analyzed by Kis
et al. (2004) and Kronberg et al. (2009) contained an intense
ULF peak in the spectra. In the event, the peak frequency was
0.03 Hz in the spacecraft rest frame, and the velocity of FAB
ions was about 1600 km s−1 in the plasma rest frame,
corresponding to a FAB energy of ∼5 keV in the spacecraft
rest frame (which is described in Section 5). Hence, diffuse
ions whose energies are higher than 5 keV will be affected by
the ULF waves generated by the FAB.

In this paper, we theoretically and numerically investigate
the influence of a ULF wave peak in the spectrum of magnetic
fluctuations to spatial diffusion of energetic ions. In Section 2,
we model the spectrum of magnetic fluctuations containing
features of ULF waves as a superposition of multi-power-law
spectra that have different power-law indices. For the modeled
spectrum, the diffusion coefficient of energetic particles is
estimated by using quasilinear theory in Section 3 to discuss
the qualitative effect of the ULF peak. Test particle simulation
is then performed in Section 4 to quantitatively estimate the
diffusion coefficient for various parameters. In Section 5, we
apply our test particle scheme to the Cluster observation
reported in the companion paper (Kis et al. 2017; hereafter
referred to as Paper II) for the 2003 February 18th event, to
show that the effect of FAB in the scattering of diffuse ions can
be significant. We also discuss the relation between the
energetic ion diffusion and wave spectral evolution toward the
shock. Finally, a summary and our conclusions are given in
Section 6.

2. Wave Spectrum Model

We consider a wave spectrum composed of N segments with
different power-law indices as

 å a= = = g

=
-

-( ) ( ) ∣ ∣ ( )p k p p p k k k k, , 1
j

N

j j j j j
1

1 j

where p(k) is a dimensionless power spectral density (PSD) of
the magnetic field fluctuating in transverse to the background
field, and j indicates the index of segment in wavenumber space.
The sum (or integration) of p(k) gives total wave energy, s^

2 ,
normalized to the background magnetic field, where a symmetry
of the spectrum with respect to k=0 is assumed. Figure 1
shows examples of modeled spectra with N=5. This type of
wave spectrum is indeed observed by Cluster satellite, as will be
shown later in Figure 7. The bottom axis is the normalized
wavenumber, WkvA , using the Alfvén speed vA and the ion
gyrofrequency Ω. The top axis denotes the corresponding
particle parallel velocity, vr/vA, which is calculated from the
linear resonance condition- = Wkvr , where the wave frequency
is omitted by assuming vr ? vA. The minimum and maximum
wavenumbers are p= D = Wk k v2 66200 A and p= Wk vA5 ,
respectively, and the wavenumber values at the four break points
of p(k) are (k1, k2, k3, k4)=(31, 55, 85, 118)Δk. In the resonant
velocity, the break points are represented correspondingly as
(v0, v1, v2, v3, v4, v5)=(1054, 34, 19, 12.4, 8.9, π−1)vA. The
triangular portion in k1<k<k3 corresponds to the ULF peak.
Parameters for the modeled PSD include the power-law

index of each segment, γj, total transverse wave energy,
s =å D^( ( ) )p k k2 , and the rate of the ULF peak energy to the
total one,  s s s= -^ ^( ( ) )2

0
2 2 , where σ0

2 is the wave energy
except for the triangular portion in k1<k<k3. In the
following, a number of wave models are taken into account.
Their parameters are summarized in Table 1. The PSDs in
Figures 1(a) and (b) correspond to runs C and D, respectively.
The different triangles in the peak are for different values of ò.
In the quasilinear theory and test particle simulations, the PSD
is used to give the turbulent magnetic field, with the further
assumption that each wave has a random phase. In addition, we
assume that the wave electric field is negligibly small, leading

Figure 1.Modeled wave power spectra for (a) Run C (γ5=1.5) and (b) Run D
(γ5=3.0), respectively. Other parameters are written in Table 1.
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to a static magnetic field turbulence. This is justified when the
wave phase velocity, ∼vA, is sufficiently smaller than the
velocities of energetic ions to be considered. This turbulence
model is the so-called magnetostatic slab model, which is often
used as a solar wind turbulence model (e.g., Schlickeiser 2002;
Shalchi 2009).

3. Quasilinear Theory

3.1. Spatial Parallel Diffusion Coefficient

We derive a spatial parallel diffusion coefficient with the
multi-power-law shape of the wave turbulence spectrum, using
the standard quasilinear theory (Jokipii 1971; Schlickeiser
2002; Shalchi 2009; Burgess & Scholer 2015). In that theory, a
pitch angle diffusion coefficient, mmDQL, is given by

p
m=

W
-mm ( ) ∣ ∣ ( ) ( )D

k P k

B4
1 , 2r rQL 2

0
2

where μ is the pitch angle cosine, B0 the ambient magnetic
field, m= -Wk vr the resonant wavenumber with particle
velocity v, and P(k) the transverse wave power spectrum,
respectively. Here, P(k) normalized by using B0 corresponds
to (1). The parallel spatial diffusion coefficient, k

QL, is obtained

by integrating mmDQL as

òk
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Because the segment j of the wave spectrum (Figure 1)
contributes to k

QL via corresponding μ interval, the integration
of μ is divided into N segments as
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where m = v vj j for v>vj and μj=1 for v<vj, and
vj(=Ω/kj) is the resonant velocity at the break points of pk.

Here, kj>kj−1; then vj<vj−1, equivalently μj<μj−1. The
minimum pitch-angle cosine, μN, is finite because pk is
truncated at the highest wave number, kN. Figures 2(a) and
(b) shows the integration regions in velocity and wavenumber
spaces, respectively, for the case of N=5. Here, the regions
corresponding to each other are filled in the same way. First, let
us consider the particles with velocity v1<v<v0. In this case,
μ0=1 because v<v0, otherwise μj<μj−1<1 for j=2–5.
The particle with the pitch-angle cosine of μ1<μ<μ0
resonates the wave with the wavenumber of Ω/v<k<k1
(shown by the shaded region). Similarly, the particles with
μ<μ1 interact with the corresponding resonant waves as
shown in Figure 2. Thus, in this case, the particles can resonate
with the waves in every segments from 1 to 5.
Next, let us consider the particles with the velocity of

v2<v<v1. In this case, μ0=μ1=1 because v<v1<v0,
otherwise μj<μj−1<1 for j=3–5. Then the integration of
the first segment vanishes due to μ0=μ1=1, signifying that
the particles with v<v1 cannot resonate with the waves in the
first segment, i.e., k0<k<k1.
Finally, the diffusion coefficient κP

QL in (3) reads
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Table 1
Parameters for the Wave Spectrum Used in the Test Particle Simulation

Run g1 g2 g3 g4 g5 s^
2 a(Ŵ b)  %c

A 0.2 −6.8 9.4 0.2 1.5 0.01, 0.1, 1 70
B 0.2 −5.7 8.0 0.2 3.0 0.01, 0.1, 1 70

C1 0.2 0.2 0.2 0.2 1.5 0.2 0
C2 0.2 −3.4 4.9 0.2 1.5 0.29 30
C3 0.2 −5.0 7.1 0.2 1.5 0.40 50
C4 0.2 −6.8 9.4 0.2 1.5 0.67 70

D1 0.2 0.2 0.2 0.2 3.0 0.2 0
D2 0.2 −2.5 3.7 0.2 3.0 0.29 30
D3 0.2 −4.0 5.8 0.2 3.0 0.40 50
D4 0.2 −5.7 8.0 0.2 3.0 0.67 70

E1 0.48 −2.76 4.81 2.45 3.48 0.37 (6.98) 71
E2 −0.24 −6.32 6.39 1.90 4.74 0.50 (9.49) 37
E3 0.73 −0.84 2.09 2.08 2.08 0.57 (13.8) 22

Notes.
a Transverse wave intensity normalized by the background field.
b Transverse wave intensity in units of -10 11 erg cc−1.
c Rate of the ULF peak intensity.

Figure 2. Schematic picture of resonance regions for the particle with its speed
of v in (a) velocity and (b) wavenumber spaces, respectively. Here, the linear
cyclotron resonance condition, m= -Wk vr , is assumed. See the text of
Section 3.1 for more detail.
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2 4j j

When m m= =- 1j j1 , δmax,j=δmin,j=2, the contribution of j
th segment vanishes. When γj<2, (5) recovers the standard
QLT result as shown in (7).

3.2. Asymptotic Solution

Here, we consider asymptotic solutions of (5) for N=5.
First, let us consider a high-energy particle with v1=v=v0.
Here, well-separated k0 and k1 are assumed. In this case,
μ0=v0/v=1 otherwise μj=1. When all γj<2, m =g- 10

2 1

and m g-  1j
2 j . Then d = 2max,1 , otherwise d  0jmax, and

d  0jmin, . Hence, the term of j=1 only contributes k
QL, and

the asymptotic solution becomes

k
p a g g
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1 1

The above solution is consistent with the standard quasilinear
theory (e.g., (6.64) of Burgess & Scholer 2015). In general a
power-law wave spectrum has the steepest slope at dissipation
range, i.e., at the highest wavenumber range. Thus, all γj<2 is
satisfied if γ5<2. However, that is not the case with intense
peak in the spectrum. In a case such as Figure 2(b), γ3>2, and
the asymptotic formula (7) fails.

Second, let us consider a low-energy particle with
v5<v<v4. In this case, all μj are unity except for μ5<1.
Thus, the terms of j=1–4 vanish, and the asymptotic solution
of k

QL becomes

k
pa g g

g
W
- -

- -
g g g- - -
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where δmax,5=2 and the largest term of δmin,5 is taken as
d g m= - g-( )4min,5 5 5

2 5. In (8), if v5=v, the last term of the
right-hand side (RHS) vanishes for γ5<2. Thus, (8) again
recovers the standard QLT without the peak in the spectrum.
However, in our case, μ5=v5/v is not infinitesimally small
because k5 is finite; therefore, the last term is not vanished.

Finally, let us consider the case with γ5>2. In this case,
m g-

j
2 j is not less than unity anymore, and the term for the largest

pitch-angle, i.e., m g-
5
2 5 is the largest term. Thus, δmax,j and δmin,j

have not vanished. The most dominant two terms are
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When v1<v<v0, the first term arises from the segment j=1
due to μ0=1, and this term increases with v as g-v3 1. On the
other hand, the second term arises from the segment j=5, and
this term diverges to infinity if the wave spectrum extends to

 ¥k5 , i.e., = W v k 05 5 . This is the so-called 90°
scattering problem. In the standard QLT, the pitch-angle
diffusion coefficient becomes mmD 0 for m  0, represent-
ing a free streaming motion of a 90° pitch-angle particle. When
γN<2, this free streaming motion does not affect k

QL

obtained by integration of κμμ in μ space. This is because
k

QL is mainly determined by the particles with 0° pitch-angle,
as seen in (7) and the first term of the RHS in (8). On the
contrary, the spectrum becomes steepened as γN>2, k

QL is
enhanced due to the free streaming motion of 90° pitch-angle
particle, as seen in the second term of the RHS in (9), which
shows that the 90° scattering problem causes k µ vQL .

3.3. Comparison between Theory and Simulation

Figure 3(a) shows the diffusion coefficients obtained by (5)
of the QLT and (12) of a test particle simulation, indicated by
the solid lines and symbols, respectively. The detail method of
the simulation is described in Section 4. The parameters used
are from Run A in Table 1 (γ1=0.2 and γ5=1.5). The three
lines or data set of symbols correspond to the cases

Figure 3. Diffusion coefficient depending on the transverse wave intensity, s^
2 ,

for (a) Run A (γ5=1.5) and (b) Run B (γ5=3), where γ5 is the power-law
index of the highest wavenumber regime in the PSD. The solid lines and symbols
are obtained by the QLT in (5) and by the simulations in (12), respectively. The
results shown by the circles, triangles, and squares are for s =^ 0.01, 0.12 and 1,
respectively. The three dashed lines in (a) and (b) are the asymptotic solutions
from (7) to (9). The chained slope in (b) indicates g- =3 2.81 .
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s =^ 0.01, 0.1, 12 from top to bottom, where s^
2 indicates the

total transverse wave energy normalized by B0
2. Both the theory

and simulation demonstrate that the diffusion coefficients
anti-correlate with s^

2 and that the depression of κP appears
near v=v1. Most of the particles that have v=v1 can resonate
with the waves corresponding to the ULF peak, as shown by
the resonance region indicated by the gray region being the
largest for v=v1 in Figure 2(a). Thus, the presence of a ULF
wave peak produces a depression that is, equivalently, the
concave shape of k. When the wave energy is small enough
(s =^ 0.012 ), the simulation result is in good agreement with
the QLT, as expected. With increasing s^

2 , the result deviates
from the theory. In particular, the deviation becomes large at
v∼v1. The test particle simulations give a smaller κP and
larger concave shape than the QLT. In the figure, the two
dashed lines denote the asymptotic QLT solutions (7) and (8)
for the higher and lower velocities, respectively, for s =^ 12 .
These asymptotic solutions match the theoretical solution (5)
except for v∼v1. The slope of the asymptotic solution at the
higher velocity is ≈ 3−γ1=2.8, whereas that at the lower
velocity is 1.58, which is slightly larger than g- =3 1.55 due
to the second term in the parenthesis of (8), i.e., due to the
truncation of pk at k5.

Figure 3(b) is the same as3(a), but γ5=3.0 (Run B). Here,
the dashed line denotes the asymptotic solution of (9) for
s =^ 12 . The difference between the QLT and the simulation is
more significant and larger than one order at most. In theory,
k

QL is proportional to v at v<60vA, and the slope gradually
increases for increased v. This gradual change of the slope
results from the 90° scattering problem, because the problem
causes k µ vQL . On the other hand, in the simulation the slope

in k clearly changes regardless of s^
2 near v=v1, and at this

velocity the deviation from the QLT becomes the largest again.
If the second term of the RHS in (9) is not considered, the slope
in the theory becomes 3−γ1=2.8, indicated by chained
line’s slope. When s =^ 0.012 , the slope in the simulation for
the higher velocities approaches 2.8. This fact indicates that the
discrepancy between the simulation and theory is due to the 90°
scattering problem. In other words, the 90° scattering problem
in the QLT hides the effect of ULF wave peak on k

QL, because

the concave shape of k
QL vanishes due to the problem.

In summary, we extended the standard QLT using the multi-
power-law wave spectrum to evaluate the spatial parallel
diffusion coefficient, k. The extended QLT and the test particle
simulations are in good agreement when the power-law index
at the highest wavenumber, γ, is less than 2 and the wave
energy is low. Otherwise, the κP predicted by the QLT can be
an order of magnitude larger than that obtained by the
simulation. This difference is caused by the so-called 90°
scattering problem. The standard QLT considers the linear
cyclotron resonance, w m- = Wk v , where the wave fre-
quency, ω, is omitted, and Ω is the proton gyrofrequency.
Accordingly, no particles can satisfy the resonance condition if
their pitch angles become 90 , leading to mmD 0 and
k  ¥

QL at μ=0. Of course, including the effect of finite
ω in the resonance condition eliminates the singularity at
μ=0. However, such waves with ω∼Ω are usually heavily
dissipated at high wavenumber range. Also, the effect becomes
negligibly small for ion velocities much larger than the Alfvén
velocity. Other avenues to solve the problem include nonlinear
effects, such as mirroring and the resonance broadening due to

finite amplitude waves (Hada 2003). Even if the wave
amplitude is relatively low, the resonance region significantly
broadens (see Figure5 of Kuramitsu & Krasnoselskikh 2005).
Shalchi (2009) has developed second-order QLT, in which the
resonance condition, including the effects of finite amplitude
waves, is taken into account. They demonstrated that the
second-order QLT can explain a parallel mean free path
obtained from test particle simulation, despite γ>2 (see
Figures6.5 and6.6 of Shalchi 2009). Therefore, it may be
worthwhile to apply the second-order QLT to our model,
although it is beyond the scope of this paper.

4. Test Particle Simulation

Using the modeled magnetic field spectra shown in Section 2,
we follow the motions of test particles. Here, we consider the
motions of energetic ions in the solar wind rest frame. The so-
called one-dimensional slab model is used as our wave
turbulence model. In this system, particle energy is conserved
because the electric field is negligible due to the time-stationary
field. The wave vectors are parallel and anti-parallel to the x-axis,
which is along the ambient magnetic field. The effect of
convection by the solar wind will be discussed later.
The following equations are solved for a number of test

particles.

= ´˙ ( )v v b. 10a

=˙ ( )x v 10bx

Here, time and space are normalized to the reciprocal of Ω and
vA/Ω, respectively. The magnetic field, = ( )b b b1, ,y z , is
normalized to the ambient field along the x-axis. Purely
transverse fluctuating fields are given by

å f

f

+ = +

+ - +

{ [ ( )]

[ ( )]} ( )

b ib b i kx

i kx

exp

exp , 11

y z
k

k

k k p

k m

,

,

min

max

where = D( )b p k k 2k , p= D =k k L2min , kmax=π, and
system size L=6620. The boundary condition is periodic,
phases fk,p and fk,m are random between 0 and 2π, and p(k) is
defined in (1).
Initially, mono-energetic ions with speed v and isotropic

pitch angles are uniformly placed in space. Trajectories of ions
are calculated by integrating (10). The spatial diffusion
coefficient along the x axis (parallel diffusion) is evaluated as
a function of elapsed timescale, τ:

k
t

=
áD ñ

 ( )x

2
, 12

2

where the bracket denotes the ensemble average of 10,000 ions,
and Δx is the ion displacement at the timescale, τ. For a
sufficiently long timescale, the diffusion coefficient becomes
constant, representing classical diffusion. We perform a
number of runs with different v for the cases of different wave
spectra represented in Table 1. We then obtain the classical
diffusion coefficients depending on the velocity, or equiva-
lently, on the energy. In each case, we have 10 runs with
different v from v4 2 A to v128 A with a factor of 2 spacing.
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4.1. Running Diffusion Coefficient

As an overview, the diffusion coefficients of ions that have
=v v32 2 A are plotted in Figure 4(a) as a function of τ for

Runs C1 (ò=0: dashed line) and C4 (ò=0.7: solid line). The
evolutions of spatial displacement for some particles are shown
for Run C1 (Figure 4(b)) and Run C4 (Figure 4(c)) up to
Ωτ=300. For both runs, the diffusion coefficients are
increasing functions of τ when τ is small, although they show
more or less constant values for large τ. Such a diffusive
regime appears over a timescale longer than the pitch angle
scattering time, τscatt, shown in Figure 4(a). At this timescale,
the change in μ becomes Δμ∼1, representing an isotropic
scattering. Trajectories in Figures 4(b) and (c) indicate a
Brownian motion along the ambient magnetic field through
the isotropic scattering by the turbulent waves at τ>τscatt.
The effect of the ULF peak manifests as a diminishing of κP at
large τ and also as a shortening of τscatt. In the following, ks
are evaluated on a sufficiently long timescale, Ωτ=104, for
various ò (or s^

2 ) and γ5.

4.2. Effect of ULF Peak Wave

Let us see the dependence of κP on the ULF peak intensity by
varying ò for relatively large s^

2 while keeping the spectral part
of non-ULF peak fixed. Figure 5(a) shows κP obtained for Run
C. Here, γ5=1.5. The different markers correspond to different
values of ò (=0, 0.3, 0.5, 0.7). Because s^

2 increases with ò, κP is
smallest for Run C4 (ò=0.7). When the ULF peak exists
(ò>0), κP denotes a concave shape similar to what was
observed in Figure 3. The depression rate, R, is defined as

 



k k

k
=

-=

=
 


( )R , 13

0

0

and plotted for ò=0.3, 0.5, and 0.7 in Figure 5(b). The
maximum depression occurs at a velocity slightly larger than v1
which is indicated by the vertical line at v=34vA. Here, v1
denotes the maximum parallel velocity with which a particle
can resonate with the ULF peak waves. Note that this v1 is
apparently larger than the velocity of FAB, i.e., vw = 19 vA.
The depression increases with ò, leading to the concave shape
of κP. However, the maximum depression occurs at the same
~v v1, regardless of ò. From Figure 2(a), particles that have

parallel velocities in the region < <v v v3 1 (gray region) can
resonate with the waves constituting the ULF peak. Among

Figure 4. Test particle results with an ion speed of =v v32 2 A for Run C1
(without ULF peak, i.e., ò=0) and C4 (with ULF peak, i.e., ò=0.7).
(a) Running diffusion coefficients with ò=0 and ò=0.7 denoted by dashed
and solid lines, respectively. Typical trajectories with (b) ò=0 and (c)
ò=0.7, respectively. The vertical chained line in (a) denotes the solar wind
convection timescale, τconv (see the text in Section 5).

Figure 5. Results for run C (γ5=1.5). (a) Diffusion coefficient, κP, as a
function of the ion velocity. (b) Reduced rate, R, of κP in (13) due to the ULF
peak. In (a), the rates of the ULF peak intensity are ò=0, 0.3, 0.5, and 0.7,
from top to bottom.
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these, for the particles having v<v1, the width of the resonant
pitch angle (gray region) increases with increased v. On the
other hand, for particles that have v>v1 (stripe region), the
width of resonant pitch angle decreases with increased v. This
is why the maximum depression occurs at v∼v1.

Figure 6 is the same as Figure 5, but for Run D (γ5=3.0).
The basic feature is similar to that of Run C. However, we can
confirm that κP is smaller (larger) for larger (smaller) v,
compared to Run C. As seen in Figure 1, wave power for
k<k4 (k>k4) in Run D is higher (lower) than that in Run C.
Therefore, the particles with higher (lower) energy are easier
(harder) to scatter.

5. Discussion

We apply our test particle scheme to understand the diffusion
of upstream energetic ions observed by Cluster spacecraft
reported in Paper II for the 2003 February 18th event. This event
contains the high-intensity waves in the foreshock that are
produced by the FAB. Figure 7 denotes the transverse wave
power spectrum using data in the period of 18:30 UT–21:30 UT;
this period is the main part of the data analyzed in Paper II.
In the panels, from left to right, the spacecraft approaches
the bow shock from the upstream side as time elapses:
(a) 18:30 UT, (b) 21:06 UT, and (c) 21:30 UT, corresponding
to distances of (a) 4.5 Re, (b) 1.9 Re, and (c) 1.3 Re from the
shock surface. Here, the distance of the spacecraft from the bow

shock is described in Paper II. The average magnitudes of the
magnetic fields are (a) B0=6.5 nT, (b) B0=6.5 nT and (c)
B0=7.8 nT, corresponding to ion gyrofrequencies fi=0.10 Hz
and 0.12 Hz, respectively. Other solar wind parameters include
plasma density ∼3.0 cm−3, solar wind speed vsw∼650 km s−1,
the Alfvén speed vA=74 km s−1, the angle between the solar
wind velocity and the magnetic field ψ∼147°, the shock
normal angle ΘBn=20°, and the angle between the solar wind
velocity and the shock normal Θsw,n=23°.1, respectively, as
described in Paper II and Kis et al. (2004). The bottom axis
indicates the wave frequency in the spacecraft rest frame, fsc. The
top axis denotes the wavenumber, k, calculated by using the
Doppler shift relation,

p y
= =

+
( )kv

f
f

v v2 1 cos
, 14A sc

sw A

where f is a wave frequency in the plasma rest frame. We
assume a linear dispersion relation of the Alfvén wave
propagating along the ambient magnetic field.
It is clear that the wave spectrum is not time-stationary as the

spacecraft approaches the shock, which equivalently represents
the spatial variation of the wave spectrum. The spectrum
clearly contains a peak at fsc∼0.03 Hz, which corresponds to
a wave frequency of f=−0.05fi in the solar wind rest frame.
In a resonant mode instability, right-handed Alfvén waves,
propagating in the same direction as the FAB are generated
via cyclotron resonance. The resonance condition gives the
resonant frequency in the plasma rest frame as

=
-

( )f
v f

v v
, 15i

r
res

A

A

where vr is the resonant parallel velocity. Using (14) and (15),
the FAB velocity corresponding to fsc=0.03 Hz becomes
vr∼1600 km s−1 in the plasma rest frame, which roughly
matches the FAB velocity of 900 km s−1 in the spacecraft rest
frame observed at ∼8 Re from the shock (Kis et al. 2007).
Thus, the observed ULF waves are probably generated by the
FAB ions. It can also be seen that the ULF peak is most
remarkable at (a). As time elapses, the peak gradually decreases

Figure 6. Same as Figure 5, but γ5=3.0 (run D).

Figure 7. Power spectral density for the transversal component of the magnetic
field observed by Cluster 1 at (a) 18:30 UT, (b) 21:06 UT, and (c) 21:30 UT.
Bottom and top axes indicate the wave frequency in the spacecraft rest frame
and that in the plasma rest frame normalized by the ion gyrofrequency,
respectively. The colored lines indicate the power-law fitted results in different
frequency ranges. The fitted parameters are shown as run E in Table 1. In each
panel, upper and lower horizontal bars indicate the resonant frequencies for
123 keV and 11.5 keV ions, respectively. In (a), the solid red circles indicate
the lowest and peaked frequencies for the ULF peak.
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while the wave energy increases, with a frequency higher than
the ULF.

The above three spectra are modeled by the multi-power law
spectra, as shown by the colored solid lines in Figure 7. On
each line, four break points are indicated by the open circles.
The measured power-law index (γ) of each segment, the wave
energy (s^

2 ) normalized by the background field energy, and
the rate of the ULF peak energy (ò) are summarized in Table 1
as Run E. In that table, the wave energy (W⊥) is displayed in
units of erg cc−1. From Run E1 to E3, s^

2 or W⊥increase while
ò decreases. Note the ratio of s^

2 in run E1 to that in run E3 is
different from that of W⊥, because the background field energy
in Run E3 is 1.3 times larger than that in Run E1.

We numerically evaluate κP by performing additional test
particle simulations for Runs E1 to E3. In evaluating κP, here,
care should be taken with the timescale τ. The simulation frame
is the solar wind rest frame where the solar wind velocity is
along the background field. Namely, we are looking at the
particles scattered along the magnetic field line co-moving with
the solar wind. Those particles may start being scattered when
the solar wind enters the foreshock region, and they are
observed by the spacecraft on a timescale, τconv. To realize
the steady-state balance between the diffusion and convection,
the particles should be scattered isotropically with the
timescale, τscatt, before they are convected by the solar wind
over timescale τconv. Namely, τscatt<τconv should be satisfied,
and κP attains the classical regime at τ=τconv. Figure 8 shows
τconv and τscatt as a function of the ion energy. From Figure11
of Kis et al. (2007), the distance from the spacecraft to the
foreshock boundary along the magnetic field is Lup≈20 Re,
leading to the convection timescale of t = »L vconv up sw,

200 s in the rough estimate. This corresponds to Ωτconv≈120.
The scattering timescale, τscatt, is obtained from numerical
simulations as shown in Figure 4 (a). When Esc<42 keV,
τscatt<τconv are almost always satisfied; thus, the diffusion
concept is valid. On the other hand, τscatt for Esc=123 keV is
slightly larger than τconv; this indicates that the particles leave
the foreshock and enter the downstream region before being
scattered sufficiently. We use classical values of κP to evaluate
the e-folding distance, as assumed in the past studies (Trattner
et al. 1994; Kis et al. 2004; Kronberg et al. 2009), although

the diffusion approximation is doubtful at 123 keV ions. We
discuss this uncertainty later.
Figure 9 summarizes the numerical results of e-folding

distances as compared to the Cluster observations (Paper II;
Kronberg et al. 2009). The numerically obtained values for
Runs E1–E3 are plotted, shown by the colored markers, versus
the ion kinetic energy in the spacecraft rest frame. In the figure,
observationally obtained values are superimposed by the solid
squares. The four solid squares from the lowest energy and two
solid squares from the highest energy indicate the values
estimated by Paper II and Kronberg et al. (2009), respectively.
Note that the data from Paper II shown here are slightly
modified from those of Kis et al. (2004).
In the diffusion-convection equation in the normal incident

frame, the balance between the diffusion and convection terms
yields Ln=κn/vsw,n, where = QL L cosn Bn the e-folding
distance, vsw,n=vsw cosΘsw,n the solar wind velocity, and
k k= Q cosn Bn

2 the diffusion coefficient. The subscript “n”
denotes the direction normal to the shock surface. Next, the
e-folding distance along the background field, LP, is numeri-
cally estimated by

k=   ( )L v ; 16sw,

where = Q Qv v cos cosnsw, sw sw, Bn is solar wind velocity in
the de Hoffmann–Teller frame where a motional electric field
vanishes across a shock (e.g., Sections2.5 and6.3 of Burgess
& Scholer 2015). The particle energy in the spacecraft rest
frame is then written as = + ( )E m v v 2psc

2
sw,
2 , where v is the

particle speed in the simulation frame and mp is the proton
mass. Here, an isotropic velocity distribution of ions in the
solar wind frame is assumed.
Runs E1, E2, and E3 correspond to the red circles, blue

triangles, and green squares, respectively. These simulation
values are close to each other when Esc increases, and the

Figure 8. Typical timescales vs. particle energy. Pitch-angle scattering
timescale is τscatt, convection timescale of the solar wind in the foreshock is
τconv, and escape timescales far upstream along the field and from the shock
across the field are τesc,P and τesc,⊥, respectively. See the text for definitions. Figure 9. Comparison of e-folding distances between simulation and

observations. Bottom axis indicates the ion kinetic energy in the spacecraft
rest frame. Left and right axes indicate the e-folding distance along the ambient
field (LP) and parallel spatial diffusion coefficient (κn) normal to the shock
surface, respectively. Solid squares are the observed values reported in Paper II
(four points at low energies) and Kronberg et al. (2009) (two points at high
energies). Red circles, blue triangles, and green squares are the simulation
results for runs E1, E2, and E3, respectively. Two arrows indicate the energies
of 0° pitch-angle particles resonant with the waves that have frequencies shown
by the red solid circles in Figure 7(a).
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observed value for Esc=123 keV matches the simulation
result. For Esc<42 keV, the observed LP with the lower
energy matches the simulated LP with the PSD closer to the
shock. This indicates that the energy dependence of LP is
closely affected by the spatial variation of the wave spectrum.

Let us now discuss each of these runs in more detail. The red
arrows indicate the energies of 0° pitch-angle particles resonant
with the lowest and peaked frequency in the ULF peak, shown
by the red solid circles in Figure 7(a). In the energy range
between the two arrows, the values of Run E1 are depressed
due to the presence of the intense ULF peak (i.e., ò=71%).
The observed LP at 42 keV matches with the depressed LP. In
addition, the resonant frequency range for 123 keV is indicated
by longer, horizontal bars in Figure 7. The range is obtained
from (14) and (15). The minimum resonance frequency
corresponds to a 0° pitch-angle of the 123 keV ion, while the
maximum one is simply fixed as fres=−fi, corresponding to a
88° pitch-angle of the 123 keV ion, due to the negligible wave
energy for the higher-frequency part. It can be seen that the
resonance range fully covers the intense ULF peak. Hence, the
particles with 42 and 123 keV may be efficiently and directly
scattered by the ULF peak waves.

On the other hand, the observed values for relatively low
energies (<21 keV) are in good agreement with run E3 using
the PSD (Figure 7(c)) in the vicinity of the shock. The resonant
frequency range for 11.5 keV is indicated by shorter, horizontal
bars in Figure 7, the same as in the case for 123 keV. The
minimum resonance frequency corresponds to a 84° pitch-
angle of the 11.5 keV ion. This frequency range corresponds to
segment 4 in the spectrum. In this range, the resonant wave
energy increases from (a) 1.85×10−11 erg cc−1 to (c) 7.5×
10−11 erg cc−1, and the rate of the resonant wave energy
against s^

2 increases from (a) 26% to (c) 54%. This fact is
approximately equivalent to a hardening of the spectrum, i.e.,
decreased γ4, toward the shock, while the ULF peak rate, ò,
decreases. This implies that the intense ULF wave energy
transfers to a frequency higher than the ULF peak, which may
result in the smaller e-folding distances at Esc<21 keV.

In summary, we used three different ULF wave spectra
observed at different positions from the shock, and demon-
strated that the spatial dependence of the wave spectrum
significantly affects the e-folding distance of the diffuse ions.
Kronberg et al. (2009) found that the e-folding distance of
high-energy ions increases approximately linearly from lower
energies as energy per charge is increased, whereas our result
show a deviation from this linear dependence on the energy.
Our result suggests that the spatial diffusion of the foreshock
energetic ions does not obey the simple picture that the
standard QLT predicts, and that the spatial or temporal
variation of the wave spectrum should be taken into account.
In our calculation to evaluate the diffusion coefficient as a
function of time, we assumed that the wave spectrum does not
change along the magnetic field. To include the spectral
variation in more detail, particles should experience the
evolving foreshock ULF waves as they travel toward the
shock during the convection.

The sequence of the wave spectra detected by the spacecraft
shows not only a gradual change but also some small variations
in time. We carefully chose the time intervals in which the
observed spectra explain the observed e-folding distances well,
and obtained good agreement with the simulation and
observations (Figure 9). We emphasize here that the wave

spectrum far upstream (>2 Re from the shock) never
reproduces the small e-folding distance for the diffuse ions
with their energies <21 keV. This implies that the small
e-folding distances at the lower energy range are caused by the
developed ULF power spectrum near the shock, although their
association with the shocklet and SLAMS are not clear. Our
modeled waveforms are different from these structures due to
the random phase approximation.
In our model, we have assumed a balance between

convection and diffusion in a steady state. This would be
appropriate for the kind of infinite planar shock acceleration
described by Bell (1978) and Blandford & Ostriker (1978).
However, the Earth’s bow shock has a large curvature, so the
process might be modified from a simple DSA model assuming
one spatial dimension. Early ISEE spacecraft observations
demonstrated that the particles far upstream of the Earth’s bow
shock move essentially scatter-free from the shock (Scholer
et al. 1980). This indicates that the wave activity is not enough
to scatter the particles, and that the diffusion concept breaks
down far upstream. Terasawa (1981) modifies the ideal DSA
model by introducing the scatter-free effect in the terrestrial
bow shock. Eichler (1981) also theoretically discussed an effect
of particle escape from the shock acceleration region. We now
discuss the applicability of the ideal DSA to our model.
Terasawa (1981) introduced a dimensionless parameter,
z kº =  v L L Lsw, up up , to characterize the effect of escape
far upstream along the magnetic field. Beyond the distance,
Lup, from the shock in the upstream region, the particles escape
freely due to the absence of turbulent magnetic field. When
ζ<1 (weak scattering), particle escape becomes significant,
and the diffusion concept may break. In our case, ζ∼16 for
11.5 keV, whereas ζ∼1.3 for 123 keV. This implies that the
scattering at 123 keV is not sufficient to allow us to neglect the
escape effect, and that the acceleration must be terminated
somewhere around this energy.
Typical timescale to escape far upstream is written as

t k zt= = Lesc, up
2

conv, where t = L vconv up sw, . Also, a
typical timescale to escape across the magnetic field from the
shock region is approximated as t k=^ ^aesc,

2 , where
a(=6×104 km) is the radius of curvature of the bow shock,
and k̂ is the cross-field diffusion coefficient. The diffusion
coefficient is determined from the result obtained by the test
particle simulation using a non-compressional two-dimensional
turbulence model (Otsuka & Hada 2009). From the above, the
diffusion coefficient is written as k r~^ vK 2 for K<1, where
the dimensionless parameter r= ^K bL , and the wave
amplitude s= ^b . Here, the wave amplitude, σ⊥, from
Table 1 is used, and a perpendicular scale length of the
turbulence is roughly assumed to be L⊥; 1000 km from the
foreshock wave observations (Narita & Glassmeier 2010). In
the present study, K<1 throughout the energy range from
11.5 to 123 keV. Accordingly, t W ~^ ^( )a L besc,

2 2 2.
In Figure 8, the escape timescales are plotted as a function of

the particle energy, Esc. First, t ^esc, is at least 8000 seconds—
much larger than τconv. Hence, the escape due to the cross-field
diffusion is negligible, and the particles are almost tied to
the field lines during the convection. Second, τesc,P decreases
for increased Esc and drops below τscatt at Esc=123 keV. This
implies that the effect of escape far upstream is not negligible,
and the isotropic velocity distribution is not guaranteed.
On the contrary, our simulation assumed a balance between
convection and diffusion, which leads to the isotropic velocity
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distribution. Nevertheless, our resultant e-folding distances at
Esc=123 keV are in good agreement with those obtained by
Kronberg et al. (2009). We roughly assumed the free escape
boundary as the ion foreshock boundary with Lup=20 Re
from the shock. However, the boundary must be fluctuating in
time. Also, Terasawa (1981) described Lup∼100 Re, and
Scholer et al. (1980) predicted Lup<200 Re from the in-site
observations. For the case of Lup>20 Re, t esc, and τconv is
larger than τscatt for all the energies, and the diffusion concept
is still acceptable at Esc=123 keV. Further investigation to
precisely determine the free escape boundary is needed,
because it is closely related to the ability of the DSA in the
Earth’s bow shock.

For the lower energy range at Esc<42 keV, the ideal DSA
process is reliable. The e-folding distances of this range
estimated by Trattner et al. (1994) are a few times larger than
our result or the results given by the analysis in Paper II. There
are two possible reasons for that. First, transverse wave energies
are apparently smaller in the events analyzed by Trattner et al.
(1994), although the PSD clearly contains the ULF peak from
their Figure 3. In most of the events, they treated the transverse
wave intensity as W⊥<1×10−11 erg cc−1 (see Figure5 of
Trattner et al. (1994)). For the event reported here, however,
W⊥<13.8×10−11 erg cc−1 (Run E). Second, the power-law
spectrum for frequencies higher than the ULF peak is harder for
the event treated here. In Run E3, the index is γ4≈2.0, while
the corresponding index in Trattner et al. (1994) is roughly
estimated as ∼3 from their Figure 3.

The cause of the variation of wave spectra should also be
discussed. In the event we focus upon here, the transverse wave
energy increases as it approaches the shock. This is probably
due to inhomogeneity of the background plasma. It is common
that wave amplitude generated far upstream of the shock
increases while convected by the solar wind toward the shock.
We also found that the power-law wave spectrum in segment 4
becomes harder as it approaches the shock. Two possibilities
are considered here. First, nonlinear evolution of the large
amplitude FAB generated waves contributes to the hardening
of the high-frequency part of the wave spectrum. When the
amplitude of ULF waves becomes sufficiently large with
respect to the ambient magnetic field, nonlinear effects (such as
parametric instabilities) often lead to the cascade of wave
spectrum (Bruno & Carbone 2013, and references therein). As
shown in Figure 7, the wave spectrum near the foreshock
boundary has a rather large ULF peak (Figure 7(a)). As time
has passed, relative intensity of the ULF peak has decreased
(Figures 7(b) and (c)). Instead, relative intensity of the higher-
frequency waves corresponding to segment 4 have increased
from Figures 7(a) to Figure 7(c), accompanied by a hardening
of this part of the power-law spectrum. This scenario may not
work when the amplitude of ULF waves is not large enough, as
in the cases discussed by Trattner et al. (1994). Second, wave
generation by the diffuse ions themselves may also amplify the
wave energy, with a frequency higher than the ULF peak, as
discussed in Paper II. When the diffuse ions are effectively
scattered by the ULF peak waves, the DSA process occurs
efficiently, resulting in an increase of the diffuse ion density.
Because the diffuse ions have an isotropic velocity distribution
in the plasma rest frame, they can generate the waves with
frequency higher than the ULF peak. This is a conventional
self-consistent model of particle acceleration and wave
excitation (Lee 1982; Burgess & Scholer 2015, and references

therein). Obliqueness of the wave propagation and SLAMS
near the shock may also contribute to the variation of the
spectrum. To verify these possibilities, one must perform more
advanced analysis of wave evolution in the foreshock and
subsequent scattering of the energetic particles, which is a
future issue.

6. Summary and Conclusions

We have discussed field-aligned diffusion of energetic ions
upstream of the Earth’s bow shock. In particular, we have
focused on the effect of the foreshock ULF waves with
frequencies <0.1 Hz. The waves are modeled as a super-
position of a number of non-propagating Alfvén waves that
have a multi-power-law spectrum containing a ULF peak with
random phases. We extended the standard QLT using the
modeled multi-power-law wave spectrum to formulate a spatial
parallel diffusion coefficient, k

QL. When k
QL is plotted as a

function of particle velocity or energy, a concave shape appears
due to the presence of the ULF wave peak. However, the QLT
does not give reliable results if transverse wave power with
respect to the ambient field becomes large, or if the power-law
index at the highest wavenumber is above a critical value,
γ>2. The latter is caused by the so-called 90◦ scattering
problem in the QLT. Test particle simulation is performed for a
variety of parameters by using the modeled multi-power-law
wave spectrum. Qualitative features predicted by the QLT are
confirmed. In addition, it is revealed that the lowest frequency
of the ULF peak determines the particle energy at which
the maximum depression of κP occurs due to the peak. The
observed e-folding distances of the diffuse ions reported in
Paper II of this series and Kronberg et al. (2009) are reproduced
by the test particle simulation scheme developed here. The
evolution of the ULF power spectrum toward the shock affects
the energy dependence of the e-folding distance. The e-folding
distances of 42 and 123 keV ions are explained by considering
the effect of direct scattering by the observed ULF peak waves.
On the other hand, the efficient scattering for the ions of
10–32 keV is due to their high intensity, as well as the
hardening of the power-law wave spectrum at a frequency
higher than the ULF peak in the near vicinity of the shock.
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