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Abstract. In this work we present an unexpected relation between the discriminant
associated to a Hill equation with and without dissipation. We prove that by knowing
the discriminant associated to a periodic differential equation, which is the summation
of the monodromy matrix main diagonal entries, we are able to obtain the stability
properties of damped periodic differential equation solutions. We propose to conceive
the discriminant as a manifold, by doing this one can observe that the stability proper-
ties of periodic differential equations are closely related to the growing rate of unstable
solutions of periodic differential equations without dissipation. We show the appear-
ance of the Ziegler destabilization paradox in systems of one degree of freedom. This
work may be of interest for scientists and engineers dealing with parametric resonance
applications or physicist working on the motion of a damped wave in a periodic media.
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1 Introduction

Linear differential equations with periodic coefficients have been the subject of extensive stud-
ies. They can describe the dynamical behavior of a large number of mechanical systems with
one or more degrees of freedom. An important second order example is the Hill equation

ẍ(t) + (α + βq (t)) x(t) = 0, q (t + T) = q (t) , t ∈ R (1.1)

which has been used to describe problems in engineering and physics, including problems
in mechanics, astronomy and the theory of electric circuits. Hill equation describes from the
simplest systems to the more complicated ones, from a spring mass system or an L-C electric
circuit up to the behavior of the suspension bridges [1] or the flow of the light in a 1D photonic
crystal [18]. Hill equation often arises as a result of linearising a non-linear system about a
periodic solution, for more details about the dynamical systems described by the Hill equation
see [21].

It is known that periodic differential equations without dissipation have two types of so-
lutions, bounded and unbounded. The type of behavior of the solutions, associated to the
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equation (1.1), depends on the values of the parameters α and β. The Strutt diagram or stabil-
ity chart consists in dividing the plane of parameters α and β into regions where the solutions
of (1.1) are stable or unstable, see Fig. 2.2 b). The boundary curves separating stable from
unstable regions are called transition curves and they are characterized by having at least one
periodic solution, see [28].

In the present paper we are dealing with equations of the type (1.1) but with allowance of
dissipation, that is, equations of the form

ẍ(t) + δẋ(t) + (α + βq (t)) x(t) = 0, q (t + T) = q (t) . (1.2)

If we define δ = R
L and consider the capacitance as a the time varying function c (t) =

α + βq (t) then (1.2) describes the charge on a series RLC network. In [5] E. Butcher and
B. Mann show that a single tooth milling process may be modelled by the delay differential
equation ẍ (t) + 2ζ ẋ (t) + x (t) = −h (t) [x (t)− x (t− T)], where h (t + T) = h (t) and ζ is the
damping ratio. And then, by using the system own properties, the delay differential equation
is transformed into a damped periodic differential equation as in (1.2). In [17] M. Napoli et
al. show that the equation (1.2) can be used to describe the dynamics of an electrostatically
actuated micro-cantilever which may be used for sensing masses and as mechanical filters.
For more examples on parametric resonance see [6] and [20].

Dissipative forces are of great importance in the theory of periodic differential equations.
Generally, dissipative forces decrease unstable regions, making unstable solutions impossible
for sufficiently large amount of dissipation, see [19, 22, 23, 27]. But, there are some examples
where the addition of minimum quantities of dissipation may have a destabilizing effect on
the system, such phenomenon is known as Ziegler destabilization paradox [29]. This paradox
was studied in depth by Bottema [2] and Kirillov [12] among many others authors; in [12]
O. N. Kirollov shows that for the Ziegler destabilization paradox to happen it is necessary
the presence of both gyroscopic and dissipation forces, so the Ziegler paradox only occurs
on systems with 2 or more degrees of freedom. Here we show that the paradox may also
take place in systems, described by periodic differential equations, of one degree of freedom
despite the absence of gyroscopic forces. Roughly speaking, the switching of a parameter,
induces a gyroscopic effect, and this allows the Ziegler paradox to appear in one degree of
freedom systems.

The aim of this paper is to establish the relationship between the stability analysis of a
periodic differential equation with and without dissipation, in particular a Hill equation. Two
unexpected effects of dissipation are described: The stability properties of both cases, systems
with and without dissipation, may be obtained by knowing the so called discriminant of
Hill; and the Ziegler destabilization paradox happens in systems described by a one degree
of freedom Hill equation, that is, some stable solutions, of non-damped systems, become
unstable after adding dissipation.

By considering the discriminant as a surface, we propose a new way to obtain the stability
charts and the transition curves associated to a periodic differential equation, this also allows
us to clearly exhibit the aforementioned relationship.

The work is structured as follows: in Section 2, some basic and classical properties of
periodic differential equations without dissipation and some definitions are introduced; in
Section 3, we study the Hill equation with dissipation case, we show that the multipliers, just
as in the without dissipation case, are symmetric with respect to a circle of radius r, we prove
that the discriminant of one of the cases is the scaled discriminant of the other case and the
destabilizing paradox is described.
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2 Hill equation without dissipation

Consider a second order periodic differential equation

ÿ(t) + (α + βq (t)) y(t) = 0, α, β ∈ R, t ∈ R (2.1)

where q (t) is a real periodic function q (t + T) = q (t) and ÿ = d2

dt2 y. It is known that by the
usual change of variables, z1 = y, z2 = ẏ and x =

[
z1 z2

]′, the Hill equation (2.1) may be
written as

ẋ (t) =
[

0 1
− (α + βq (t)) 0

]
x (t)

, A (t) x (t) . (2.2)

It is clear that, A (t + T) = A (t) and A (t) ∈ R2×2. We say that the solutions of the
equation (2.2), and therefore the solutions of (2.1), are: stable if and only if they are bounded;
asymptotically stable if they tend to zero as the time tends to infinity; unstable if they tend to
infinity as the time tends to infinity.

Let y1 and y2 be two linearly independent solutions of (2.1) subject to the initial conditions

y1 (t0) = 1, y2 (t0) = 0,

ẏ1 (t0) = 0, ẏ2 (t0) = 1.
(2.3)

Obviously the vectors x1 =
[

y1 ẏ1
]′ and x2 =

[
y2 ẏ2

]′ are solutions of (2.2); moreover,
the matrix Φ (t, t0) whose columns are the vectors x1 and x2 also satisfies the equation (2.2),
that is

d
dt

Φ (t, t0) = A (t)Φ (t, t0) , Φ (t, t0) =

[
y1 y2

ẏ1 ẏ2

]
.

The matrix Φ (t, t0) is known as the state transition matrix, its importance lies in the fact
that it maps any solution of any linear differential equation, in particular of the system (2.2),
from an initial state (initial time t0) to a final state (final time t), that is,

x (t) = Φ (t, t0) x (t0) .

The state transition matrix of a periodic differential equation may be factorized as two
non-singular, time dependent matrices. This factorization, maybe the most important result
on the theory of periodic differential equations, it was proposed by Floquet and is stated as
follows

Theorem 2.1. The state transition matrix Φ (t, 0) associated to the periodic differential equation
ẋ(t) = A (t) x(t), where A (t + T) = A (t) has the form

Φ (t, 0) = P−1 (t) eRt, P (t + T) = P (t) ∈ R2×2, (2.4)

where R is a 2× 2, not necessarily real matrix and P (0) = I2.

If the initial time t0 is different from zero then, the factorization (2.4) takes the form

Φ (t, t0) = P−1 (t) eR(t−t0)P (t0) , P (t + T) = P (t) . (2.5)
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This follows from the property Φ (t1, t3) = Φ (t1, t2)Φ (t2, t3). The proof of Theorem 2.1 may
be found in [4].

In order to show the importance of Theorem 2.1, let Φ (t, 0) be the state transition matrix
associated to the equation (2.2) and x (t) a solution of the same equation subject to x (0) = x0.
For any t ≥ 0, if we write t as: t = kT + τ, where τ ∈ [0, T), k is a non-negative integer and T
is the minimal period of A(t) then, the solution x (t) can be written as

x (t) = Φ (t, 0) x0

= Φ (kT + τ, 0) x0

= Φ (kT + τ, kT)Φ (kT, (k− 1) T) · · ·Φ (2T, T)Φ (T, 0) x0.

By using equation (2.5) on the latter equation one gets

x (t) = Φ (τ, 0)Φ (T, 0) · · ·Φ (T, 0)Φ (T, 0) x0

= Φ (τ, 0) [Φ (T, 0)]k x0. (2.6)

From the above equation we can notice that, if we know the state transition matrix over
the interval t ∈ [0, T] then, we are able to obtain any solution x (t) at any time t.

Since the columns of Φ (t, 0) are solutions of (2.2), the matrix entries of Φ (τ, 0) are
bounded; obviously the entries of the initial condition vector x0 are bounded; and the ele-
ment that defines if the solution x (t) in (2.6) tends to infinite as t→ ∞ is [Φ (T, 0)]k. Suppose
that x0 is an eigenvector of the matrix Φ (T, 0) and µi the respective eigenvalue so, it is clear
that the solution (2.6) is

x (t) = µk
i Φ (τ, 0) x0

so the stability of the equation (2.2) solutions depends on the characteristic multipliers of the
matrix Φ (T, 0). The matrix Φ (T, 0) is the well known monodromy matrix and its eigenvalues
µi are known as the characteristic multipliers. From Floquet factorization, we can see that the
monodromy matrix can be written as

Φ (T, 0) = eRT

where the matrix R always can be chosen so that its eigenvalues ρi are

µi = eρiT, (2.7)

where the constants ρi are known as the characteristic exponents or Floquet exponents. Notice
that the real part of the characteristic exponents defines the velocity with which the solution
tends to infinity or how fast it approaches zero, this fact will be used in the next sections. The
next theorem gives us the conditions for the solution of a periodic differential equation to be
asymptotically stable, stable (bounded) or unstable.

Theorem 2.2. Let µi be the characteristic multipliers of the monodromy matrix Φ (T, 0) associated to
the periodic differential equation ẍ(t) + A (t) x(t) = 0, A (t + T) = A (t) ∈ R2n×2n. Then, all the
solutions are [15]:

a) asymptotically stable if and only if all |µi| < 1;

b) stable (bounded) if and only if all |µi| ≤ 1, and if any µi has modulo one, it must be a simple root of
the minimal polynomial of Φ (T, 0);
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c) unstable if and only if there is a µi such that |µi| > 1 or if all |µi| 6 1 and there is one µj :
∣∣µj
∣∣ = 1

and µj is a multiple root of the minimal polynomial of Φ (T, 0).

Theorem 2.2 gives us conditions for the stability of the solutions of (2.2) in terms of the
characteristic multipliers µi. So, from Theorems 2.1 and 2.2 we can conclude that the stability
of solutions only depends on the knowledge of monodromy matrix Φ (T, 0).

Notice that the equation (2.2) can be written as a Hamiltonian system [16][
ẏ
ÿ

]
=

[
0 1
−1 0

] [
(α + βq (t)) 0

0 1

] [
y
ẏ

]
thus, the general solution cannot be asymptotically stable, it only has two choices, to be
bounded or unstable. Moreover, it is known that the state transition matrix of a Hamiltonian
system is a symplectic matrix1, so the monodromy matrix is a symplectic matrix. Therefore
the characteristic multipliers are symmetric with respect to the unit circle [16].

The characteristic multipliers associated to the equation (2.2) are the solutions of the char-
acteristic equation

det (µI −Φ (T, 0)) = µ2 − (y1 (T) + ẏ2 (T)) µ + det Φ (T, 0) = 0, (2.8)

where y1 (t) and y2 (t) are two linearly independent solutions of the Hill equation (2.1) sub-
jected to the initial conditions (2.3). By Liouville’s Theorem [13] we know that the independent
term in (2.8) is equal to one, that is, since Trace (A (t)) = 0

det Φ (T, 0) = det (Φ (0, 0)) exp
∫ T

0 Trace(A(τ))dτ = 1.

Alternatively, the independent term is equal to one since the fact that the characteristic poly-
nomial of a symplectic matrix is self-reciprocal, i.e. det (λI −Φ (T, 0)) = λ2n + p2n−1λ2n−1 +

p2n−2λ2n−2 + · · ·+ p2n−2λ2 + p2n−1λ1 + 1.
So, the characteristic equation is reduced to

µ2 − ∆ (α, β) µ + 1 = 0 (2.9)

where
∆ (α, β) = y1 (T) + ẏ2 (T) . (2.10)

The function ∆ (α, β) is known as the discriminant associated to the Hill equation (2.1). The
dependence on the coefficients α and β is written due to the dependence of the solutions on
them, we will see that the discriminant plays a fundamental role in the analysis of the stability
of the solutions of the equation (2.1). Solving, the characteristic equation (2.9), for µ we obtain

µ1,2 =
∆ (α, β)±

√
∆ (α, β)2 − 4

2
(2.11)

so, the characteristic multipliers µi depend on ∆ (α, β) and therefore on the current value of
the parameters α and β. Table 2.1 shows the relation between the position of the characteristic
multipliers and the discriminant associated to the Hill equation (2.1).

Following the Theorem 2.2 one can state the next corollary.

1We say that a matrix M ∈ R2n×2n is a symplectic matrix if M′ JM = J, where J is the antisymmetric matrix

J =
[

0 In
−In 0

]
.
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Discriminant
Characteristic

Multiplier
µ over the circle

a) |∆(α, β)| < 2
µ1, µ2 ∈ C; µ1 = µ̄2

and |µ1| = |µ2| = 1

b) |∆(α, β)| > 2
µ1, µ2 ∈ R; |µ1| < 1

and |µ2| = 1
|µ1|

c) ∆(α, β) = ±2
µ1 = ±1 and
µ2 = ±1 (∗)

Table 2.1: Relation between the characteristic multipliers and the discriminant
associated to (2.1). (∗) If the Jordan form of Φ(T, 0) is diagonal, then both
solutions are stable; otherwise, they would be unstable.

Corollary 2.3. The solutions of the Hill equation (2.1) are:

a) stable (bounded), if |∆ (α, β)| < 2, since, the multipliers are complex conjugated numbers and
|µi| = 1;

b) unstable, if |∆ (α, β)| > 2, since, both multipliers are real, one of them is |µ1| < 1 and the other is
|µ2| > 1;

c) one periodic and one unstable or both periodic. If the Jordan form of the monodromy matrix is equal
to the identity matrix I2 then both solutions are periodic, otherwise only one solution would be
periodic.

Corollary 2.3 establishes that the stability of the equation (2.1) solutions depends on
the discriminant ∆ (α, β). It is known [11, 15, 26] that, for a fixed β = β f , the functions
∆
(
α, β f

)
± 2 = 0 are entire functions of order 1

2 , which means that they are infinitely many
times differentiable functions and they have an infinite number of zeros α = αk, k = 0, 1, 2, 3 . . .,
the latter was proved by Haupt, see [15]. Moreover, by the fact that ∆

(
α, β f

)
is an entire real

function of order 1
2 and the Laguerre Theorem2 [25] we know that there exists an infinite

number of intervals α ∈ (φ2n−1, φ2n) where ∆
(
α, β f

)
is a strictly increasing function alternat-

ing with an infinite number of intervals α ∈ (φ2n, φ2n+1) where ∆
(
α, β f

)
is a strictly decreasing

function, n = 1, 2, 3 . . . Figure 2.1 shows the classic form of the discriminant.
It is worth to notice that if we are able to obtain the discriminant for each point of the plane

of parameters α-β, we would know the stability properties of the Hill equation solutions
for each pair of parameters α and β. By continuity of the solutions we can assure that the
discriminant ∆ (α, β) defines a surface (α, β, ∆ (α, β)) in R3. There exist, in the literature, some
discriminant approximations such as [9,10,14,24]. Moreover, if we define two parallel surfaces

2Laguerre Theorem says that if f (t) is an entire function, real for real z, of growth order less than 2 and real
zeros, then the zeros of d

dz f (z) are also real and are separated from each other by the zeros of f (z).
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Figure 2.1: Classical form of the discriminant ∆(α, β).

to the α–β plane

surf1 = {(α, β, z) | ∀α, β ∈ R, z = 2} ,

surf2 = {(α, β, z) | ∀α, β ∈ R, z = −2}

and then, we project the intersection between the discriminant surface and surf1 and sur f2,
into the α–β plane, we would obtain the so called transition curves, i.e. curves that are com-
posed by points, in the α–β plane, for which there is at least one periodic solution of the
associated periodic differential equation, see Fig. 2.2 a). The transition curves divide the α-β
plane into stable and unstable zones. The unstable zones are called Arnold tongues and they
are numbered from left to right; the zeroth tongue is the one more to the left, see Fig. 2.2 b). It
can be proved that each tongue rises from the points α =

( nπ
T

)2, β = 0, n = 0, 1, 2, . . ., where
the number n is the identifier of each tongue.
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1
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(b)

Figure 2.2: a) Discriminant surface (α, β, ∆(α, β)). b) Stable zones in white,
unstable zones in gray.

Since the determinant of the monodromy matrix Φ (T, 0) is equal to 1 we can say that
Trace (R) = ρ1 + ρ2 = 0, that is, det (Φ (T, 0)) = det

(
P−1 (T) eRT) but, since P (t + T) =

P (t), det (P (0)) = det (P (T)) = 1. So det (Φ (T, 0)) = det
(
eRT) = eTrace(RT) = 1, therefore

Trace (RT) = 0; and since σ (R) = {ρ1, ρ2} we can assure that ρ1 + ρ2 = 0.
Suppose that the solutions of the system (2.2) are unstable for the pair of parameters (α, β),

that is |∆ (α, β)| > 2. From Theorem 2.2 if ρ1 is a characteristic exponent such that |µ1| =∣∣eρ1T
∣∣ > 1 then, ρ2 is |µ2| = |µ1|−1 =

∣∣e−ρ1T
∣∣ < 1. Therefore, there exists a solution which

tends to infinity and one that tends to zero. The solution associated to ρ1: x1 (t) = eρ1tx (0)
will be exponentially unstable and the solution associated to ρ2: x2 (t) = eρ2tx (0) = e−ρ1tx (0)
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will tend asymptotically to zero. Notice that the real part of the characteristic exponents gives
us information about the solutions’ growth rate.

Definition 2.4. The Iso-µ curves are lines, inside the unstable zones, where the unstable solu-
tion has the same growth rate γ, where γ is defined as

γ = max {|µ1| , |µ2|} = max
{
|µ1| ,

1
|µ1|

}
.

From equation (2.11) we can obtain an expression of the discriminant in terms of the
multipliers µ1 and µ2, that is,

∆ (α, β) = µ1 + µ2 = µ1 +
1
µ1

(2.12)

or, remembering the definition of characteristic exponents we have

∆ (α, β) = eTρ1 + eTρ2 = eTρ1 + e−Tρ1 (2.13)

= 2 cosh (Tρ1) (2.14)

so, from Definition 2.4 and the equation (2.12), we have proved a characterization of the Iso-µ
curves.

Lemma 2.5. If γ is as in Definition 2.4 then, the Iso-µ curves are the projection, on the α-β plane, of
the intersection between the surface (α, β, ∆ (α, β)) and the planes

surfγ =

{
(α, β, z) | ∀α, β ∈ R, z = γ +

1
γ

}
, (2.15)

surf−γ =

{
(α, β, z) | ∀α, β ∈ R, z = −

(
γ +

1
γ

)}
.

Figure 2.3 shows the Iso-µ curves over the surface (α, β, ∆ (α, β)) and their projection to
the α–β plane.
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Figure 2.3: a) Discriminant Surface and its intersection with the surfaces (2.15)
for several values of γ. b) Iso-µ curves for several values of γ.
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3 Hill equation with dissipation

Adding a dissipative term to the Hill equation (2.1) we have

ÿ(t) + δẏ(t) + (α + βq (t)) y(t) = 0, (3.1)

where δ is a non-negative real constant. By doing the same change of variables, z1 = y, z2 = ẏ
and x =

[
z1 z2

]′
, the Hill equation (3.1) may be written as

ẋ (t) =
[

0 1
− (α + βq (t)) −δ

]
x (t)

, Aδ (t) x (t) . (3.2)

Notice that Aδ (t) is a T periodic matrix. Since the equation (3.2) is a linear equation, we are
able to use Floquet’s Theorem for studying its stability. Let Φδ (t, 0) be the state transition
matrix associated to (3.2). By Theorem 2.2, we know that the stability of periodic differential
equations depends on the position of the characteristic multipliers of the matrix Φδ (T, 0).

We know that the multipliers associated to (3.2) are the solutions of the characteristic
equation

det (µi I2 −Φδ (T, 0)) = µ2
i − (y1 (T) + ẏ2 (T)) µi + e−δT = 0, (3.3)

where ∆δ (α, β) is defined as in (2.10), but y1 (t) and y2 (t) are linearly independent solutions
of (3.1); and the linear term is equal to e−δT due to Liouville’s Theorem. Solving the equation
(3.3) for µi we obtain

µi =
∆δ (α, β)±

√
(∆δ (α, β))2 − 4e−δT

2
. (3.4)

From (3.4) we can say that the multipliers are symmetric with respect to the circle of radius
e−

1
2 δT. Table 2.1 may be re-stated as Table 3.1.

Discriminant
Characteristic

Multiplier
µ over the circle

a) |∆(α, β)| < 2e−
1
2 δT

µ1, µ2 ∈ C; µ1 = µ̄2

and
|µ1| = |µ2| = e−

1
2 δT

b) |∆(α, β)| > 2e−
1
2 δT

µ1, µ2 ∈ R; |µ1| < 1
and |µ2| = e−δT

|µ1|

c) ∆(α, β) = ±2e−
1
2 δT µ1 = ±e−

1
2 δT and

µ2 = ±e−
1
2 δT

Table 3.1: Relation between the characteristic multipliers and the discriminant
associated to (2.1).

And following Theorem 2.2 we get a version of Corollary 2.3.
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Corollary 3.1. The solutions of the Hill equation with dissipation (3.1) are:

a) asymptotically stable, if |∆δ (α, β)| < 1 + e−δT, since, the multipliers are complex conjugated
numbers and |µi| = e−

1
2 δT;

b) unstable, if |∆δ (α, β)| > 1 + e−δT, since, both multipliers are real, one of them is |µ| < 1 and the
other is |µ| > 1;

c) one periodic and one bounded, if |∆δ (α, β)| = 1 + e−δT, since one multiplier is |µ| = 1.

Remark 3.2. It is worth to notice that the solutions over the transition curves, associated
to a Hill equation without dissipation, are usually unstable since both multipliers are equal
to one or minus one but, generally they are multiple roots of the minimal polynomial, see
Theorem 2.2. On the other hand, the solutions of a Hill equation with dissipation, over the
transition curves are always bounded, this follows from the fact that there is a multiplier equal
to one (minus one) and one equal to e−δT, with δ > 0.

From Corollary 3.1 we can define the transition curves of the Hill equation (3.1) as the
projection of the intersection between the surface (α, β, ∆δ (α, β)) and the planes

surfδ1 =
{
(α, β, z) | ∀α, β ∈ R, z = 1 + e−δT

}
, (3.5)

surfδ2 =
{
(α, β, z) | ∀α, β ∈ R, z = −

(
1 + e−δT

)}
.

Figure 3.1 a) shows the intersection between the surface (α, β, ∆δ (α, β)), associated to the
equation ÿ(t) + δẏ(t) + (α + βq (t)) y(t) = 0, and the surfδ1 and surfδ2 planes, and Fig. 3.1 b)
shows the stable and unstable zones, in the α–β plane, for the same equation.
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1

1.5

2

2.5

3

3.5

4

4.5

5

(b)

Figure 3.1: a) Discriminant surface associated to (3.1) and surfaces defined in
(3.5), b) Stability chart associated to (3.1), stable zones in white and unstable
zones in gray.

Remark 3.3. Notice that in the case of Hill equation with dissipation, the white zones, in
Fig. 3.1 b), correspond to asymptotically stable solutions, and boundaries are characterized by
having one stable (bounded) solution and one solution that tends to zero while time tends to
infinity.

By adding a dissipative term to Hill equation (2.1) we have lost its Hamiltonian nature
and therefore the symplectic properties are lost. On the other hand, the stable solutions of
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(3.1) are not only bounded, but also they are asymptotically stable solutions and some areas
that where unstable, without dissipation, became stable after adding dissipation. There are
some similarities, namely: the multipliers of both systems, (2.1) and (3.1), are symmetric with
respect to a circle of radius r: r = 1 for the Hill equation without dissipation (2.1); and
r=e−

1
2 δT for the Hill equation with dissipation (3.1). And the stability of the solutions of both

systems is determined by the current value of the discriminant ∆ (α, β) (or ∆δ (α, β)) at some
point (α, β). In the following paragraphs we will find an unexpected relationship between the
discriminants ∆ (α, β) and ∆δ (α, β).

By doing the change of variables

y (t) = e−
1
2 δtȳ (t) (3.6)

one can write the Hill equation with dissipation (3.1) as a equation without dissipation,
namely

¨̄y(t) +
(

α− 1
4

δ2 + βq (t)
)

ȳ(t) = 0. (3.7)

Now, defining

α1 = α− 1
4

δ2 (3.8)

and substituting (3.8) in the equation (3.7) we have

¨̄y(t) + (α1 + βq (t)) ȳ(t) = 0. (3.9)

Notice that the latter equation (3.9) has: a) the same structure as the equation (2.1), b)
the same exciting function q (t), but c) different parameter α. Therefore, the stability analysis
and properties described on the first part of the present work will hold. But, remember that
the solutions of the original equation (3.1) will be equal to (3.6), that is, the solutions of (3.9)
will be multiplied by the decreasing function e−

1
2 δt, this multiplication is the result of adding

dissipation to a Hill equation. The scalar e±
1
2 δT may be seen as a scale factor, it follows from

the fact that the multipliers associated to the equation (3.9) are scaled from those associated
to (3.1) by the factor e

1
2 δt. The latter is proved as follows.

Define z (t) =
[

y (t) , ẏ (t)
]′ and z̄ (t) =

[
ȳ (t) , ˙̄y (t)

]′. Let Φy (t, t0) and Φȳ (t, t0)
be the state transition matrices associated to (3.1) and (3.9) respectively, and set the initial
conditions z0 =

[
y (t0) , ẏ (t0)

]′
and z̄0 =

[
ȳ (t0) , ˙̄y (t0)

]′ so, by theory of differential
equations we have

z̄ (t) = Φȳ (t, t0) z̄0. (3.10)

Since y (t) = e−
1
2 δtȳ (t), it is easy to verify that

z̄ (t) = e
1
2 δtΛz (t)

where Λ =
[

1 0
1
2 δ 1

]
. Therefore (3.10) can be rewritten as

z (t) = e−
1
2 δ(t−t0)Λ−1Φȳ (t, t0)Λz0

so we can say that the state transition matrix of (3.1) is similar to the scaled state transition
matrix of (3.9), that is

Φy (t, t0) = Λ−1
[
e−

1
2 δ(t−t0)Φȳ (t, t0)

]
Λ.
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If we set t = T and t0 = 0, we obtain

Φy (T, 0) = Λ−1
[
e−

1
2 δTΦȳ (T, 0)

]
Λ. (3.11)

The latter implies that the spectrum of Φy (T, 0) is equal to that of the matrix
[
e−

1
2 δTΦȳ (T, 0)

]
σ
(
Φy (T, 0)

)
= σ

(
e−

1
2 δTΦȳ (T, 0)

)
. (3.12)

Notice that the multipliers associated to the matrix e−
1
2 δTΦȳ (T, 0) are equal to the multi-

plication of each multiplier of Φȳ (T, 0) and the scale factor e−
1
2 δT, i.e.

det
(

νI − e−
1
2 δTΦȳ (T, 0)

)
= ν2 − e−

1
2 δT Trace

(
Φȳ (T, 0)

)
ν + det

(
e−

1
2 δTΦȳ (T, 0)

)
= ν2 − e−

1
2 δT∆ȳ (α1, β) ν + e−δT.

Equaling to zero and solving for ν we get

ν1,2 = e−
1
2 δTµ1,2,

where µ1,2 are the multipliers associated to the monodromy matrix Φȳ (T, 0) so, the equation
(3.12) can be written as

σ
(
Φy (T, 0)

)
= e−

1
2 δTσ

(
Φȳ (T, 0)

)
. (3.13)

Remark 3.4. Equation (3.13) shows a very interesting fact, the multipliers associated to a Hill
equation with dissipation are equal to the scaled multipliers associated to a Hill equation
without dissipation, i.e. the unitary circle, where the multipliers of (3.9) lie, shrinks to fit in
the circle of radius r = e−

1
2 δT where the multipliers associated to the equation (3.1) lie. See

Fig. 3.2.

e−
1
2 δT

−−−→

Figure 3.2: The unitary circle shrinks to fit in the circle of radius r = e−
1
2 δT.

From equation (3.11) we can obtain an even more surprising relation, by obtaining the
trace to the matrices on both sides and using the linearity and the cyclicity (Trace (ABC) =

Trace(CAB)) properties we get

Trace
[
Φy (T, 0)

]
= e−

1
2 δT Trace

[
Φȳ (T, 0)

]
or, written in terms of the discriminants

∆δ (α, β) = e−
1
2 δT∆ (α1, β) , (3.14)

where the coefficient α1 = α− 1
2 δ2 is defined as in (3.8). From Corollary 3.1 we know that the

critical value of |∆δ (α, β)| is 1 + e−δT, that is, the stability of the solutions of the Hill equation
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with dissipation (3.1) depends on whether |∆δ (α, β)| is larger or smaller than 1 + e−δT. By
obtaining the modulo of the right hand side of (3.14) and equaling to 1 + e−δT we get the
condition for the transition curves of the equation (3.1) as

e−
1
2 δT |∆ (α1, β)| = 1 + e−δT,

and solving for |∆ (α1, β)|
|∆ (α1, β)| = 2 cosh

( 1
2 δT

)
. (3.15)

So, if we already have the discriminant surface (α, β, ∆ (α, β)) associated to a Hill equation
(2.1), and we are interested in knowing the stability zones associated to the equation with
dissipation (3.1), we can use one of the following two methods: 1) To project, into the α–β

plane, the intersection of the surface and the surfaces

surf1 =
{
(α, β, z) | ∀α, β ∈ R, z = 2 cosh

( 1
2 δT

)}
,

surf2 =
{
(α, β, z) | ∀α, β ∈ R, z = −2 cosh

( 1
2 δT

)} (3.16)

and then to move the origin of the plane to the left 1
4 δ2 units, or; 2) to move the surface

(α, β, ∆ (α, β)) to the right, that is, (α, β, ∆ (α, β)) →
(
α, β, ∆

(
α− 1

4 δ2, β
))

and then to project
the intersection of

(
α, β, ∆

(
α− 1

4 δ2, β
))

and the surfaces (3.16) into the α–β plane. Both meth-
ods are shown in Fig. 3.3.

Remark 3.5. Equation (3.15) gives us a surprising relation between the stability of the Hill
equation with dissipation and the discriminant associated to a Hill equation without dissipa-
tion. These means that, by knowing the discriminant ∆ (α, β) of (2.1), we are able to analyse
not only the stability of equation (2.1) but also of the equation (3.1).

Remembering, from equation (2.14), that the discriminant of equation (2.1) is equal to two
times the hyperbolic cosine of the multiplication between the characteristic exponent ρ1 and
the period of the excitation function, that is

∆ (α, β) = 2 cosh (ρ1T)

and, as we have seen if the real part of ρ1 is greater than 0 in modulo, |Re (ρ1)| > 0, then,
|∆ (α, β)| > 2 and the solutions of the system (2.1) will be unstable. From the latter equation
and (3.15) it is clear that, by equaling the characteristic exponent ρ1 and 1

2 δ, and despising
the effect of α1 in (3.15), that is, not moving the origin (α, β) = (0, 0) to the left, we can
say that the Iso-µ curves associated to solutions of a Hill equation without dissipation, with
exponential growing equal to exp (|Re (ρ1)|), are equal to the transition curves associated to
the Hill equation with dissipation (3.1), see [7]. So we can say that unstable solutions of (2.1)
which have growth rate less or equal to e

1
2 δT will be stabilized by adding a dissipative term

δẋ(t).
The displacement, to the right, of the surface (α, β, ∆ (α, β)) by the addition of dissipa-

tion produces an unusual behavior of the stability zones, some areas that were characterized
by having stable solutions of the equation without dissipation, became unstable areas after
adding dissipation. This interesting and odd fact was first observed by Ziegler in 1952, when
he noticed that the critical load of a double linked pendulum was lower when a minimum
amount of dissipation was added to the links joint than when no dissipation was considered,
this phenomenon is known as the Ziegler destabilization paradox. So the addition of damping
caused the lost of stability. In [2] O. Bottema proved that for a general linear dynamical system
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(1)−→

α
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Discriminant associated to a Hill equation
without dissipation (2.1).

Projection of the intersection between
(α, β, ∆(α, β)) and surf1 and surf2 in (3.16).

↓(2) ↓(3)

(4)−→

α

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
β

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Moving the surface (α, β, ∆(α, β)) to the left
1
4 δ2 units.

Transition curves associated to a Hill
equation with dissipation (3.1).

Figure 3.3: 1) Project the intersection of (α, β, ∆(α, β)) and surf1 and surf2

in (3.16); 2) Move the surface (α, β, ∆(α, β)) to the right 1
4 δ2 units, i.e.

(α, β, ∆(α, β)) → (α, β, ∆(α − 1
4 δ2, β)); 3) Move the origin of the plane to the

left 1
4 δ2 units; 4) Project the intersection of (α, β, ∆(α − 1

4 δ2, β)) and surf1 and
surf2 in (3.16).

with, at least, two degrees of freedom, in particular the Ziegler pendulum, the combination
of non-conservative forces and a gyroscopic force is “fatal” for stability. In [12], Kirillov gave
an excellent description of the Ziegler paradox and showed a parametrically excited physical
example, with non-conservative and gyroscopic forces, where the paradox arises. In [8], the
authors show that the instability paradox also occurs in one degree of freedom systems such
as the Kapitsa pendulum, although there are no gyroscopic forces. As final remark we have

Remark 3.6. The effect of adding dissipation to a Hill equation is: to increase stability zones
in the α–β plane; the stable zones, in the α–β plane, will be associated to asymptotically stable
solutions; the solutions associated to transition curves will be stable; and some small areas that
used to be stable without dissipation will become unstable after the addition of dissipation,
those areas are always to the right of the Arnold tongue.

4 Conclusions

We have proved that the discriminant associated to a periodic differential equation does not
only give us information about the stability of its solutions and how fast the unstable solu-
tions tend to infinite, but also, the discriminant gives us information about the stability of the
solutions when a dissipative term is added. We have seen that the addition of dissipation
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has two effects on the stability of a Hill equation, one stabilizing and one destabilizing: The
former refers to the fact that the unstable solutions (of a Hill equation without dissipation)
which have growth rate less or equal to e

1
2 δT are stabilized after adding a dissipative term

δẋ(t), stable zones in the α–β plane enlarge and the stable solutions are not only bounded but
also asymptotically stable; and, the latter refers to the fact that some areas, in the α–β plane,
that used to be stable, become unstable after the addition of dissipation, i.e. the Ziegler desta-
bilization paradox is found in periodic differential equations, even if the dynamical system is
represented by a one degree of freedom equation.

This work may be of interest for scientists and engineers dealing with parametric resonance
applications or physicists working on the motion of a damped wave in a periodic media.
The latter follows from the well known fact that the solutions of the one dimensional wave
equation with periodic coefficients may depend on the linear periodic differential equation
(1.1) or (1.2), see [3].
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