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Abstract. We present analytic self-similar or traveling wave solutions for a one-dimensional co-
upled system of continuity, compressible Euler and heat conduction equations. Different kind of
equations of state are investigated. In certain forms of the equation of state one can arrive to a
picture regarding the long time behavior of density and pressure. The impact of these quantities
on the evolution of temperature is also discussed.
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1. INTRODUCTION

Studying hydrodynamical systems with heat conduction is an important task, both
from the application and from the theoretical side as well. There are numerous mo-
nographs and textbooks available which investigate three dimensional real fluid me-
chanics with heat transfer from the engineering point of view [24]. Usually, all the
technical questions like the applied numerics, grids are analyzed in depth in these
works.

In the following we will investigate the most simple one dimensional system of
continuity, compressible and non-viscous Euler and heat conduction equations. We
try to find analytic results. Firstly self-similar physically important diffusive solutions
are investigated. If such solutions are not found, secondly traveling wave solutions
are obtained and discussed.

There are basically two distinct very powerful set of trial functions available to
investigate the global properties of the solutions of various single non-linear partial
differential equations [4, 11, 23, 27]. One is the so-called self-similar solution which
describes the intermediate asymptotics of a problem: they hold when the precise ini-
tial conditions are no longer important, but before the system has reached its final
steady state. They are much simpler than the full solutions, so they are easier to
understand and to study in different regions of parameter space. A final reason for
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studying them is that they are solutions of a system of ordinary differential equa-
tions and hence do not suffer the extra inherent numerical problems of the full par-
tial differential equations. In some cases self-similar solutions helps to understand
diffusion-like properties or the existence of compact supports of the solution.

The other method is the traveling wave Ansatz which gives us a deeper insight into
the wave properties of the system like the propagation speed which can be even time
dependent.

In our former work the paradox of heat conduction was investigated with the self-
similar Ansatz [6] and gave a new equation which has a finite propagation speed.
Recently, a study about the generalized Cattaneo law is under publication where
both the heat conduction coefficient and relaxation time have power law tempera-
ture dependence [7]. The results can be continuous or shock wave-like with compact
support. With a straightforward generalization of the self-similar Ansatz even a par-
tial differential equation(PDE) system of the 3 dimensional Navier-Stokes equations
was successfully investigated [5]. Gilding and Kersner [11] studied large number of
nonlinear diffusion-convection problems with the help of traveling waves.

As a beginning, without completeness we mention some analytic studies about
hydrodynamical systems which are available in the literature.

Beyond traveling waves and self-similar Ansätze there are various examination
techniques available in the literature. Manwai [25] studied the N-dimensional .N �
1/ radial Navier-Stokes(NS) and Euler equation with different kind of viscosity and
pressure dependences and presented analytical blow up solutions. His works are
still 1+1 dimensional (one spatial and one time dimension) investigations. Another
well established and popular investigation method is based on Lie algebras for which
numerous studies are available. Some of them are treating even the three dimensional
case, for more see [14]. Unfortunately, no explicit solutions are shown and analyzed
there. Fushchich et al. [10] construct a complete set of QG.1;3/-inequivalent Ansätze
of codimension 1 for the NS system and they present 19 different analytical solutions
for one or two space dimensions. The last solution is very close to our former result
in [5], but they are not identical. Further two and three dimensional studies of the
Navier-Stokes equation based on group analytical method were presented by Grassi
[13]. They also presented solutions which look almost the same as ours [5], but they
consider only two space dimensions.

Recently, Hu et al. [16] presents a study where symmetry reductions and exact
solutions of the (2+1)-dimensional NS are investigated. Aristov and Polyanin [2] use
various methods like Crocco transformation, generalized separation of variables or
the method of functional separation of variables for the NS and present large num-
ber of new classes of exact solutions. Sedov in his classical work [23] (Page 120)
presented analytic solutions for the three dimensional spherical NS equation where
all three velocity components and the pressure have polar angle dependence (� ) only.
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Even this kind of restricted symmetry led to a non-linear coupled ordinary differen-
tial equation system which has a very rich mathematical structure. Some similarity
reduction solutions of the two dimensional incompressible NS equation was presen-
ted by Xia-Ju [17]. Additional solutions are available for the 2+1 dimensional NS
also via symmetry reduction techniques by [9]. A full three dimensional Lie group
analysis is available for the three dimensional Euler equation of gas dynamics, with
polytropic EOS, unfortunately without any heat conduction mechanism [20]. Of co-
urse one may find numerical methods for solving equations of fluid dynamics [28].
The topic is quite important, there are interesting applications of the equations of
fluids in granular matter [12].

To our knowledge there are very few analytic (self-similar or traveling wave) solu-
tions known for any non-linear partial differential equation systems (PDEs) till today.
Our experience shows that no such comparative studies are available for fluid mecha-
nics with heat conduction in the literature, which we present on the next pages.

In the next section we outline our starting model and in the later subsections we
give various solutions for three different polytropic equation of states (EOS), plus for
the virial EOS. If our results meet some other theories (like porous media equation)
then the corresponding literature is mentioned. The paper ends with a short summary.

2. THE BASIC MODEL

We start with the following one-dimensional compressible and non-viscous fluid
with ordinary heat conduction which means the following coupled PDE system of
continuity, Euler and heat conduction

�.x; t/t C Œ�.x; t/v.x; t/�x D 0;

v.x; t/t Cv.x; t/v.x; t/x D�
1

�.x; t/
p.x; t/x;

T .x; t/t Cv.x; t/T .x; t/x D �T .x; t/xx; (2.1)

where �;v;T;P are the density, velocity, temperature and pressure field or distribu-
tion, respectively. Subscript means partial derivation with respect of time and the
x to the Cartesian coordinate. We skip viscous velocity terms in the Euler and in
the energy equation as well. As a starting point we include the polytropic EOS
p.x; t/ D a�.x; t/n were n is a real number and a is a material constant and � is
the heat conduction coefficient. After the investigation of this basic equation system
we will introduce modifications for the equation of state.

In the following we are looking for the solution in the form of the self-similar
Ansatz which is well-known from [4, 23, 27]

V.x; t/D t�˛f

�
x

tˇ

�
WD t�˛f .�/ (2.2)
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where V.x; t/ can be an arbitrary variable of a PDE and t means time and x means
spatial dependence. The similarity exponents ˛ and ˇ are of primary physical im-
portance since ˛ represents the rate of decay of the magnitude V.x; t/, while ˇ is the
rate of spread (or contraction if ˇ < 0 ) of the space distribution as time goes on. The
validity of this self-similar Ansatz also means that the solution has no characteristic
time scale. The most powerful result of this Ansatz is the fundamental or Gaussian
solution of the Fourier heat conduction equation (or for Fick’s diffusion equation)
with ˛ D ˇ D 1=2. The function f .�/ is called the shape function.

For our system we use the following notations and shape functions

T .x; t/D t�˛f

�
x

tˇ

�
; v.x; t/D t�ıg

�
x

tˇ

�
; �.x; t/D t�h

�
x

tˇ

�
(2.3)

where the new variable is �D x=tˇ . Calculating all the first time and spatial deriva-
tives of (2.3) and putting them back to (2.1) after some algebra we get the following
non-linear ordinary differential equation (ODE) system

�h�
1

2
�h0Cgh0Chg0 D 0;

�
1

2
g�

1

2
�g0Cgg0 D�a

�
1C



�
h

�
1C

�2
�
h0;

� f̨ �
1

2
�f 0Cgf 0 D �f 00; (2.4)

where prime means derivation with respect to �. Among the initially free parameters
˛;ˇ;;n we got the following constraints: ˛; are still arbitrary but ˇD ıD 1=2 and
nD .1C/= . The material constants c;� are still independent. Note, that the first
and second equations of (2.1) are independent from the third one.

2.1. Aspects coming from the conservation law of density

The first equation is a conservation equation (without source term) and if  D 1=2
it can be integrated �

�h

2

�0
D .gh/0 (2.5)

giving g D �=2 and g0 D 1=2 when h ¤ 0 and the integration constant was chosen
zero. Plugging this result back into the second equation of (2.1).

�
�

4
D�3ahh0 (2.6)

where nD .1C/= D 3. Which means that only the p D a�3 ploytropic EOS can
give self-similar solutions in this flow system. The solution of (2.6) can be obtained
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via a simple integration giving the following expression

hD

s�
4�2C2c1

3a

�
(2.7)

where c1 is the integration constant (we will set it to 0) and a is still the material
constant of the polytropic EOS. At last, let’s investigate the third heat conduction
equation. With the knowledge of the velocity its solution becomes quite simple

� f̨ D �f 00: (2.8)

The solution is well known

f D c2cos
�˛�
�

�
C c3sin

�˛�
�

�
: (2.9)

At last, we summarize all our results

g D
�

2
; hD

s�
4�2C2c1

3a

�
; f D c2cos

�˛�
�

�
C c3sin

�˛�
�

�
(2.10)

where nD 3,  D ˇ D ı D 1=2 and ˛ is arbitrary. Now the velocity, density and the
temperature field read

v.x; t/D t�ıg.�/D
x

2t
;

�.x; t/D t�h.�/D t�
1
2

vuut4
�
xp
t

�2
C2c1

3c
;

T .x; t/D t�˛g.�/D t�˛
�
c2cos

�
˛x

�
p
t

�
C c3sin

�
˛x

�
p
t

��
(2.11)

and the applied polytropic EOS

p D a�n D a.t�h.�//3 D a

2664t� 12
vuut4

�
xp
t

�2
C2c1

3c

3775
3

: (2.12)

All the solutions have physical meaning for bounded regions and for sufficiently large
times. We will see later, that according to the continuity equation, the velocity field
is always a simple function of time and space coordinates, however the temperature
distribution have a more complex form. In this case it is a quickly oscillating and
decaying function or a slowly oscillating and slowly decaying function.
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2.2. Aspects of the solution regarding velocity

We have the possibility to see that in certain cases, when the first equation is integ-
rable, solutions of the system can be found. This was accessible when the pressure is
proportional to the third power of the density. Now we try to find solutions when the
pressure is proportional to the second power of the density

p D
b

2
�2: (2.13)

The role of b is to fix the proper physical dimension. In this case the second equation
of (2.1) can be written

vt Cvvx D�b�x (2.14)

If we consider that the system is not too far from the steady state, correspondingly
the change in time of the gradient of the density is negligible, we get

v D�b�x � tC Oc; (2.15)

where Oc can be related to initial velocity and initial gradients at time t0 if these terms
do not cancel each other. We suppose that (2.15) holds for a longer time scale than
the gradient would undergo of considerable changes. We are interested in a density
profile in such a quasi-stationary state. The procedure can be also regarded as taking
a first initial condition of the velocity field and iterate it successively [19]. Inserting
(2.15) into the mass conservation formula we get

�t � tb.�x/
2
C Oc�x � tb��xx D 0: (2.16)

If Oc D 0 and dividing the equation with t we obtain the following equation
�t

t
�b.�x/

2
�b��xx D 0: (2.17)

Dividing the last equation by b and multiplying by 2, we have

�t1 �2.�x/
2
�2�.�xx/D 0 (2.18)

where t1 D bt2=4. This equation in certain aspects may resemble the Kardar-Parisi-
Zhang(KPZ) equation [18] which describes the dynamics of surface growth. The
original KPZ equation (where the third term doesn’t contain the � variable) was in-
vestigated with the self-similar Ansatz by the recent authors [8] and found physically
reasonable solutions which can be expressed with the error function.

The last equation can be brought to a more compact form

�t1 D .�
2/xx; (2.19)

There is an even more important relationship with the nonlinear heat conduction or
porous media equation which has the form

�t1 D .�
m/xx; m > 1: (2.20)
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In [26] Zeldovich and Kompaneets have found the fundamental solution �1 of this
equation which we write in the following form:

�m�11 D t
�˛.m�1/
1

�
A2�B2x2t

�2ˇ
1

�
C

(2.21)

where A is constant and the subscript + at the bracket indicates that only physically
relevant - positive - solutions are taken into account. Regarding the other constants
we have

˛ D ˇ D
1

mC1
; B2 D

m�1

2m.mC1/
: (2.22)

One can see that this solution has bounded support in x for any t1 > 0 which is a
hyperbolic property. Using comparison principle for such equations one can show
this finite speed property for any initial condition having compact support. However,
the fronts are not straight lines: x.t1/ D ˙AB t

ˇ
1 , ˇ < 1 so the speed of propagation

Px.t1/ goes to zero if t1 goes to infinity. One can also see that �1 is of source-type:
�1.x;0/DK1ı.x/:

In our case m D 2, consequently ˛ D ˇ D 1=3, and the solution for the density
distribution reads

�.x; t1/D t
� 1
3

1

�
A2�B2x2t

�2=3
1

�
D

�
b

4

�� 1
3

t�
2
3

 
A2�B2x2

�
b

4

��2=3
t�4=3

!
:

(2.23)
This solution gives us a density profile for a bounded spatial region after sufficiently
long time. The velocity field is obtained via 2.15

v.x; t/D
2x

3t
: (2.24)

For the temperature distribution the

Tt C
2x

3t
Tx D �Txx (2.25)

PDE have to be solved. Considering the T .x; t/D t�f
�
x
t!

�
the following ODE is

derived

�f 00�
�f 0

6
Cf D 0 (2.26)

with arbitrary  and for ! D 1=2. The solutions are the Kummer M and Kummer U
functions of the form of

f D c1M

�
1

2
�3;

3

2
;
1

12�
�2
�
�C c2U

�
1

2
�3;

3

2
;
1

12�
�2
�
�: (2.27)

The mathematical properties of the Kummer function can be found in [1]. For comp-
leteness we give the temperature distribution as well,

T .x; t/D t�
h
c1M

�
1
2
�3; 3

2
; x

2

12�t

�
xp
t
C c2U

�
1
2
�3; 3

2
; x

2

12�t

�
xp
t

i
: (2.28)
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In contrast to the first case, we applied a simplification in the Euler equation
(2.14) therefore we can consider solutions which are outside the scope of the self-
similar class. Therefore, we may try to find other physically important solutions, like
traveling-waves with the Ansatz of �D h.�/D h.x�ct/ where c is usually the wave
propagation velocity. (We still use h as shape function). However, if we consider
(2.17), it can be rewritten in the following form

�t2 �b.�x/
2
�b��xx D 0 (2.29)

where t2 D t2=2. We take the

�D h.�/D h.x� ct2/D h.x�at
2=2/ (2.30)

Ansatz where instead of the constant propagation speed c one may rather consider
a kind of constant acceleration, and the constant c is renotated with a. We do this
for the purpose of finding analytical solutions, and to get results closer to a physical
interpretation.

Inserting this formula into (2.29) we obtain the following ODE:

bhh00Ch0.bh0Ca/D 0: (2.31)

The solution is the following

h.�/D
bc1

a

264LambertW
0B@e
�b2c1C�a

2Cc2a

b2c1

bc1

1CAC1
375 (2.32)

where c1; c2 are integration constants and the Lambert-W function, (which also called
the omega function), is the inverse function of

f .W.x//DW.x/eW.x/ (2.33)

and can be evaluated with the following series expansion

W.x/D

1X
nD1

.�1/n�1nn�2

.n�1/Š
xn: (2.34)

Additional properties of this function can be found in [22]. Banwell and Jayakumar
[3] showed that a W-function describes the relation between voltage, current and re-
sistance in a diode, and Packel and Yuen [21] applied the W-function to a ballistic
projectile in the presence of air resistance. Other applications have been discove-
red in statistical mechanics, quantum chemistry, combinatorics, enzyme kinetics, the
physiology of vision, the engineering of thin films, hydrology, and the analysis of
algorithms [15]. Note, that in contrast to other special functions (e.g. Whitakker,
Bessel, Kummer functions) the LambertW function is not so widely used or applied.
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The final form of the density field is

�.x�at2=2/D
bc1

a

264LambertW
0B@e
�b2c1C.x�at

2/a2Cc2a

b2c1

bc1

1CAC1
375 : (2.35)

Figure 1 presents the density field of (2.35) for the c1 D c2 D aD b D 1 parameters.
Note, that the solution is a steep wave front.

Inserting the space derivative of the density into (2.15) and multiplying with the
time the velocity field reads the following

v.x�at2=2/D�

LambertW

0@e�b2c1C.x�at2/a2Cc2ab2c1

bc1

1A t
LambertW

0@e�b2c1C.x�at2/a2Cc2ab2c1

bc1

1AC1
: (2.36)

Figure 2 presents the velocity field for the c1D c2D aD bD 1 parameters. Unfortu-
nately, there is no traveling wave solution for the temperature distribution T .x; t/D
f .�/ D f .x � at2/ because the velocity has an explicit time dependence which is
transfered to the third equation of (2.1) giving the following expression 0D��f 00�
2atf 0Cv.�/tf 0 which still depends on time and cannot be simplified to an ODE of
f .�/.

FIGURE 1. The density distribution of Eq. 2.35 for the a D b D
c1 D c2 D 1 parameters.
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FIGURE 2. The velocity field of Eq. 2.36 for the a D b D c1 D
c2 D 1 parameters.

2.3. The linear EOS case

Let’s assume now the linear case of EOS where

p D A� (2.37)

where A is till a constant just to fix the proper physical dimension. From the second
case of Eq. (2.1) the velocity field can be obtained for small vs

v D�
A�x

�
t: (2.38)

From the continuity relation the following PDE is available for the density field
�t

t
�A�xx D 0: (2.39)

Note, that the former variable transformation t2 D t2=2 is still valid giving us the
regular Fourier heat conduction or Fick’s diffusion equation of

�t2 �A�xx D 0: (2.40)

The solution is the well known Gaussian function of

�.x; t/D
1
p
At2

exp

�
�x2

2At2

�
D
1

t

r
2

A
exp

�
�x2

At2

�
: (2.41)

According to (2.38) the velocity field is v.x; t/D 2x=t . For the temperature distri-
bution the following PDE have to be solved

Tt C2
x

t
Tx D �Txx : (2.42)
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The solution is very similar to the former case of (2.25). Using the same notation the
solution reads

f D c1M

�
1

2
�
1

3
;
3

2
;
3

4�
�2
�
�C c2U

�
1

2
�
1

3
;
3

2
;
3

4�
�2
�
�: (2.43)

For completeness the temperature field is

T .x; t/D t�
�
c1M

�
1

2
�
1

3
;
3

2
;
3x2

4�t

�
x
p
t
C c2U

�
1

2
�
1

3
;
3

2
;
3x2

4�t

�
x
p
t

�
:

(2.44)
Figure 3 presents the Kummer M part of the whole solution with c1 D  D � D 1,
and c2 D 0 parameters. The Kummer U part looks very similar. It is straightforward
that the PDE of the density field (2.39) can be investigated with the traveling wave
Ansatz (2.30), too. The resulting is the next linear ODE

Ah00�ah0 D 0: (2.45)

The solution is obvious h D c1C c2e
a�
A with the density field of �.x; t/ D c1C

c2e
a.x�a2t=2/

A . It turns out from (2.38) that v D �at . After trivial calculations from
the heat conduction equation we get T .x; t/D c1C c2.x�at2=2/.

FIGURE 3. The temperature field of Eq. 2.44 only the Kummer M
function is presented with the  D �D c1 D 1 parameters.

2.4. Investigation of the virial EOS

We still consider the original system of (2.1), and change the EOS in the second
equation. Outside the ideal gas and the polytropic equation of state the most impor-
tant material law is the Van der Waals (VdW) formula for gases where p.�;T / D



796 IMRE FERENC BARNA AND LÁSZLÓ MÁTYÁS

T�
a��
�b�2 where two of the constants (a;b) can be calculated from the critical point.

One of them a is proportional to the universal gas constant times the molar mass of
the fluid. Plugging this expression back to the Euler equation and calculating the
derivatives we get constrains to the exponents of the Ansatz ˛;ˇ; . For VdW EOS
these constrains are contradictory, so no ODEs can be obtained, no self-similar solu-
tion can be evaluated.
We may go further and try the virial expansion which can be written in various forms,
one possibility is the following

p D AT�.1CB�CC�2/ (2.46)

where A;B;C are constants and can be fixed from experiments. We try the simplest
B D C D 0 case. Apply the Ansatz of Eq. (2.3). The universality relations are
therefore ˛ D 1; ˇ D  D ı D 1=2; which dictate the next ODE system

�
h

2
�
1

2
�h0Cgh0Chg0 D 0;

�
1

2
g�

1

2
�g0Cgg0 D�Af 0�

Af h0

h
;

�f �
1

2
�f 0Cgf 0 D �f 00: (2.47)

Note, that the first equation is a total derivate and can be integrated immediately
which fixes gD �=2 as for the first investigated system in the Eq. (2.5). So, v.x; t/D
x
2t
: (We fixed the integration constant to zero.) Inserting this into the second and third

equation of (2.47) we get

�
�

4
D�Af 0�

Af h0

h
;

�f D �f 00: (2.48)

The solution for f reads:

f .�/D c1sin

�
�
p
�

�
C c2cos

�
�
p
�

�
(2.49)

which means

T .x; t/D
1

t

�
c1sin

�
x
p
�t

�
C c2cos

�
x
p
�t

��
(2.50)

Finally, the formal solution for h.�/ for the density shape function can be derived

h.�/D c3

Z
�

�Ac1cos
�
ṕ
�

�
CAc2sin

�
ṕ
�

�
C
´
p
�
4

p
�A

h
c1sin

�
ṕ
�

�
C c2cos

�
ṕ
�

�i d´: (2.51)
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For given parameters like c1 D 0;c2 D c3 DAD �D 1 the integral can be evaluated
in a closed form of

h.�/D
c3.1C ie

i�/�
�
4 .1� iei�/

�
4 e�

i
4
Œ�4��dilog.1Ciei�/Cdilog.1�iei�/�

e2i�C1
(2.52)

where i is the complex unit and dilog.x/ is the dilogarithm (or Spence’s) function
defined via the following integral

dilog.x/D�

Z x

0

lnj1� sj

s
ds: (2.53)

A detailed mathematical description of the properties of the dilogarithm function can
be found in [1]. For completeness we give the final formula of the density

�.x; t/D t
�1
2 �24.1C ieix=pt /�x=pt4 .1� ieix=

p
t /
x=
p
t

4 e�
i
4
Œ�4x=

p
t�dilog.1Cieix=

p
t /Cdilog.1�ieix=

p
t /�

e2ix=
p
t C1

35
Note, that the velocity and the temperature distributions in the first and the last model
are very similar to each other.

3. SUMMARY AND OUTLOOK

We investigated the basic one-dimension coupled PDE equations describing fluid
flow with heat conduction and presented self-similar solutions for fluid density, flow
velocity and temperature. In certain cases we have tried to find solutions for the sys-
tem of equation presented in (2.1). In the case when p � �3 the major achievement
is that an exact solution is available and the long time decay of density and pressure
is a power law of the time variable. The other situation when p � �2 is more comp-
licated from the point of view of exact solutions, consequently we tried to arrive to
results iteratively. In this case solutions related to waves has been also obtained with
the help of a special function. The following case when p � � is again a nontrivial
situation in the frame of eq. (2.1). At this point one can arrive to solutions iteratively,
which in certain aspects may resemble the diffusivity in dilute systems. Moreover the
long time behavior a kind of power law decay for density and pressure can be also
observed.

Further possible study may be the investigation of the system (2.1), with other
possible equations of state, which may be different than the ones considered here.
The extension of Eq. (2.1) for real fluids (e.g. including a viscous term, temperature
or density dependent viscosity etc.) and searching for possible analytic or eventually
exact solutions is also a possible future problem to be investigated. Regarding comp-
utational methods we hope that our study can help to develop benchmark tests for
various numerical codes or models.
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