On the structure of Finsler and areal spaces

Erico Tanaka and Demeter Krupka

ON THE STRUCTURE OF FINSLER AND AREAL SPACES

ERICO TANAKA AND DEMETER KRUPKA

Abstract

We study underlying geometric structures for integral variational functionals, depending on submanifolds of a given manifold. Applications include (first order) variational functionals of Finsler and areal geometries with integrand the Hilbert 1-form, and admit immediate extensions to higher-order functionals.

2000 Mathematics Subject Classification: 49Q99, 53C60, 58E30
Keywords: submanifold, k-vector, Grassmann fibration, Hilbert form

1. Introduction

This paper is a contribution to the theory of integral variational functionals, depending on submanifolds of a given manifold X. The theory is based on geometric notions such as the bundles of (skew-symmetric) multivectors, and Grassmann fibrations. Conceptually, it extends local parametric integrals of Finsler-Kawaguchi and areal geometries (see, e. g., Chern, Chen, Lam [1], Davies [3], Kawaguchi [4], and Tamassy [6]) to global functionals, depending on (global) submanifolds. In Section 2 we summarize integration theory of differential forms along submanifolds. Section 3 is devoted to vector bundles of k-vectors; we show how mappings of Euclidean spaces into manifolds (parametrisations) can be lifted to the bundles of k vectors. In Section 4 we introduce, using the Plücker embedding, underlying spaces for parameter-invariant variational problems, the Grassmann fibrations. In Section 5 we show that any k-form on the Grassmann fibration defines an integral variational functional, depending on k-dimensional submanifolds. An example is the Hilbert form, a well-known first-order construction in Finsler geometry and its generalisations (Chern, Chen, Lam [1], Crampin, Saunders [2]).

It should be pointed out that the theory can be further generalised. To this end, one should consider higher-order Grassmann fibrations endowed with Lagrangians satisfying the relevant homogeneity conditions (Zermelo conditions, see, e. g., Saunders [5], and Urban and Krupka [8]).

2. INTEGRATION OVER SUBMANIFOLDS

Let X be an n-dimensional manifold, S a subset of $X, x_{0} \in S$ a point. A chart $(U, \varphi), \varphi=\left(x^{i}\right)$, at x_{0} is a submanifold chart for S, if there exists a nonnegative integer $k \leqslant n$ such that $\varphi(U \cap S)=\left\{x \in U \mid x^{k+1}(x)=c_{1}, x^{k+2}(x)=\right.$ $\left.c_{2}, \ldots, x^{n}(x)=c_{n-k}\right\}$. If such a chart exists, we say that S is a submanifold of X at the point $x_{0} ; k$ is the dimension of S at x_{0}. If such a submanifold chart exists at every point of X, we say S is a submanifold of X and call k the dimension of S.

Denote by $\left(t^{1}, t^{2}, \ldots, t^{n}\right)$ the canonical coordinates on the Euclidean space \mathbb{R}^{n}, and $\mathbb{R}_{(-)}^{n}=\left\{t_{0} \in \mathbb{R}^{n} \mid t^{n}\left(t_{0}\right) \leqslant 0\right\}, \partial \mathbb{R}_{(-)}^{n}=\left\{t_{0} \in \mathbb{R}_{(-)}^{n} \mid t^{n}\left(t_{0}\right)=0\right\}$. $\mathbb{R}_{(-)}^{n}$ is the halfspace of $\mathbb{R}^{n}, \partial \mathbb{R}_{(-)}^{n}$ is the boundary of $\mathbb{R}_{(-)}^{n}$. Let Ω be a non-void subset of X, and $x_{0} \in \Omega$ a point. A chart (U, φ) at x_{0} is said to be adapted to Ω, if the set $\varphi(U \cap \Omega)$ is an open set in $\mathbb{R}_{(-)}^{n} . \Omega$ is a piece of X, if it is compact and each point $x \in \Omega$ admits a chart, adapted to Ω.

Let η be a k-form on X. Our aim now will be to introduce an integral of η on a piece of a k-dimensional submanifold S (k-piece of a X). Express η in a submanifold $\operatorname{chart}(U, \varphi), \varphi=\left(x^{i}\right)$, as $\eta=\eta_{i_{1} i_{2} \ldots i_{k}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{k}}$. Then, restricting η to S we get from the equations $x^{k+1}=0, x^{k+2}=0, \cdots, x^{n}=0$

$$
\eta=f d x^{1} \wedge d x^{2} \wedge \ldots \wedge d x^{k}
$$

where we write $f=f\left(x^{i_{1}}, x^{i_{2}}, \ldots, x^{i_{k}}\right)$ for the component of η restricted to S. From now on we suppose that S is orientable, and is endowed with an orientation $\operatorname{Or}_{S} X$; only submanifold charts on X belonging to $\operatorname{Or}_{S} X$ are used. The integral of η on a compact set $\Omega \subset S$ is defined in a standard way. There exist a finite family $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right), \ldots,\left(U_{N}, \varphi_{N}\right)\right\}$ of submanifold charts on X, such that the family $\left\{U_{1} \cap S, U_{2} \cap S, \ldots, U_{N} \cap S\right\}$ covers Ω. Let $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{N}\right\}$ be a partition of unity, subordinate to this covering. Then,

$$
\int_{\Omega} \eta=\sum_{j=1}^{N} \int_{\operatorname{supp} \chi_{j} \cap \Omega} \chi_{j} \eta .
$$

The following basic properties of the integral are needed in the calculus of variations.
Lemma 1 (transformation of integration domain). Let X and Y be two smooth n-dimensional oriented manifolds, $\alpha: X \rightarrow Y$ an orientation-preserving diffeomorphism. Then

$$
\int_{\Omega} \eta=\int_{\alpha^{-1}(\Omega)} \alpha * \eta
$$

for any compact set $\Omega \subset S$ and any continuous differential n-form on Y.
Lemma 2 (Leibniz rule). Let X be an oriented n-dimensional manifold, η_{t} a family of n-forms on X, differentiable on a real parameter $t, \Omega \subset S$ a compact set.

Then, the function $I \ni t \mapsto \int_{\Omega} \eta_{t} \in \mathbb{R}$ is differentiable, and

$$
\frac{d}{d t} \int_{\Omega} \eta_{t}=\int_{\Omega} \frac{d \eta_{t}}{d t}
$$

Lemma 3 (Stokes formula). Let X be an n-dimensional manifold, S a k-dimensional oriented submanifold of X, η a $(k-1)$-form on X. Let Ω be a piece of S with boundary $\partial \Omega$, endowed with induced orientation. Then

$$
\int_{\partial \Omega} \eta=\int_{\Omega} d \eta
$$

3. Bundles of k-VECTORS

Let X be an n-dimensional manifold, $\Lambda^{k} T_{x} X$ the k-exterior product of the tangent space $T_{x} X, x \in X$ a point. We put

$$
\Lambda^{k} T X=\bigcup_{x \in X} \Lambda^{k} T_{x} X
$$

This set has a natural vector bundle structure over X, with type fibre $\Lambda^{k} \mathbb{R}^{n}$. We denote by τ^{k} the vector bundle projection of $\Lambda^{k} T X$.

Let X (resp. Y) be a smooth manifold of dimension n (resp. m), and let $f: X \rightarrow$ Y be a differentiable mapping. Choose a point $x \in X$ and a k-vector $\Xi \in \Lambda^{k} T_{x} X$. Then, choose a chart $(U, \varphi), \varphi=\left(x^{i}\right)$, at x and a chart $(V, \psi), \psi=\left(y^{\sigma}\right)$, at $f(x) \in Y$ such that $f(U) \subset V$. Expressing Ξ in components and setting

$$
\begin{aligned}
\Lambda^{k} T_{x} f \cdot \Xi= & \frac{1}{(k!)^{2}}\left(\frac{\partial y^{\sigma_{1}} f \varphi^{-1}}{\partial x^{i_{1}}}\right)_{\varphi(x)}\left(\frac{\partial y^{\sigma_{2}} f \varphi^{-1}}{\partial x^{i_{2}}}\right)_{\varphi(x)} \ldots\left(\frac{\partial y^{\sigma_{k}} f \varphi^{-1}}{\partial x^{i_{k}}}\right)_{\varphi(x)} \\
& \cdot \Xi^{i_{1} i_{2} \ldots i_{k}}\left(\frac{\partial}{\partial y^{\sigma_{1}}}\right)_{f(x)} \wedge\left(\frac{\partial}{\partial y^{\sigma_{2}}}\right)_{f(x)} \wedge \ldots \wedge\left(\frac{\partial}{\partial y^{\sigma_{k}}}\right)_{f(x)}
\end{aligned}
$$

we get a k-vector $\Lambda^{k} T_{x} f \cdot \Xi \in \Lambda^{k} T_{f(x)} Y$, and a vector bundle homomorphism $\Lambda^{k} T f: \Lambda^{k} T X \rightarrow \Lambda^{k} T Y$ over f (the lift of f).

It is easily seen that differentiable mappings of a Euclidean space into a manifold can be canonically lifted to the bundles of k-vectors. For this purpose we use the canonical k-vector field on \mathbb{R}^{n}

$$
\mathbb{R}^{n} \ni t \rightarrow \theta(t)=\frac{1}{k!} \varepsilon^{i_{1} i_{2} \ldots i_{k}}\left(\frac{\partial}{\partial t^{i_{1}}}\right)_{t} \wedge\left(\frac{\partial}{\partial t^{i_{2}}}\right)_{t} \wedge \ldots \wedge\left(\frac{\partial}{\partial t^{i_{k}}}\right)_{t} \in \Lambda^{k} T \mathbb{R}^{n}
$$

Identifying $\Lambda^{k} T \mathbb{R}^{n}$ with $\mathbb{R}^{n} \times \Lambda^{k} \mathbb{R}^{n}$, the canonical section becomes the mapping $t \rightarrow\left(t, \varepsilon^{i_{1} i_{2} \ldots i_{k}}\right)$.

Consider a differentiable mapping $f: U \rightarrow Y$, where U is an open subset of \mathbb{R}^{n}. For any point $t \in U, \Lambda^{k} T_{t} f \cdot \theta(t)$ is an element of the vector space $\Lambda^{k} T_{f(t)} Y$. We
get the canonical lift $\Lambda^{k} f$ of f to $\Lambda^{k} T Y$, defined by

$$
\Lambda^{k} f=\Lambda^{k} T f \cdot \theta
$$

The canonical lift of the parametrisation $U \ni t \rightarrow\left(\psi^{-1} \circ \iota_{k, m}\right)(t) \in V \cap S$ is expressed in a chart $(V, \psi), \psi=\left(y^{\sigma}\right)$, as

$$
\begin{align*}
& \Lambda^{k}\left(\psi^{-1} \circ \iota_{k, m}\right)(t) \\
& \quad=\left(\frac{\partial}{\partial y^{1}}\right)_{\psi^{-1} \circ \iota_{k, m}(t)} \wedge\left(\frac{\partial}{\partial y^{2}}\right)_{\psi^{-1} \circ \iota_{k, m}(t)} \wedge \ldots \wedge\left(\frac{\partial}{\partial y^{k}}\right)_{\psi^{-1} \circ \iota_{k, m}(t)} \tag{3.1}
\end{align*}
$$

Formula (3.1) also defines the mapping $V \ni y \rightarrow\left(\Lambda^{k} \psi\right)(y) \in\left(\tau^{k}\right)^{-1}(V)$ by

$$
\begin{equation*}
\Lambda^{k} \psi=\Lambda^{k}\left(\psi^{-1} \circ \iota_{k, m}\right) \circ \operatorname{pr}_{m, k} \psi \tag{3.2}
\end{equation*}
$$

the canonical section along S, associated with $(V, \psi) . \Lambda^{k} \psi$ is expressed by

$$
\begin{aligned}
\left(y^{1}, y^{2}, \ldots, y^{k}, y^{k+1}, y^{k+2}\right. & \left.\ldots, y^{m}\right) \rightarrow \Lambda^{k}\left(\psi^{-1} \circ \iota_{k, m}\right)\left(y^{1}, y^{2}, \ldots, y^{k}\right) \\
& =\left(\left(y^{1}, y^{2}, \ldots, y^{k}, 0,0, \ldots, 0\right),(1,0,0, \ldots, 0)\right)
\end{aligned}
$$

Writing in the multi-index notation $\left(\left(\tau^{r}\right)^{-1}(V), \Phi\right), \Phi=\left(\dot{y}^{I}\right)$, and setting $I_{0}=$ $(1,2, \ldots, k)$, we get the image of this mapping as a subset of $\left(\tau^{r}\right)^{-1}(V)$, defined by the equations $y^{k+1}=0, y^{k+2}=0, \ldots, y^{m}=0, \dot{y}^{I_{0}}=1, \dot{y}^{I}=0, I \neq I_{0}$.

Lemma 4. Let $(V, \psi), \psi=\left(y^{\sigma}\right)$, and $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(\bar{y}^{\sigma}\right)$, be two charts on Y, adapted to S, such that $V \cap \bar{V} \neq \varnothing$.
(1) The canonical sections along S satisfy

$$
\Lambda^{k} \bar{\psi}=\operatorname{det}\left(\frac{\partial y^{i}}{\partial \bar{y}^{j}}\right)_{\bar{\psi}(y)} \Lambda^{k} \psi
$$

(2) The differential forms $d y^{\sigma}$ and $d y^{I}$ satisfy $\left(\Lambda^{k} \psi\right)^{*} d y^{i}=d y^{i}, 1 \leqslant i \leqslant k$, $\left(\Lambda^{k} \psi\right)^{*} d y^{v}=0, k+1 \leqslant v \leqslant m,\left(\Lambda^{k} \psi\right)^{*} d \dot{y}^{I}=0$. In particular, on the set $V \cap \bar{V}$,

$$
\begin{align*}
& \left(\Lambda^{k} \bar{\psi}\right)^{*} d \bar{y}^{1} \wedge d \bar{y}^{2} \wedge \ldots \wedge d \bar{y}^{k} \\
& \quad=\operatorname{det}\left(\frac{\partial \bar{y}^{i}}{\partial y^{j}}\right)_{\psi(y)}\left(\Lambda^{k} \psi\right) * d y^{1} \wedge d y^{2} \wedge \ldots \wedge d y^{k} \tag{3.3}
\end{align*}
$$

4. GRASSMANN FIBRATIONS

Consider the vector bundle $\Lambda^{k} T Y$ and the subset $\Lambda_{0}^{k} T Y \subset \Lambda^{k} T Y$, consisted of non-zero k-vectors. We have an equivalence relation on $\Lambda_{0}^{k} T Y$ " Ξ_{1} is equivalent with Ξ_{2}, if there exists a real number $\lambda>0$ such that $\Xi_{1}=\lambda \Xi_{2}$ ". The quotient set has the structure of a fibration over Y, called the Grassmann fibration of degree k, and is denoted by $G^{k} Y$.

To describe the structure of the set $G^{k} Y$, we proceed similarly as in the case of classical projective spaces. If in a chart $(V, \psi), \psi=\left(y^{\sigma}\right)$,

$$
\Xi_{i}=\frac{1}{k!} \Xi_{i}^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\left(\frac{\partial}{\partial y^{\sigma_{1}}}\right)_{y} \wedge\left(\frac{\partial}{\partial y^{\sigma_{2}}}\right)_{y} \wedge \ldots \wedge\left(\frac{\partial}{\partial y^{\sigma_{k}}}\right)_{y}, \quad i=1,2
$$

are two nonzero k-vectors, then Ξ_{1} is equivalent with Ξ_{2} if and only if in this chart, $\Xi_{1}^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}=\lambda \Xi_{2}^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}$ for some $\lambda>0$ and all $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$. We denote $V^{v_{1} \nu_{2} \ldots v_{k}}=\left\{\Xi \in\left(\tau^{k}\right)^{-1}(V) \mid \Xi^{v_{1} v_{2} \ldots v_{k}}>0\right\}$. Then, a k-vector belonging to the set $V^{\nu_{1} \nu_{2} \ldots \nu_{k}} \subset \Lambda_{0}^{k} T Y$ can be expressed by

$$
\begin{aligned}
\Xi= & \Xi^{v_{1} v_{2} \ldots v_{k}}\left(\frac{\partial}{\partial y^{v_{1}}}\right)_{y} \wedge\left(\frac{\partial}{\partial y^{v_{2}}}\right)_{y} \wedge \ldots \wedge\left(\frac{\partial}{\partial y^{v_{k}}}\right)_{y} \\
& +\frac{1}{k!} \sum_{\left(\tau_{1} \tau_{2} \ldots \tau_{k}\right) \neq\left(v_{1} v_{2} \ldots v_{k}\right)} \Xi^{\tau_{1} \tau_{2} \ldots \tau_{k}}\left(\frac{\partial}{\partial y^{\tau_{1}}}\right)_{y} \wedge\left(\frac{\partial}{\partial y^{\tau_{2}}}\right)_{y} \wedge \ldots \wedge\left(\frac{\partial}{\partial y^{\tau_{k}}}\right)_{y}
\end{aligned}
$$

(no summation through $v_{1}, v_{2}, \ldots, v_{k}$). Denoting by $\operatorname{sgn} \Xi^{v_{1} v_{2} \ldots v_{k}}$ the sign of the component $\Xi^{\nu_{1} \nu_{2} \ldots \nu_{k}}$, we can write $\Xi^{\nu_{1} \nu_{2} \ldots \nu_{k}}=\operatorname{sgn} \Xi^{\nu_{1} \nu_{2} \ldots \nu_{k}} \cdot\left|\Xi^{\nu_{1} \nu_{2} \ldots \nu_{k}}\right|$ and

$$
\begin{aligned}
\Xi= & \operatorname{sgn} \Xi^{v_{1} v_{2} \ldots v_{k}} \cdot\left|\Xi^{v_{1} v_{2} \ldots v_{k}}\right|\left(\frac{\partial}{\partial y^{v_{1}}}\right)_{y} \wedge\left(\frac{\partial}{\partial y^{v_{2}}}\right)_{y} \wedge \ldots \wedge\left(\frac{\partial}{\partial y^{v_{k}}}\right)_{y} \\
& +\frac{\mid \Xi^{v_{1} v_{2} \ldots v_{k}}}{k!} \sum \frac{\Xi^{\tau_{1} \tau_{2} \ldots \tau_{k}}}{\mid \Xi^{v_{1} v_{2} \ldots v_{k}}}\left(\frac{\partial}{\partial y^{\tau_{1}}}\right)_{y} \wedge\left(\frac{\partial}{\partial y^{\tau_{2}}}\right)_{y} \wedge \ldots \wedge\left(\frac{\partial}{\partial y^{\tau_{k}}}\right)_{y}
\end{aligned}
$$

with the summation through $\left(\tau_{1} \tau_{2} \ldots \tau_{k}\right) \neq\left(v_{1} v_{2} \ldots v_{k}\right)$. But $\operatorname{sgn} \Xi^{v_{1} v_{2} \ldots v_{k}}=1$, so we see the class of Ξ can be represented as

$$
\begin{aligned}
{[\Xi]=} & \left(\frac{\partial}{\partial y^{v_{1}}}\right)_{y} \wedge\left(\frac{\partial}{\partial y^{v_{2}}}\right)_{y} \wedge \ldots \wedge\left(\frac{\partial}{\partial y^{v_{k}}}\right)_{y} \\
& +\frac{1}{k!} \sum \frac{\Xi^{\tau_{1} \tau_{2} \ldots \tau_{k}}}{\Xi^{v_{1} v_{2} \ldots v_{k}}}\left(\frac{\partial}{\partial y^{\tau_{1}}}\right)_{y} \wedge\left(\frac{\partial}{\partial y^{\tau_{2}}}\right)_{y} \wedge \ldots \wedge\left(\frac{\partial}{\partial y^{\tau_{k}}}\right)_{y}
\end{aligned}
$$

We set for any $\Xi \in V^{\nu_{1} \nu_{2} \ldots \nu_{k}}$

$$
\begin{align*}
& w^{\sigma}(\Xi)=y^{\sigma}(\Xi), \quad w^{v_{1} v_{2} \ldots v_{k}}(\Xi)=\dot{y}^{v_{1} v_{2} \ldots v_{k}}(\Xi) \\
& w^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}(\Xi)=\frac{\dot{y}^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}(\Xi)}{\dot{y}^{v_{1} v_{2} \ldots v_{k}}(\Xi)}, \quad\left(\sigma_{1} \sigma_{2} \ldots \sigma_{k}\right) \neq\left(v_{1} v_{2} \ldots v_{k}\right) \tag{4.1}
\end{align*}
$$

The pair $\left(V^{\nu_{1} \nu_{2} \ldots \nu_{k}}, \Psi^{\nu_{1} \nu_{2} \ldots v_{k}}\right), \Psi^{\nu_{1} \nu_{2} \ldots v_{k}}=\left(w^{\sigma}, w^{\nu_{1} \nu_{2} \ldots \nu_{k}}, w^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right)$, where the indices satisfy $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{k}\right) \neq\left(v_{1} v_{2} \ldots v_{k}\right)$, is a chart on $\Lambda_{0}^{k} T Y$; we call this chart $\left(v_{1} v_{2} \ldots v_{k}\right)$-associated with (V, ψ). The pair $\left(V^{v_{1} v_{2} \ldots v_{k}}, W^{v_{1} v_{2} \ldots v_{k}}\right)$, $W^{\nu_{1} \nu_{2} \ldots \nu_{k}}=\left(w^{\sigma}, w^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right),\left(\sigma_{1} \sigma_{2} \ldots \sigma_{k}\right) \neq\left(v_{1} v_{2} \ldots v_{k}\right)$, is a fibred chart on
$G^{k} Y$. Writing formulas (4.1) in a different way, we have the transformation equations

$$
w^{\sigma}=y^{\sigma}, \quad w^{\nu_{1} v_{2} \ldots v_{k}}=\dot{y}^{\nu_{1} \nu_{2} \ldots v_{k}}, \quad w^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}=\frac{\dot{y}^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}}{\dot{y}^{v_{1} v_{2} \ldots v_{k}}}
$$

The projection $\kappa^{k}: \Lambda^{k} T Y \rightarrow G^{k} Y$ of $\Lambda^{k} T Y$ onto $G^{k} Y$ is the Cartesian projection $\left(w^{\sigma}, w^{\nu_{1} \nu_{2} \ldots v_{k}}, w^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right) \rightarrow\left(w^{\sigma}, w^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right)$. Combining $\Lambda^{k}\left(\psi^{-1} \iota_{k, m}\right)$ and κ^{k} we get the canonical lift of $\psi^{-1} \iota_{k, m}$ to the Grassmann fibration,

$$
\begin{equation*}
G^{k}\left(\psi^{-1} \iota_{k, m}\right)=\kappa^{k} \circ \Lambda^{k}\left(\psi^{-1} \iota_{k, m}\right) \tag{4.2}
\end{equation*}
$$

Lemma 5. Let $(V, \psi), \psi=\left(y^{\sigma}\right)$, and $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(\bar{y}^{\sigma}\right)$, be two rectangle charts, adapted to S at a point $y \in Y$. Suppose that (V, ψ) and $(\bar{V}, \bar{\psi})$ are consistently oriented. Then

$$
\begin{equation*}
G_{k}\left(\bar{\psi}^{-1} \iota_{k, m}\right)=G^{k}\left(\psi^{-1} \iota_{k, m}\right) \tag{4.3}
\end{equation*}
$$

We set

$$
\begin{equation*}
G^{k} S=\left\{[\Xi] \in G^{k} Y \mid[\Xi]=G^{k}\left(\psi^{-1} \iota_{k, m}\right)\left(\operatorname{pr}_{m, k} \psi(y)\right), y \in S\right\} \tag{4.4}
\end{equation*}
$$

To a given chart $(V, \psi), \psi=\left(y^{\sigma}\right)$, we associate the induced chart $\left(\left(\tau^{k}\right)^{-1}(V), \Phi\right)$, $\Phi=\left(y^{\sigma}, \dot{y}^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right)$, on $\Lambda^{k} T Y$; the associated charts on the Grassmann fibration $G^{k} Y \operatorname{are}\left(V_{0}^{\nu_{1} \nu_{2} \ldots \nu_{k}}, W^{\nu_{1} \nu_{2} \ldots \nu_{k}}\right)$,

$$
W^{v_{1} v_{2} \ldots v_{k}}=\left(w^{\sigma}, w^{\sigma_{1} \sigma_{2} \ldots \sigma_{k}}\right)
$$

with $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{k}\right) \neq\left(v_{1} v_{2} \ldots v_{k}\right)$. Then, it is easily seen that each of the charts $\left(V_{0}^{\nu_{1} \nu_{2} \ldots \nu_{k}}, W^{\nu_{1} \nu_{2} \ldots \nu_{k}}\right)$ is adapted to the submanifold $G^{k} S$.

Theorem 1. Suppose S is oriented. Then, the subset $G^{k} S$ of the Grassmann fibration $G^{k} Y$ is a k-dimensional oriented submanifold, diffeomorphic with S.

Theorem 1 allows us to integrate over k-dimensional submanifolds of Y directly on the Grassmann fibration $G^{k} Y$.

5. VARIATIONAL FUNCTIONALS DEPENDING ON SUBMANIFOLDS

As before, we write $G^{k} S$ (resp., $G^{k} \Omega$) for the canonical lift of a k-dimensional submanifold $S \subset Y$ (resp., k-piece $\Omega \subset Y$) to the Grassmann fibration $G^{k} Y$. Denote by $\Gamma^{k} Y$ the set of all k-pieces Ω of the manifold Y.

Let η be a k-form on the Grassmann fibration $G^{k} Y$. The form η defines the variational functional

$$
\begin{equation*}
\Gamma^{k} Y \ni \Omega \rightarrow \eta_{\Omega}(S)=\int_{G^{k} \Omega} \eta \in \mathbb{R} \tag{5.1}
\end{equation*}
$$

We roughly describe in this paper this construction for $k=1$, representing variational functionals of Finsler geometry in terms of differential forms (cf. Urban and

Krupka [7]). Consider the tangent bundle $\Lambda^{1} T Y=T Y$, a chart $(V, \psi), \psi=\left(y^{\sigma}\right)$, on Y, and the associated chart $\left(\tau^{1}\right)^{-1}(V), \Psi=\left(y^{\sigma}, \dot{y}^{\sigma}\right)$, on $T Y$. A function $F: T Y \rightarrow \mathbb{R}$ satisfies the homogeneity condition, if it satisfies

$$
F(\lambda \xi)=\lambda F(\xi)
$$

for all tangent vectors ξ and every positive $\lambda \in R$. The same can be stated in coordinates, requiring that

$$
F\left(y^{v}, \lambda \dot{y}^{v}\right)=\lambda F\left(y^{v}, \dot{y}^{v}\right)
$$

Theorem 2.

(1) For any function $F: T Y \rightarrow \mathbb{R}$, the chart expressions

$$
\begin{equation*}
\eta=\frac{\partial F}{\partial \dot{y}^{v}} d y^{v} \tag{5.2}
\end{equation*}
$$

define a global 1-form on TY.
(2) If F satisfies the homogeneity condition, then η is projectable on the Grassmann fibration $G^{1} T Y$.
(3) If F satisfies the homogeneity condition, then, for any curve $\zeta: I \rightarrow Y$

$$
\begin{equation*}
\left(\Lambda^{1} \zeta\right) * \eta=\left(F \circ \Lambda^{1} \zeta\right) d t \tag{5.3}
\end{equation*}
$$

The form η (5.2) is known as the Hilbert form (Chern, Chen and Lam [1], Crampin and Saunders [2]). Theorem 2 (2) characterizes its basic property when F is positive homogeneous: namely, in this case the Hilbert form is defined on the Grassmann fibration $G^{1} T Y$. One can also easily verify that η is a special case of the LepageCartan form. This fact completely determines the behaviour of the variational functional (5.1) under variations of submanifolds, extremal submanifolds, and their invariance properties.

AcKnowledgement

Erico Tanaka acknowledges the support by the JSPS Institutional Program for Young Researcher Overseas Visits, Palacky University (PrF-2011-022) and Yukawa Institute Computer Facility. The second author acknowledges support of National Science Foundation of China (Grant No. 109320020). He is thankful to the School of Mathematics, Beijing Institute of Technology, for kind hospitality and collaboration during his stay in China. He also acknowledges support from grant 201/09/0981 of the Czech Science Foundation and from the IRSES project GEOMECH (project no. 246981) within the 7th European Community Framework Programme.

REFERENCES

[1] S. S. Chern, W. H. Chen, and K. S. Lam, Lectures on Differential Geometry. World Scientific, 2000.
[2] M. Crampin and D. Saunders, "The Hilbert-Caratheodory forms for parametric multiple integral problems in the calculus of variations," Acta Appl. Math., vol. 76, pp. 37-55, 2003.
[3] E. Davies, "Areal spaces," Annali di Matematica Pura ed Applicata, vol. 55, pp. 63-76, 1961.
[4] A. Kawaguchi, "On the concepts and theories of higher order spaces," Periodica Mathematica Hungarica, vol. 7, no. 3-4, pp. 291-299, 1976.
[5] D. Saunders, "Homogeneous variational problems: a minicourse," Communications in Mathematics, vol. 19, pp. 91-128, 2010.
[6] L. Tamassy, "A contribution to the connection theory of areal spaces," in Proc. XXVI Sympos. on Mathematical Physics, vol. 36. Rep. Math. Phys., 1995, pp. 453-459.
[7] Z. Urban and D. Krupka, "Variational sequences on fibred velocity spaces," The 6th Internat. Federation of Nonlinear Analysts Conference, pp. 77-87, 2012.
[8] Z. Urban and D. Krupka, "The Zermelo conditions and higher order homogeneous functions," Publ. Math. Debrecen, vol. 82, pp. 59-76, 2013.

Authors' addresses

Erico Tanaka

Ochanomizu University, Department of Physics, 2-1-1 Ootsuka Bunkyo, 112-0086 Tokyo, Japan and

Palacky University, Department of Mathematics, 17. listopadu 12, 77146 Olomouc, Czech Republic
E-mail address: erico@cosmos.phys.ocha.ac.jp

Demeter Krupka

Lepage Research Institute, 78342 Slatinice, Czech Republic
and
School of Mathematics, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian Zone, Beijing 100081, China
and
Department of Mathematics, University of Ostrava, 30. dubna 22, 70103 Ostrava, Czech Republic
E-mail address: demeter.krupka@lepageri.eu

