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Abstract. We study underlying geometric structures for integral variational functionals, depend-
ing on submanifolds of a given manifold. Applications include (first order) variational func-
tionals of Finsler and areal geometries with integrand the Hilbert 1-form, and admit immediate
extensions to higher-order functionals.
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1. INTRODUCTION

This paper is a contribution to the theory of integral variational functionals, de-
pending on submanifolds of a given manifold X. The theory is based on geometric
notions such as the bundles of (skew-symmetric) multivectors, and Grassmann fibra-
tions. Conceptually, it extends local parametric integrals of Finsler—Kawaguchi and
areal geometries (see, e. g., Chern, Chen, Lam [1], Davies [3], Kawaguchi [4], and
Tamassy [6]) to global functionals, depending on (global) submanifolds. In Sec-
tion 2 we summarize integration theory of differential forms along submanifolds.
Section 3 is devoted to vector bundles of k-vectors; we show how mappings of Eu-
clidean spaces into manifolds (parametrisations) can be lifted to the bundles of k-
vectors. In Section 4 we introduce, using the Pliicker embedding, underlying spaces
for parameter-invariant variational problems, the Grassmann fibrations. In Section 5
we show that any k-form on the Grassmann fibration defines an integral variational
functional, depending on k-dimensional submanifolds. An example is the Hilbert
form, a well-known first-order construction in Finsler geometry and its generalisa-
tions (Chern, Chen, Lam [1], Crampin, Saunders [2]).

It should be pointed out that the theory can be further generalised. To this end,
one should consider higher-order Grassmann fibrations endowed with Lagrangians
satisfying the relevant homogeneity conditions (Zermelo conditions, see, e. g., Saun-
ders [5], and Urban and Krupka [8]).
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2. INTEGRATION OVER SUBMANIFOLDS

Let X be an n-dimensional manifold, S a subset of X, xo € S a point. A
chart (U, ¢),¢ = (x'), at xq is a submanifold chart for S, if there exists a non-
negative integer k < n such that (U N S) = {x € Ulx*T1(x) = ¢1, x¥T2(x) =
€2,...,xX"(x) = c,_}. If such a chart exists, we say that S is a submanifold of X
at the point xg; k is the dimension of S at x¢. If such a submanifold chart exists at
every point of X, we say S is a submanifold of X and call k the dimension of S.

Denote by (tl, 2. .., t") the canonical coordinates on the Euclidean space R”,
and [R?_) = {ty € R*"|t"(t9) < 0}, B[R’('_) = {19 € [R’g_)|z”(zo) = 0}. [R’g_) is the
halfspace of R", B[R’(’_) is the boundary of [R’(’_). Let £2 be a non-void subset of X,
and xo € £2 a point. A chart (U, ¢) at xg is said to be adapted to 2, if the set
¢(U N £2) is an open set in [R(_). £2 is a piece of X, if it is compact and each point
X € £2 admits a chart, adapted to £2.

Let i be a k-form on X. Our aim now will be to introduce an integral of 1 on a
piece of a k-dimensional submanifold S (k-piece of a X). Express 7 in a submanifold
chart (U, ¢), ¢ = (x'),as n = n,jliz_,,ikdxi‘ Adx? A ... Adx'*. Then, restricting
nto S we get from the equations x¥t1 = 0, xkt2 = 0,... , x" =0

n:fdxl/\dxz/\.../\dxk,

where we write f = f(x/1,x%2, ..., x') for the component of 7 restricted to S.
From now on we suppose that S is orientable, and is endowed with an orientation
Org X ; only submanifold charts on X belonging to Org X are used. The integral of
n on a compact set £2 C S is defined in a standard way. There exist a finite family
{(Ur,¢1), (Ua,92),...,(Un,@n)} of submanifold charts on X, such that the family
{U1NnS,U;NS,..., Uy NS} covers 2. Let {y1, x2,.... xn} be a partition of
unity, subordinate to this covering. Then,

N

Jar=X

[ Ain-
j=17suPPX; N2
The following basic properties of the integral are needed in the calculus of variations.

Lemma 1 (transformation of integration domain). Let X and Y be two smooth
n-dimensional oriented manifolds, « : X — Y an orientation-preserving diffeo-

morphism. Then
=L e
2 a—1(2)

for any compact set §2 C S and any continuous differential n-formon Y .

Lemma 2 (Leibniz rule). Let X be an oriented n-dimensional manifold, n; a fam-
ily of n-forms on X, differentiable on a real parameter t, 2 C S a compact set.
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Then, the function I > t — [ n; € Ris differentiable, and

d / _ d Nt
dt Jo = o dt '
Lemma 3 (Stokes formula). Let X be an n-dimensional manifold, S a k-dimensio-

nal oriented submanifold of X, n a (k — 1)-form on X. Let §2 be a piece of S with
boundary 052, endowed with induced orientation. Then

fin= e
02 2

3. BUNDLES OF k-VECTORS

Let X be an n-dimensional manifold, AX Ty X the k-exterior product of the tangent
space Tx X, x € X a point. We put

AkTX = | ) AFTyx.
xeX

This set has a natural vector bundle structure over X, with type fibre AKR?. We
denote by 7% the vector bundle projection of AKTX

Let X (resp. Y) be a smooth manifold of dimension n (resp. m), and let f : X —
Y be a differentiable mapping. Choose a point x € X and a k-vector & € ART X
Then, choose a chart (U, @), ¢ = (x'), at x and a chart (V,v), ¥ = (y°), at
f(x) € Y such that f(U) C V. Expressing = in components and setting

g (RO (et ()
(k1)? dx"1 o(x) dx'2 o(x) dx' o(x)

_Eiliz---ik( ao) /\( 86) /\.../\( 80) s
7 ) rey \9y% ) pix) k) pxy

we get a k-vector AKT, f - & € Ak Tr(x)Y, and a vector bundle homomorphism
ARTF - ATX — AKTY over f (the lift of ).

It is easily seen that differentiable mappings of a Euclidean space into a manifold
can be canonically lifted to the bundles of k-vectors. For this purpose we use the

canonical k-vector field on R"
.. . d d d
n _ i112...0x k n
R 91—>9(t)_—k!e (_8ti1)t/\(8ti2)t/\ A(atik)teA TR".

Identifying A*TR” with R” x A¥R”, the canonical section becomes the mapping
{ — ([’Eiliz...ik)‘

Consider a differentiable mapping f : U — Y, where U is an open subset of R”.
For any point t € U, A¥T, f - 6(¢) is an element of the vector space A¥ TrY. We
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get the canonical lift A¥ f of f to AXTY , defined by
AR = ARTSr 0.

The canonical lift of the parametrisation U > t — (Y~ o U,m)(t) € VNS is
expressed in a chart (V, ¥), ¥ = (v9), as

AR oy (1)

(57 s 5y (a8) =
ayl Y~ lotg m () 8y2 Y Loty 4 (1) ayk 1//*1011(’,"(1‘). .

Formula (3.1) also defines the mapping V 3 y — (A*¥)(y) € (z%¥)~1 (V) by
Ay = AW o e m) © Py iV (3:2)
the canonical section along S, associated with (V, y). A¥yr is expressed by

KRTL Y2 ™) ARG o (P
= (" y% . 5.0,0....,0).(1,0,0.....0)).

Writing in the multi-index notation ((z")~'(V), ®), ® = (y7), and setting Iy =
(1,2,..., k), we get the image of this mapping as a subset of (z")~!(V), defined by
the equations yk+1 =0, ykt2 =0,.. ., ym =0, yl0 = 1, y/ =0, # I,.

Lemma 4. Let (V,y), ¥ = (¥°), and V. ¥), ¥ = (7°), be two charts on Y,
adapted to S, such that V NV # @.

(1) The canonical sections along S satisfy

B i
ARy = det (Ei) ARy,
¥()

oLy

ay/
(2) The differential forms dy® and d y! satisfy (A¥y)*dy' = dy', 1 <i <k,
(Ak‘ﬁ)*ﬂflyv =0,k +1<v<m (AXy)*dy! = 0. In particular, on the
set VNV,

(A AT AdFE AL AdTF

=i
=det(al.) ARy s dy AdyE AL ~ndyF. (33)
WY )y

4. GRASSMANN FIBRATIONS

Consider the vector bundle AKT'Y and the subset A’g TY c A*¥TY, consisted of
non-zero k-vectors. We have an equivalence relation on AlgTY “E1 is equivalent

with E», if there exists a real number A > 0 such that 51 = AE,”. The quotient set
has the structure of a fibration over Y, called the Grassmann fibration of degree k,

and is denoted by G¥Y .
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To describe the structure of the set GKY, we proceed similarly as in the case of
classical projective spaces. If in a chart (V, ¥), ¥ = (¥9),

1
i:_‘EiGle-..Uk( aa ) /\( 80 ) /\/\( 80) ’ i:1727
k! dy°r J,, dy%2 /, Ay J,

are two nonzero k-vectors, then & is equivalent with &5 if and only if in this
chart, Eflaz'"‘”" = )LE;WZ"'G"' for some A > 0 and all 01,07,...,0,. We de-
note VV1V2-% = {5 ¢ (¢K)~1(V) | EV1V2-Y > 0}. Then, a k-vector belonging to

the set V'V1v2Vk C A’gTY can be expressed by

&3]

E = ghha-vk 9 A 9 Ao A 9
Iy, \dy»2J, dyvk J,,
1 d d d
+F Z Erlrz--~fk(—a n) /\(a rz) /\.../\(8 rk)
) (171172...rk)7é(v1vz...vk) y y y Y y y
(no summation through vy, vs, ..., vr). Denoting by sgn ZV1¥2-V the sign of the

component ZV1V2Vk we can write ZV1V2Vk = sgn FV1V2Vk o | FV1V2Yk| and

5 = SgnEV1V2-~~Vk _|EV1V2...vk| 0 A d A A J
Sy Ny, Wy )y
|Ev1vz...vk| E‘El‘tz...‘rk a a a
+ k! Z |Evivz.vi| \ gy™ , A 8)/_"'2 , AL A By ,
y

with the summation through (7172 ...7%) # (V1v2...v). But sgn Z¥1V2Vk = 1,
so we see the class of Z can be represented as

(9 i i
[u] = ayvl y/\ ayv2 y/\.../\ 8yvk ,
1 E‘Cltz...‘l.’k a 8 a
T E‘“”Z"'”k(8y”)yA(8y’2)yA'“A(8y“)y'

We set for any & € VV1V2--Vk

wU(E) = y"(E), wl1v2--Vk (E) — J-}vlvz...vk (E),

~0102...0k (E)

y
0102..0k (2 —
w (2) —)}V1V2...vk &) (0102...0%) # (V1va... V). 4.1
The pair (Vvlvz...vk’ lpvlw...vk)’ PYiv2Vk — (wa’wvlvz...vk’ w010'2--~0'k)’ where

the indices satisfy (0102...0%) # (viva...Vg), is a chart on A’gTY; we call
this chart (viv; ... vg)-associated with (V,y). The pair (VV1V2-Vk WViva--Vk)
Wyiv2-Yk = (@9, wol92:%) (g10a...0;) # (viva...v), is a fibred chart on
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G*Y. Writing formulas (4.1) in a different way, we have the transformation equa-

tions

)}0‘10‘2...0’/(

o _ .0 VIV2.Vi _ aV1V2...V 0102...0 __

w’ =y%, w k =1y Kk, w ko,
yV1V2...vk

The projection k¥ : AKTY — GXY of AXTY onto G¥Y is the Cartesian projection
(wa7 wvlvz...vk’wamz...ak) N (wa7 w0’102~--0k)' Combining Ak(l//_ltk’m) and Kk
we get the canonical lift of 1~ 1t k,m to the Grassmann fibration,

GF Y g m) = 1K 0 AR Ty ). (4.2)

Lemma5. Let (V, V), ¥ = (y°), and (V. ¥), ¥ = (3°), be two rectangle charts,
adapted to S at a point 'y € Y. Suppose that (V,v¥) and (V,¥) are consistently
oriented. Then

Gr(V e m) = GFW e m). (4.3)
We set
G*S = {[E] € G*Y|[B] = GF (W e m) DLk ¥ (0)), ¥y € S} (44)

To a given chart (V, ), ¥ = (y°), we associate the induced chart ((t%)~1(V), @),
D = (y?,y°!1?2%), on AKTY; the associated charts on the Grassmann fibration
GkY are (VOVI V2...Vi , Wvlvz...vk)’

Wvle...vk — (w(f’ wUIGZ---Gk)’
with (0102...0%) # (viva...vg). Then, it is easily seen that each of the charts
(V172 Pk W¥1v2-Vk) is adapted to the submanifold G*s.

Theorem 1. Suppose S is oriented. Then, the subset G¥S of the Grassmann
fibration GKXY is a k-dimensional oriented submanifold, diffeomorphic with S.

Theorem 1 allows us to integrate over k-dimensional submanifolds of Y directly
on the Grassmann fibration G¥Y .

5. VARIATIONAL FUNCTIONALS DEPENDING ON SUBMANIFOLDS

As before, we write GX S (resp., Gk £2) for the canonical lift of a k-dimensional
submanifold S C Y (resp., k-piece £2 C Y) to the Grassmann fibration GFY . De-
note by I” kY the set of all k-pieces £2 of the manifold Y.

Let 7 be a k-form on the Grassmann fibration G¥Y . The form 7 defines the vari-
ational functional

FkYa.Q—Hm(S):/ neR. (5.1)
Gk

We roughly describe in this paper this construction for k = 1, representing vari-
ational functionals of Finsler geometry in terms of differential forms (cf. Urban and
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Krupka [7]). Consider the tangent bundle A'TY = TY, achart (V,y), ¥ = (¥°),
on Y, and the associated chart (z\)~'(V), ¥ = (¥°,%%), on TY. A function
F : TY — R satisfies the homogeneity condition, if it satisfies

F(A§) = AF(§)
for all tangent vectors £ and every positive A € R. The same can be stated in co-
ordinates, requiring that

FOPAp")y =AF(". 7).
Theorem 2.
(1) For any function F : TY — R, the chart expressions
oF

ay,vdyv (5.2)

]”:

define a global 1-formon TY .

(2) If F satisfies the homogeneity condition, then 1) is projectable on the Grass-
mann fibration G'TY .

(3) If F satisfies the homogeneity condition, then, for any curve ¢ : I — Y

(A'E) % n = (F o A0)dr. (5.3)

The form 7 (5.2) is known as the Hilbert form (Chern, Chen and Lam [1], Crampin
and Saunders [2]). Theorem 2 (2) characterizes its basic property when F is positive
homogeneous: namely, in this case the Hilbert form is defined on the Grassmann
fibration G'TY . One can also easily verify that 7 is a special case of the Lepage-
Cartan form. This fact completely determines the behaviour of the variational func-
tional (5.1) under variations of submanifolds, extremal submanifolds, and their in-
variance properties.
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