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1. INTRODUCTION

Investigation of states of time dependent dynamical systems leads to nonautono-
mous problems in the form of the equations of perturbed motions. If the model
depends on parameters, it is the main object of nonautonomous bifurcation theory to
describe the qualitative changes when these parameters are varied. Extending non-
autonomous bifurcation theory to impulsive systems is a contemporary problem. In
continuous dynamical systems, this theory is studied in [10, 11, 13, 14, 16, 17].

Many evolutionary processes in the real world are characterized by sudden changes
at certain times. These changes are called impulsive phenomena [4, 5, 12, 18, 19],
which are widespread in modeling of mechanics, electronics, biology, neural net-
works, medicine, and social sciences [1, 2, 8, 15, 18–21]. An impulsive differential
equation is one of the basic instruments to understand better the role of discontinuity
in the real world problems. There are qualitative studies on asymptotic properties
of the quasilinear impulsive differential equations and ordinary differential equations
[3–6, 9, 12, 19]. The main novelty of this paper is the study of the analogues of no-
nautonomous pitchfork and transcritical bifurcations in scalar impulsive systems, in
which the properties of the system depend on the entire time, both of past and future.
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This paper is organized as follows. In Section 2 we give basic definitions and defi-
nitions of all-time, past and future attractors. In Section 3 results on linearized attrac-
tivity and repulsivity are presented. Section 4 and Section 5 is devoted to impulsive
analogues of nonautonomous transcritical and pitchfork bifurcations, respectively.

2. PRELIMINARIES

We denote by R the set of all real numbers, by Z the set of integers and write R�
k
WD

Œ�1;k/ and RC
k
WD Œk;1/ for given k 2 R. In this section we introduce the concepts

of attractive and repulsive solutions, which are used to analyze asymptotic behavior
of impulsive non-autonomous systems. This paper is concerned with systems of the
type

Px D f .t;x/;

�xjtD�i D Ji .x/;
(2.1)

where �xjtD�i WD x.�iC/� x.�i /, x.�iC/ D lim
t!�

C

i

x.t/. The system (2.1) is
defined on the set˝ D I �A�G whereG � Rn, I is the interval of the form I D R,
I D R�

k
or I D RC

k
, respectively. � is a nonempty sequence with the set of indexes

A such that j�i j ! 1 as ji j ! 1. Let �.t; t0;x0/ be solution of (2.1) which is
continuable and unique on I .

Denote by PC.R;�/ the space of piecewise left continuous functions with discon-
tinuity of the first kind at points in � . The Euclidean space Rn is equipped with the
norm jj � jj, and write B�.x0/D fx 2 Rn W jjx�x0jj< �g for arbitrary �-neighborhood
of some point x0 2Rn. We use Hausdorff semi-distance between nonempty setA and
B as d.A;B/ D supa2A infb2B d.a;b/. For arbitrary nonempty set X � Rn define
�.t; t0;X/ WD

S
x02X

�.t; t0;x0/.
A set M � I �Rn is called nanautonomous set if for all t 2 I , the t � f ibers

M.t/ WD fx 2 Rn W .t;x/ 2M g are nonempty. M is said to be compact if all t-fibers
are compact. M is said to be invariant if �.t; t0;M.t0//DM.t/ for all t; t0 2 I .

Asymptotic properties of continuous dynamics and dynamics with discontinuous
are the same. In what follows we use definitions of attractivity and repulsivity without
any changes form [17].

Definition 1. Let I D R, A and R be compact and invariant nonautonomous sets
and  W R! Rn be a solution of the system (2.1).

� A is called all-time attractor if there exists an � > 0 with

lim
t!1

sup
t02R

d.�.tC t0; t0;B�.A.t0///;A.tC t0//D 0:

The supremum of all positive � with this property is called all-time attraction
radius of A and denoted by A˙A .
�  is called all-time attractive if graph  is an all-time attractor.
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� R is called all-time repeller if there exists an � > 0 with

lim
t!1

sup
t02R

d.�.t0� t; t0;B�.R.t0///;R.t0� t //D 0:

The supremum of all positive � with this property is called all-time repulsion
radius of R and denoted by R˙R .
�  is called all-time repulsive if graph  is an all-time repeller.

In what follows we use past attractivity and repulsivity in the asymptotic analysis
of the systems that depend on the past. Note that a past attractor is a local form of a
pullback attractor [7].

Definition 2. Let I D R�
k

, A and R be compact and invariant nonautonomous sets
and  W R! Rn be a solution of the system (2.1).

� A is called past attractor if there exists an � > 0 with

lim
t!1

d.�.t0; t0� t;B�.A.t0� t ///;A.t0//D 0 for all t0 2 I:

The supremum of all positive � with this property is called past attraction
radius of A and is denoted by A�A .
�  is called past attractive if the graph  is a past attractor.
� R is called past repeller if there exists an � > 0 with

lim
t!1

d.�.t0� t; t0;B�.R.t0///;R.t0� t //D 0 for all t0 2 I:

The supremum of all positive � such that there exists abk 2 I with

lim
t!1

d.�.t0� t; t0;B�.R.t0///;R.t0� t //D 0 for all t0 �bk
is called past repulsion radius of R and denoted by R�R.
�  is called past repulsive if graph  is an past repeller.

Definition 3. Let I DRC
k

, A andR be compact and invariant nonautonomous sets
and  W R! Rn be a solution of the system (2.1).

� A is called future attractor if there exists an � > 0 with

lim
t!1

d.�.tC t0; t0;B�.A.t0///;A.tC t0//D 0 for all t0 2 I:

The supremum of all positive � such that there exists abk 2 I with

lim
t!1

d.�.tC t0; t0;B�.A.t0///;A.tC t0//D 0 for all t0 �bk
is called future attraction radius of A and is denoted by ACA .
�  is called future attractive if graph  is a future attractor.
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� R is called future repeller if there exists an � > 0 with

lim
t!1

d.�.t0; t0C t;B�.R.tC t0///;R.t0//D 0 for all t0 2 I:

The supremum of all positive � with this property is called future repulsion
radius of R and is denoted by RCR .
�  is called future repulsive if graph  is a future repeller.

From the definitions given above it follows that every future attractive solution is
uniformly asymptotically stable. Moreover, every all-time attractor (repeller, respec-
tively) is both a past attractor (repeller, respectively) and a future attractor (repeller,
respectively).

3. LINEARIZED ATTRACTIVITY AND REPULSIVITY

In this section we study linearized systems with definitions provided in the pre-
vious section which play great role in the stability analysis of solutions of nonlinear
impulsive systems with fixed moments of impulses. We consider the system with
interval I of the form R, R�

k
or RC

k
, respectively, and let

Px D A.t/xCF.t;x/;

�xjtD�i D BixCIi .x/;
(3.1)

where A 2 PC.I;�/, matrices Bi satisfy det.Bi C I / ¤ 0, F W I �G ! Rn and
I W A�G ! Rn. An infinite sequence �i satisfies j�i j ! 1 as ji j ! 1. It is
assumed that there exist positive constants � and � such that � � �iC1 � �i � � .
Denote �.t; t0;x0/ the solution of (3.1) and let ˚.t;s/ be the fundamental matrix of
the linearized system

Px D A.t/x;

�xjtD�i D Bix:
(3.2)

A version of the next theorem for future time has been proved in [19]. We will extend
this result for all-time attractiveness.

Theorem 1. If there exist ˇ < 0, K � 1 and ı > 0 such that

jj˚.t;s/jj �Keˇ.t�s/ for all t � s;

and the functions F.t;x/ and Ii .x/ satisfy the inequalities

jjF.t;x/jj � l jjxjj; jjIi .x/jj � l jjxjj (3.3)

for all t 2 I; i 2A and jjxjj< h;h > 0: Then,

jj�.t; t0;x0/jj � ıe
.ˇCKlC 1

�
ln.1CKl//.t�t0/ for all t; t0 2 I with t � t0;

i.e., for sufficiently small values of l, the trivial solution of (3.1) is all-time (past,
future, respectively) attractive.
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Proof. An equivalent integral equation of the system (3.1) can be written as [4,19]:

�.t; t0;x0/D ˚.t; t0/x0C

Z t

t0

˚.t;s/F.s;�.s; t0;x0//ds

C

X
t0��i<t

˚.t;�i /Ii .�.�i ; t0;x0//

for all t � t0. By using inequalities in (3.3) we get

jj�.t; t0;x0/jj �Ke
ˇ.t�t0/jjx0jjC

Z t

t0

Keˇ.t�s/l jj�.s; t0;x0/jjds

C

X
t0��i<t

Keˇ.t��i /l jj�.�i ; t0;x0/jj

for all t � t0 is fulfilled. The last expression can be rewritten as

e�ˇt jj�.t; t0;x0/jj �Ke
�ˇt0 jjx0jjC

Z t

t0

Kle�ˇsjj�.s; t0;x0/jjds

C

X
t0��i<t

Kle�ˇ�i jj�.�i ; t0;x0/jj

for all t � t0. Hence, by Gronwall-Bellman lemma for piecewise continuous func-
tions ([4, 19]) it follows that

jj�.t; t0;x0/jj �Ke
.ˇCKl/.t�t0/.1CKl/iŒt0;t/jjx0jj for all t � t0: (3.4)

By means of of the inequality �iC1��i � � one can see that

jj�.t; t0;x0/jj �Ke
.ˇCKlC 1

�
ln.1CKl//.t�t0/

jjx0jj for all t � t0:

If l is small enough that

ˇCKlC
1

�
ln.1CKl/ < 0 for ˇ < 0;

then the required result follows by choosing ı DKh. �

Theorem 2. If there exist ˇ > 0, K � 1 and ı > 0 such that

jj˚.t;s/jj �Keˇ.t�s/ for all t � s;

and the functions F.t;x/ and Ii .x/ satisfy the inequalities

jjF.t;x/jj � l jjxjj; jjIi .x/jj � l jjxjj (3.5)

for all t 2 I; i 2A and jjxjj< h;h > 0: Then,

jj�.t; t0;x0/jj � ıe
.ˇ�KlC 1

�
ln.1�Kl//.t�t0/ for all t; t0 2 I with t � t0;
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i.e., for sufficiently small values of l, the trivial solution of (3.1) is all-time (past,
future, respectively) repulsive.

Proof. An equivalent integral equation of the system (3.1) can be written as [4,19]:

�.t; t0;x0/D ˚.t; t0/x0C

Z t

t0

˚.t;s/F.s;�.s; t0;x0//ds

�

X
t��i<t0

˚.t;�i /Ii .�.�i ; t0;x0//

for all t � t0. By using inequalities in (3.3) we get

jj�.t; t0;x0/jj �Ke
ˇ.t�t0/jjx0jjC

Z t

t0

Keˇ.t�s/l jj�.s; t0;x0/jjds

C

X
t��i<t0

Keˇ.t��i /l jj�.�i ; t0;x0/jj

for all t � t0 is fulfilled. The last expression can be rewritten as

e�ˇt jj�.t; t0;x0/jj �Ke
�ˇt0 jjx0jjC

Z t

t0

Kle�ˇsjj�.s; t0;x0/jjds

C

X
t��i<t0

Kle�ˇ�i jj�.�i ; t0;x0/jj

for all t � t0. Gronwall-Bellman lemma for piecewise continuous functions ([4, 19])
can be applied since l can be chosen that Kl < 1. Thus,

jj�.t; t0;x0/jj �Ke
.ˇ�Kl/.t�t0/.1�Kl/�iŒt;t0/jjx0jj for all t � t0: (3.6)

By means of of the inequality �iC1��i � � one can see that

jj�.t; t0;x0/jj �Ke
.ˇ�KlC 1

�
ln.1�Kl//.t�t0/

jjx0jj for all t � t0:

If l is small enough that

ˇ�KlC
1

�
ln.1�Kl/ > 0 for ˇ > 0;

then the required results follow if we choose ı DKh since jjx0jj< h. �

4. THE TRANSCRITICAL BIFURCATION

In this section we study impulsive analogue of the nonautonomous transcritical
bifurcation. Let x� < 0 < xC and ˛� < ˛C be real numbers and I be interval of the
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form R, R�
k

or RC
k

, respectively. Consider the system

Px D a.t;˛/xCb.t;˛/x2C r.t;x;˛/;

�xjtD�i D ci .˛/xCdi .˛/x
2C ei .x;˛/;

(4.1)

with piecewise continuous functions a W I � .˛�;˛C/! R;b W I � .˛�;˛C/! R
and r W I � .x�;xC/� .˛�;˛C/! R satisfying r.t;0;˛/ D 0. c W A� .˛�;˛C/!
R;d WA� .˛�;˛C/! R and e WA� .x�;xC/� .˛�;˛C/! R with ci .˛/¤�1 and
ei .0;˛/D 0. An infinite sequence �i satisfies j�i j !1 as ji j !1. It is assumed
that there exist positive constants � and � such that � � �iC1� �i � � . Let ˚˛.t; s/
be the fundamental matrix of the linear system

Px D a.t;˛/x;

�xjtD�i D ci .˛/x:
(4.2)

Assume that there exists ˛0 2 .˛�;˛C/ such that are two functions ˇ1;ˇ2 W .˛�;˛C/!
R which are either both monotone increasing or both monotone decreasing andK � 1
satisfying lim˛!˛0 ˇ1.˛/D lim˛!˛0 ˇ2.˛/D 0 and

˚˛.t; s/�Ke
ˇ1.˛/.t�s/ for all ˛ 2 .˛�;˛C/ and t; s 2 I with t � s;

˚˛.t; s/�Ke
ˇ2.˛/.t�s/ for all ˛ 2 .˛�;˛C/ and t; s 2 I with t � s:

The quadratic terms either fulfill

0 < liminf
˛!˛0

inf
t2I

b.t;˛/� limsup
˛!˛0

sup
t2I

b.t;˛/ <1;

0 < liminf
˛!˛0

inf
i2A

di .˛/� limsup
˛!˛0

sup
i2A

di .˛/ <1
(4.3)

or
�1< liminf

˛!˛0
inf
t2I

b.t;˛/� limsup
˛!˛0

sup
t2I

b.t;˛/ < 0;

�1< liminf
˛!˛0

inf
i2A

di .˛/� limsup
˛!˛0

sup
i2A

di .˛/ < 0;
(4.4)

and the remainders satisfy

lim
x!0

sup
˛2.˛0�jxj;˛0Cjxj/

sup
t2I

jr.t;x;˛/j

jxj2
D 0;

lim
x!0

sup
˛2.˛0�jxj;˛0Cjxj/

sup
i2A

jei .x;˛/j

jxj2
D 0

(4.5)

and there exists sufficiently small l > 0 such that

jr.t;x;˛/j< l jxj; jei .x;˛/j< l jxj; (4.6)

for all ˛ 2 .˛�;˛C/; t 2 I; i 2A and x 2 .x�;xC/:
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Theorem 3. Assume that above conditions hold for the system (4.1). Then there
exist b̨� < 0 < b̨C such that

� If the functions ˇ1 and ˇ2 are monotone increasing, the trivial solution is
all-time (past, future, respectively) attractive for ˛ 2 .b̨�;˛0/ and all-time
repulsive for ˛ 2 .˛0;b̨C/. The system (4.1) admits an all-time (past, future,
respectively) bifurcation, since the corresponding radii of all-time (past, fu-
ture, respectively) attraction and repulsion satisfy

lim
˛%˛0

A˛
0 D 0 and lim

˛&˛0
R˛
0 D 0: (4.7)

� If the functions ˇ1 and ˇ2 are monotone decreasing, the trivial solution is
all-time (past, future, respectively) repulsive for ˛ 2 .b̨�;˛0/ and all-time
attractive for ˛ 2 .˛0;b̨C/. The system (4.1) admits an all-time (past, future,
respectively) bifurcation, since the corresponding radii of all-time (past, fu-
ture, respectively) attraction and repulsion satisfy

lim
˛%˛0

R˛
0 D 0 and lim

˛&˛0
A˛
0 D 0: (4.8)

Proof. We prove the first part since the second part can be proven in a similar
manner. Let �˛ be the general solution of the system (4.1). We may consider the case
(4.3) since the functions ˇ1 and ˇ2 are monotone increasing. Choose b̨� < ˛0 < b̨C
such that

0 < inf
˛2.b̨�;b̨C/;t2I b.t;˛/� sup

˛2.b̨�;b̨C/;t2I b.t;˛/ <1;
0 < inf

˛2.b̨�;b̨C/;i2A
di .˛/� sup

˛2.b̨�;b̨C/;i2A

di .˛/ <1:
(4.9)

By means of (4.6) and (4.9) one can see that Theorem 1 and Theorem 2 can be
applied. Thus, we get attractivity and repulsivity of the trivial solution as it was
required to show in the theorem. To prove relations (4.7) and (4.8) we assume to the
contrary that

 WD limsup
˛%˛0

A˛
0 > 0:

By means of (4.5) and (4.9) one can show that there exist ę 2 .b̨�;˛0/;x0 2 .0;/
and L 2 .0; x0

4K
/ such that

b.t;˛/x2C r.t;x;˛/ > L and di .˛/x
2
C ei .x;˛/ > L (4.10)

for all t 2 I; i 2A;˛ 2 .ę�;˛0/ and x0 2
h
x0
2K2

;x0

i
: Next, fix b̨2 .ę�;˛0/ such that

Ab̨0 >x0 and ˇ2.b̨/� ˇ WD�2KLx0 >�1
2

so that �b̨.t; t0;x0/ is attracted to the origin.
Denote .t/D �b̨.t; t0;x0/. Then, there exists t2 2 I; t2 > t0; such that .t2/� x0

2K2
:
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Choose minimal t2 with this property, i.e.,  .t2/ > x0
2K2

for all t 2 Œt0; t2/:Moreover,
choose t1 2 Œt0; t2/ such that

 .t1/D
x0

2K
and  .t/ 2

� x0

2K2
;x0

i
for all t 2 Œt1; t2/:

We write integral equation of the system (4.1) at t2 for fixed b̨which start at point t1.

 .t2/D b̨̊.t2; t1/ .t1/CZ t2

t1
b̨̊.t2; s/�b.s;b̨/. .s//2C r.s; .s/;b̨/�ds

C

X
t1��i<t2

b̨̊.t2;�i /�di .b̨/. .�i //2C ei . .�i /;b̨/�
>

x0

2K2
eˇ.t2�t1/C

L

K

Z t2

t1

eˇ.t2�s/ds

D eˇ.t2�t1/
�
x0

2K2
C

L

Kˇ

�
�
L

Kˇ
D

x0

2K2

which is a contradiction and proves that lim˛%˛0 A˛
0 D 0. Analogously, one can

show that lim˛&˛0 R˛
0 D 0: �

5. THE PITCHFORK BIFURCATION

In this section we study impulsive analogue of the nonautonomous pitchfork bi-
furcation. Let x� < 0 < xC and ˛� < ˛C be real numbers and I be interval of the
form R, R�

k
or RC

k
, respectively. Consider the system

Px D a.t;˛/xCb.t;˛/x3C r.t;x;˛/;

�xjtD�i D ci .˛/xCdi .˛/x
3C ei .x;˛/;

(5.1)

with piecewise continuous functions a W I � .˛�;˛C/! R;b W I � .˛�;˛C/! R
and r W I � .x�;xC/� .˛�;˛C/! R satisfying r.t;0;˛/ D 0. c W A� .˛�;˛C/!
R;d WA� .˛�;˛C/! R and e WA� .x�;xC/� .˛�;˛C/! R with ci .˛/¤�1 and
ei .0;˛/D 0. An infinite sequence �i satisfies j�i j !1 as ji j !1. It is assumed
that there exist positive constants � and � such that � � �iC1� �i � � . Let ˚˛.t; s/
be the fundamental matrix of the linear system

Px D a.t;˛/x;

�xjtD�i D ci .˛/x:
(5.2)

Assume that there exists ˛0 2 .˛�;˛C/ such that are two functions ˇ1;ˇ2 W .˛�;˛C/!
R which are either both monotone increasing or both monotone decreasing andK � 1
satisfying lim˛!˛0 ˇ1.˛/D lim˛!˛0 ˇ2.˛/D 0 and

˚˛.t; s/�Ke
ˇ1.˛/.t�s/ for all ˛ 2 .˛�;˛C/ and t; s 2 I with t � s;

˚˛.t; s/�Ke
ˇ2.˛/.t�s/ for all ˛ 2 .˛�;˛C/ and t; s 2 I with t � s:
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The quadratic terms either fulfills

0 < liminf
˛!˛0

inf
t2I

b.t;˛/� limsup
˛!˛0

sup
t2I

b.t;˛/ <1;

0 < liminf
˛!˛0

inf
i2A

di .˛/� limsup
˛!˛0

sup
i2A

di .˛/ <1
(5.3)

or

�1< liminf
˛!˛0

inf
t2I

b.t;˛/� limsup
˛!˛0

sup
t2I

b.t;˛/ < 0;

�1< liminf
˛!˛0

inf
i2A

di .˛/� limsup
˛!˛0

sup
i2A

di .˛/ < 0;
(5.4)

and the remainders satisfy

lim
x!0

sup
˛2.˛0�x2;˛0Cx2/

sup
t2I

jr.t;x;˛/j

jxj3
D 0;

lim
x!0

sup
˛2.˛0�x2;˛0Cx2/

sup
i2A

jei .x;˛/j

jxj3
D 0

(5.5)

and there exists sufficiently small l > 0 such that

jr.t;x;˛/j< l jxj; jei .x;˛/j< l jxj; (5.6)

for all ˛ 2 .˛�;˛C/; t 2 I; i 2A and x 2 .x�;xC/:

Theorem 4. Assume that above conditions hold for the system (5.1). Then there
exist b̨� < 0 < b̨C such that

� If the functions ˇ1 and ˇ2 are monotone increasing, the trivial solution is
all-time (past, future, respectively) attractive for ˛ 2 .b̨�;˛0/ and all-time
repulsive for ˛ 2 .˛0;b̨C/. The system (4.1) admits an all-time (past, future,
respectively) bifurcation, since the corresponding radii of all-time (past, fu-
ture, respectively) attraction and repulsion satisfy

lim
˛%˛0

A˛
0 D 0 and lim

˛&˛0
R˛
0 D 0:

� If the functions ˇ1 and ˇ2 are monotone decreasing, the trivial solution is
all-time (past, future, respectively) repulsive for ˛ 2 .b̨�;˛0/ and all-time
attractive for ˛ 2 .˛0;b̨C/. The system (5.1) admits an all-time (past, future,
respectively) bifurcation, since the corresponding radii of all-time (past, fu-
ture, respectively) attraction and repulsion satisfy

lim
˛%˛0

R˛
0 D 0 and lim

˛&˛0
A˛
0 D 0:

The proof of the theorem is similar to that of Theorem 3.
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