
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No 2, pp. 459-465 DOI: 10.18514/MMN.2014.784

The Riesz-Kolmogorov theorem on metric

spaces

Przemysªaw Górka and Anna Macios

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/163101622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No. 2, pp. 459–465

THE RIESZ-KOLMOGOROV THEOREM ON METRIC SPACES
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Abstract. We study precompact sets inLp.X;�/, where .X;�/ is a metric measure space. Using
Vitali and maximal function theorems we establish a full characterization of such sets.
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1. INTRODUCTION

Compact sets are important object of analysis’ research because of their import-
ant properties and huge applications. Therefore, question about full characterization
of compact or precompact sets (sets such that their closure is compact) in different
spaces is very important. Riesz-Kolmogorov theorem gives necessary and sufficient
conditions for precompactness of subset of Lp.Rn/ (see [6,10]). This theorem plays
a fundamental role in analysis. Especially, it is frequently used in the theory of func-
tion spaces, e.g. Sobolev and Besov spaces.

The goal of the paper is to give a characterization of precompact sets in Lp.X;�/,
where .X;�/ is a metric space with doubling measure, i.e positive Borel measure
satisfying condition

0 < �.B.x;2r//� C�.B.x;r// <1

for all x 2 X , r > 0 and some constant C > 0 called doubling constant. We shall
denote the average of locally integrable function f over the measurable set A in the
following manner

.f /A D
1

�.A/

Z
A

f d�:

In this note we would like to present the following observation.
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Theorem 1. Let � be a doubling measure such that

h.r/ WD inff�.B.x;r// W x 2Xg> 0 for each r > 0

and assume that 1 < p <1. Let x0 2X , then the subset F of Lp.X;�/ is relatively
compact in Lp.X;�/ if and only if the following conditions are satisfied:

F is bounded; (1.1)

lim
R!1

Z
XnB.x0;R/

jf .x/jpd�.x/D 0; uniformly forf 2 F ; (1.2)

lim
r!0

Z
X

jf .x/� .f /B.x;r/j
pd�.x/D 0 uniformly forf 2 F : (1.3)

We can find a bit similar theorem in [5], i.e. sufficient condition for precom-
pactness of subset of Lp.X;�/ for 1� p <1, where .X;�/ is a metric space with
finite measure. The proof of our theorem is obtained by appropriate modifications
in the proof of theorem mentioned above [5]. We apply Vitali convergence theorem.
Moreover, Lebesgue differentiation theorem as well as Hardy-Littlewood maximal
function theorem will be used.

Finally, let us mention about some generalizations of the Riesz-Kolmogorov the-
orem. For instance, Weil [11] showed the compactness theorem in Lp.G/, where G
is a locally compact group. Pego [8] (see also [2]) formulated Kolmogorov theorem
for p D 2 in terms of the Fourier transform. There also exists a characterization of
relatively compact subsets of general Banach spaces [9].

2. PROOF OF THEOREM

First of all we assume that conditions (1.1)-(1.3) hold. Let fn be a sequence of
elements from F . We shall prove that fn has a subsequence converging inLp.X;�/.
Since the set F is bounded and the space Lp.X;�/ is reflexive, we may assume that
fn converges weakly to some f 2 Lp.X;�/. We can represent the space X in the
following manner

X D

1[
nD1

B .x0;n/ :

Now, we shall show that for each n

fk�B.x0;n/ �!
k!1

f�B.x0;n/ in Lp.X;�/:

We apply Vitali convergence theorem (see e.g. [7]). We first prove that the sequence
fk�B.x0;n/ is p-equi-integrable. For this purpose we fix � > 0. By (1.3), there exists
r such that for each k Z

X

jfk.x/� .fk/B.x;r/j
pd�.x/�

"

2
:
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Moreover, we fix a measurable set A such that

�.A/�

0B@ "

2 sup
k2N
jjfkjjLp.X/

1CA
p

h.r/:

Then, using Minkowski and Hölder inequality we get0@Z
A

jfk�B.x0;n/.x/j
pd�.x/

1A 1
p

�

0@Z
A

jfk.x/j
pd�.x/

1A 1
p

�

0@Z
A

jfk.x/� .fk/B.x;r/ j
pd�.x/

1A 1
p

C

0@Z
A

j.fk/B.x;r/ j
pd�.x/

1A 1
p

�
"

2
C

0B@Z
A

1

.�.B.x;r///p

ˇ̌̌̌
ˇ̌̌ Z
B.x;r/

fk.y/d�.y/

ˇ̌̌̌
ˇ̌̌
p

d�.x/

1CA
1
p

�
"

2
C

0B@Z
A

1

�.B.x;r//

Z
B.x;r/

jfk.y/j
pd�.y/d�.x/

1CA
1
p

�
"

2
C

�
�.A/

h.r/

� 1
p

sup
k2N
jjfkjjLp.X/ < ":

This ends the proof of p-equi-integrability.
Our next claim is that fk�B.x0;n/

�
�!
k!1

f�B.x0;n/ in measure. Let us take " > 0.

We note˚
x 2X W jfk�B.x0;n/.x/�f�B.x0;n/.x/j> "

	
D fx 2 B.x0;n/ W jfk.x/�f .x/j> "g

�

n
x 2 B.x0;n/ W jfk.x/� .fk/B.x;r/j>

"

3

o
[

n
x 2 B.x0;n/ W j.fk/B.x;r/� .f /B.x;r/j>

"

3

o
[

n
x 2 B.x0;n/ W jf .x/� .f /B.x;r/j>

"

3

o
D A1[A2[A3:

It suffices to prove that for each ı > 0, there exists K such that for each k �K, the
inequality

�.A1/C�.A2/C�.A3/ < ı
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holds. Using Markov’s inequality we get

�.A1/�

�
3

"

�p Z
B.x0;n/

jfk.x/� .fk/B.x;r/j
pd�.x/

�

�
3

"

�p Z
X

jfk.x/� .fk/B.x;r/j
pd�.x/:

Therefore, by assumption (1.3), there exists r0 such that for each r � r0 we get

�.A1/ <
ı

3
:

Next, we consider the set A2. We conclude from fk
w
�!
k!1

f that for each x 2

B.x0;n/ and r > 0
.fk/B.x;r/! .f /B.x;r/:

This gives .fk/B.x;r/
�
�! .f /B.x;r/ in measure on B.x0;n/. By the definition, there

exists K.r/ such that for each k �K.r/ the inequality �.A2/ < ı
3

holds.
It remains to consider the set A3. Using Markov’s inequality we have

�.A3/�Dr WD

�
3

"

�p Z
B.x0;n/

jf .x/� .f /B.x;r/j
pd�.x/:

Thanks to Lebesgue differentiation theorem (see [4]) we get that lim
r!0

fB.x;r/D f .x/

a.e. on X . Direct calculations leads us to the following estimates

jf .x/�fB.x;r/j
p
�
�
jf .x/jC j.f /B.x;r/j

�p
� 2p�1

�
jf .x/jpCj.f /B.x;r/j

p
�

� 2p�1
�
jf .x/jpCjM.f /.x/jp

�
;

where M.f / is a maximal function of f . By virtue of the Hardy-Littlewood maximal
function theorem (see [4]) we have kM.f /kLp.X;�/ �C.p/kf kLp.X;�/, where p >
1. Therefore, since jf jp is integrable, the Lebesgue dominated convergence theorem
gives

lim
r!0

Dr D

�
3

"

�p Z
B.x0;n/

lim
r!0
jf .x/� .f /B.x;r/j

pd�.x/D 0

and hence there exists r1, such that for r � r1 we have�
3

"

�p Z
B.x0;n/

jf .x/� .f /B.x;r/j
pd�.x/ <

ı

3
:

Finally, taking Qr Dminfr0; r1g, we obtain the inequality

�.fx 2X W jfk�B.x0;n/.x/�f�B.x0;n/.x/j> "g/ < ı
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for each k �K. Qr/. Now, we show that

fk �!
k!1

f in Lp.X;�/:

Let us fix " > 0. Since f 2 Lp.X;�/ and by (1.2), there exists N such thatZ
XnB.x0;N/

jfk.x/�f .x/j
pd�.x/�

"

2
:

Hence,

kfk �f k
p

Lp.X;�/
D

Z
X

jfk�B.x0;N/.x/�f�B.x0;N/.x/j
pd�.x/

C

Z
XnB.x0;N/

jfk.x/�f .x/j
pd�.x/� ":

This ends the proof of relatively compactness of F .
Now, we shall show the converse. We assume that the family F is relatively

compact. Hence, the boundedness is straightforward. To establish condition (1.2), let
us fix " > 0 and let UD fU1;U2; : : : ;Ung be an "-cover of F . For each k D 1; : : : ;n
we can select gk 2 Uk and Rk > 0 such thatZ

XnB.x0;Rk/

jgk.x/j
pd�.x/ < ":

Let us fix f 2 F . Since U is an "-cover of F , there exists 1 � k � n such that
f 2 Uk . Thus, Z

X

jf .x/�gk.x/j
pd�.x/ < "

and for RDmaxfRi W 1� i � ng we getZ
XnB.x0;R/

jf .x/jpd�.x/� 2p�1
Z
XnB.x0;R/

jf .x/�gk.x/j
pd�.x/

C2p�1
Z
XnB.x0;R/

jgk.x/j
pd�.x/ < 2p":

So condition (1.2) holds.
Using gk choosen as above, we obtain:Z
X

jf .x/� .f /B.x;r/j
pd�.x/� 2p�1

Z
X

jf .x/�gk.x/j
pd�.x/

C22.p�1/
Z
X

jgk.x/� .gk/B.x;r/j
pd�.x/

C22.p�1/
Z
X

j.gk/B.x;r/� .f /B.x;r/j
pd�.x/

D 2p�1I1C2
2.p�1/I2C2

2.p�1/I3:
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We easily get I1 < ". Now, using the Hardy-Littlewood maximal function theorem
we obtain

I3 D

Z
X

ˇ̌̌̌
1

�.B.x;r//

Z
B.x;r/

.gk.y/�f .y//d�.y/

ˇ̌̌̌p
d�.x/

�

Z
X

jM.gk �f /.x/j
pd�.x/� C.p/p

Z
X

jgk.x/�f .x/j
pd�.x/� C.p/p":

Now it remains to prove that I2 is arbitrary small. By Lebesgue differentiation the-
orem we obtain that

lim
r!0

ˇ̌
gk.x/� .gk/B.x;r/

ˇ̌
D 0; a.e. on X

Moreover,

jgk.x/� .gk/B.x;r/j
p
� 2p�1.jgk.x/j

p
CjM.gk/.x/j

p/:

Since jgkjp and jM.gk/j
p are integrable, we can apply Lebesgue dominated conver-

gence theorem. Thus,

I2 D

Z
X

jgk.x/� .gk/B.x;r/j
pd�.x/ < "

and the proof is complete.
Let us remark that if� is doubling and diamX <1 or� is continuous with respect

to the metric � (see [1, 3]) and X is compact, then for each r > 0, h.r/ is positive.
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