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Abstract. Let 1� q;p <1 and v;w be Beurling’s weight functions on Rd . In this article we deal
with harmonic properties of intersection space Aq;p

k;v;w

�
Rd
�
DL

q
v

�
Rd
�
\W

p;w
k

�
Rd
�

defined

by aid of weighted Lebesgue space Lqv
�
Rd
�

and weighted Sobolev space W p;w
k

�
Rd
�

. We

research the inclusions and inequalities between the spaces Aq;p
k;v;w

.˝/ where ˝ � Rd be an

open set. Finally, we proved that the spaces M
�
A
1;p
k;w

�
Rd
�
;L1w

�
Rd
��

can be identified with

the weighted spaces of bounded measures Mw
�
Rd
�

.
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1. INTRODUCTION AND PRELIMINARIES

Throughout this work, Rd denote d�dimensional real Euclidean space with Le-
besgue measure dx. We use Beurling’s weight function, i.e., a measurable, locally
bounded function on Rd satisfying ! .x/ � 1 and ! .xCy/ � ! .x/! .y/ for all
x;y 2Rd [2]. We denote weighted Lebesgue spaceLp!

�
Rd
�
D

n
f j f! 2 Lp

�
Rd
�o

which is a Banach space under the norm

kf kp;! D

Z
Rd

jf .x/jp!p .x/dx:

Some well-known terms such as convolution, translation invariant, continuous em-
beddings, Banach algebra, Banach module, essential Banach ideal, approximate iden-
tity will be used frequently through this paper; their definitions may be found in [6],
[13],[15], [22]. It is known that Lp!

�
Rd
�

is translation invariant and

kLsf kp;! � ! .s/kf kp;! (1.1)

c 2015 Miskolc University Press
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for any f 2 Lp!
�
Rd
�

. The translation operator Ls . Lsf .x/D f .x� s// is con-

tinuous on Lp!
�
Rd
�

. For two weight functions !1 and !2, we write !1 � !2 if and

only if there exists a constant c > 0 such that !1 .x/ � c!2 .x/ for all x 2 Rd . We
write !1 � !2 if and only if !1 � !2 and !2 � !1. Recall that one has Lp!1

�
Rd
�
�

L
p
!2

�
Rd
�

if and only if !2 � !1. The space Lp!
�
Rd
�

is a Banach module over

L1!

�
Rd
�

under the convolution [8].

If ˛ D .˛1;˛2; :::;˛d / 2 Rd is an d-tuple of nonnegative integers ˛i , then it is

written ˛ 2Zd
C

and j˛j D
dP
iD1

˛i . Similarly if Dj D @
@xj

for 1� j � d , then

D˛ DD
˛1
1 D

˛2
2 :::D

˛d
d
D

@j˛j

@x
˛1
1 @x

˛2
2 :::@x

˛d
d

denotes a differential operator of order ˛. For given two locally integrable functions
u and v on Rd , we say that v is ˛th-weak derivative of u, writtenD˛uD v, providedZ

Rd

u.x/D˛' .x/dx D .�1/j˛j
Z
Rd

v .x/' .x/dx

for all ' 2 C1c
�
Rd
�

, where C1c
�
Rd
�

is the space of all infinitely differentiable

functions on Rd , each with compact support. It is known that a weak derivative, if it
exists, is uniquely defined up to a set of measure zero and also it is linear [19].

Let w be Beurling’s weight function. For any nonnegative integer k and 1� p <
1, the weighted Sobolev space W p;w

k

�
Rd
�

is defined as the space of the functions

u2L
p
w

�
Rd
�

such thatD˛u exists andD˛u2Lpw
�
Rd
�

for all ˛ 2Zd
C

with j˛j � k.

W
p;w

k

�
Rd
�

is a Banach space with the norm

kukW p;w

k
D

X
j˛j�k

kD˛ukp;w [12],[21].

Weighted Sobolev spaces are defined by aid of weighted Lebesgue spaceLpw
�
Rd
�

by Kufner in 1980s. Clearly, W p;w

k

�
Rd
�

is a subspace of Lpw
�
Rd
�

and also

W
p;w
0

�
Rd
�
D L

p
w

�
Rd
�

. For any k, it is obvious the embedding W p;w

k

�
Rd
�
,!

L
p
w

�
Rd
�

. If ! D 1, W p;w

k

�
Rd
�
D W

p

k

�
Rd
�

. If we take norm k:kp;w instead of
k:kp, we get the following properties by using the method in [10] and [12]. If w2 �
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w1 and k > l , then W p;w1
k

.˝/ ,! W
p;w2
l

.˝/ for an arbitrary open set ˝ � Rd .

W
p;w

k

�
Rd
�

is translation invariant and

kLsf kW p;w

k
� ! .s/kf kW p;w

k
(1.2)

for any f 2 W p;w

k

�
Rd
�

. The translation operator is continuous on W p;w

k

�
Rd
�

.

Also W p;w

k

�
Rd
�

is a Banach module over L1!
�
Rd
�

under the convolution.

Sobolev spaces W p

k

�
Rd
�

of integer order were introduced by S.L. Sobolev in

[17], [18]. These spaces are defined over an arbitrary domain ˝ � Rd by using
subspaces of Lebesgue spaces. Many generalizations and specializations of these
spaces have been constructed and studied in years. In particular, there are extensions
that allow arbitrary real values of k, weighted spaces that introduce weight functions
into theLp-norms and other generalizations involve different orders of differentitaion
and different Lp-norms in different coordinate directions. Finally, there has been
much work on Sobolev spaces and its related areas. To an interested reader, we can
suggest our main reference book [1] and the references therein.

Let E and F be two translation invariant Banach spaces. A multiplier on E

to F is a bounded linear operator commuting with all translations. We denote by
M .E;F / the space of all multipliers on E to F [14].

2. SOME RESULTS IN L
q
v

�
Rd
�
\W

p;w

k

�
Rd
�

If one looks for Sobolev algebras in literature, one sees that there are a lot of pub-
lished papers about Sobolev algebras obtained by using different function spaces that
are defined over different groups or sets. These spaces have been investigated un-
der several respects, and mostly applied to the study of strongly nonlinear variational
problems and partial differential equations.

In the sense of our study, we attach importance to [3], [5], [20]. In [5], it is showed
that the space Lp˛ .G/\L1 .G/ is an algebra with respect to pointwise multiplica-
tion, where G is a connected unimodular Lie group. Also, sufficient conditions for
the Sobolev spaces to form an algebra under pointwise multiplication have been given
in [20].

In [3], Chu defined Ap
k

�
Rd
�
D L1

�
Rd
�
\W k;p

�
Rd
�

spaces and showed some
algebraic properties of these spaces (Segal algebras). In this section, we will gener-
alize his results to weighted Sobolev algebras.

Let 1� q;p <1, k be a nonnegative integer and v;w be Beurling’s weight func-
tions on Rd . We deal with the some harmonic properties of the intersection space
L
q
v

�
Rd
�
\W

p;w

k

�
Rd
�

. This space, denoted by Aq;p
k;v;w

�
Rd
�

, is a normed space
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with the norm
k:k

q;p

k;v;w
D k:kq;vCk:kW p;w

k
.

Theorem 1.
�
A
q;p

k;v;w

�
Rd
�
;k:k

q;p

k;v;w

�
is a Banach space.

Proof. Assume that .fn/ be a Cauchy sequence in Aq;p
k;v;w

�
Rd
�

. Clearly .fn/ is a

Cauchy sequence in both Lqv
�
Rd
�

andW p;w

k

�
Rd
�

. For this reason, .fn/ converges

to f 2 Lqv
�
Rd
�

and g 2 W p;w

k

�
Rd
�
: By using the inequalities k:kq � k:kq;v and

k:kp � k:kp;w � k:kW p;w

k
, we can easily demonstrate that there exist a subsequence�

fnk
�

of .fn/ such that fnk ! f a.e. and a subsequence
�
fnkl

�
of
�
fnk

�
such that

fnkl ! g a.e. Therefore, we get f D g a.e. �

Theorem 2. (i)
�
A
q;p

k;v;w

�
Rd
�
;k:k

q;p

k;v;w

�
is translation invariant and

kLsf k
q;p

k;v;w
� .vCw/.s/kf k

q;p

k;v;w

for all f 2 Aq;p
k;v;w

�
Rd
�
:

(ii) The function s ! Lsf is continuous from Rd to Aq;p
k;v;w

�
Rd
�

for any f 2

A
q;p

k;v;w

�
Rd
�
:

Proof. (i) We know that the spaces Lqv
�
Rd
�

and W p;w

k

�
Rd
�

are translation in-

variant. Hence Aq;p
k;v;w

�
Rd
�

is translation invariant. We get

kLsf k
q;p

k;v;w
D kLsf kq;vCkLsf kW p;w

k

� v .s/kf kq;vCw.s/kf kW p;w

k

� .vCw/.s/kf k
q;p

k;v;w
:

by (1.1) and (1.2).
(ii) Since s! Lsf is continuous in Lqv

�
Rd
�

, for any " > 0 and s0 2 Rd there is
a neighbourhood V1 of s0 such that

kLsf �Ls0f kq;v <
"

2
(2.1)

for all s 2 V1: There is a neighbourhood V2 of s0 such that

kLsf �Ls0f kW p;w

k
<
"

2
(2.2)
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for all s 2 V2; because the function s ! Lsf is continuous in W p;w

k

�
Rd
�

. Con-
sequently V D V1\V2 is a neighbourhood of s0 and we get

kLsf �Ls0f k
q;p

k;v;w
< "

for s 2 V by (2.1) and (2.2). �

Theorem 3. Aq;p
k;v;w

�
Rd
�

is a BF-space.

Proof. Let f 2 Aq;p
k;v;w

�
Rd
�

and any compact subset K � Rd . Using Hölder

inequality with 1
p
C

1
p0
D 1, we obtainZ

K

jf .x/jdx D

Z
Rd

jf .x/j�K .x/dx

�

0B@Z
Rd

jf .x/jp dx

1CA
1
p
0B@Z

Rd

.�K .x//
p0 dx

1CA
1
p0

� kf kp;w �.K/
1
p0 � kf kW p;w

k
�.K/

1
p0

for any f 2W p;w

k

�
Rd
�

. If we write MK D �.K/
1
p0 , there exists MK > 0 such thatZ

K

jf .x/jdx �MK kf kW p;w

k
. (2.3)

Also since Lqv
�
Rd
�

is a BF-space, there exists NK > 0 such thatZ
K

jf .x/jdx �NK kf kq;v . (2.4)

If we write CK DmaxfMK ;NKg, we getZ
K

jf .x/jdx � CK kf k
q;p

k;v;w

by (2.3) and (2.4). �

Theorem 4. If v � w0 and w � w0, then Aq;p
k;v;w

�
Rd
�

is Banach module over

L1w 0

�
Rd
�

under the convolution.
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Proof. Assume that v�w0 andw�w0. Then we know thatL1w 0
�
Rd
�
�L1v

�
Rd
�

and L1w 0
�
Rd
�
� L1w

�
Rd
�

. Consequently there exist c1; c2 > 0 such that kgk1;v �

c1 kgk1;w 0 and kgk1;w � c2 kgk1;w 0 for any g 2 L1w 0
�
Rd
�

. Since Lqv
�
Rd
�

is a

Banach module over L1v
�
Rd
�

and W p;w

k

�
Rd
�

is a Banach module over L1w
�
Rd
�

under the convolution, we get

kf �gk
q;p

k;v;w
D kf �gkq;vCkf �gkW p;w

k

� kf kq;v kgk1;vCkf kW p;w

k
kgk1;w

� kf kq;v c1 kgk1;w 0Ckf kW p;w

k
c2 kgk1;w 0

�maxfc1; c2gkf k
q;p

k;v;w
kgk1;w 0

for any f 2 Aq;p
k;v;w

�
Rd
�

and g 2 L1w 0
�
Rd
�

. �

Theorem 5. If 1� p <1 and w � v, then A1;p
k;v;w

�
Rd
�

is Banach algebra under
the convolution.

Proof. Suppose that w � v. So, there is a constant c > 0 such that kf k1;w �

c kf k1;v for any f 2L1v
�
Rd
�

. Now we take any f;g 2A1;p
k;v;w

�
Rd
�
: SinceL1v

�
Rd
�

is a Beurling algebra and W p;w

k

�
Rd
�

is L1w
�
Rd
�
�module, we find

kf �gk
1;p

k;v;w
D kf �gk1;vCkf �gkW p;w

k
� kf k1;v kgk1;vCkf kW p;w

k
kgk1;w

� kf k1;v kgk1;vCkf kW p;w

k
c kgk1;v �maxf1;cgkf k1;p

k;v;w
kgk1;v

�maxf1;cgkf k1;p
k;v;w

kgk
1;p

k;v;w
.

If we define a new function on A1;p
k;v;w

�
Rd
�

such that jk:kj D maxf1;cgk:k1;p
k;v;w

,

then we can see easily that it is a norm. Moreover, the norms jk:kj and k:k1;p
k;v;w

on

A
1;p

k;v;w

�
Rd
�

are equivalent. Hence we obtain

jkf �gkj Dmaxf1;cgkf �gk1;p
k;v;w

�maxf1;cgmaxf1;cgkf k1;p
k;v;w

kgk
1;p

k;v;w

� jkf kj jkgkj :

�
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Definition 1. A sequence of functions 'n in C1c
�
Rd
�

satisfies the following
conditions:

(i) 'n .x/� 0 for all x 2 Rd

(ii)
R
Rd
'n .x/dx D 1

(iii) The support of 'n is in Œ�"n; "n�d , "n > 0 and lim
n!1

"n D 0 [9].

Theorem 6. The sequence of functions 'n is an approximate identity forAq;p
k;v;w

�
Rd
�

.

Proof. Since 'n is an approximate identity, for any f 2 Lqv
�
Rd
�

and " > 0 there
exists n1 2N such that

kf �'n�f kq;v <
"

2
(2.5)

for all n� n1. Also we can see that there exists a n2 2N such that

kf �'n�f kW p

k;w
<
"

2
(2.6)

for all n � n2 by using the method in [4],[22]. If we set n0 D maxfn1;n2g, then by
(2.5) and (2.6) we obtain

kf �'n�f k
q;p

k;v;w
< "

for all n� n0 . �

Theorem 7. For each f ¤ 0, f 2 Aq;p
k;v;w

�
Rd
�

there exists c .f / > 0 such that

c .f /.vCw/.s/� kLsf k
q;p

k;v;w
� .vCw/.s/kf k

q;p

k;v;w
.

Proof. For given f 2Aq;p
k;v;w

�
Rd
�

, we write f 2Lqv
�
Rd
�

and f 2W p;w

k

�
Rd
�

.

Let K be any compact subset of Rd . Since kLsf kW p;w

k
� kD˛Lsf kp;w for all

f 2W
p;w

k

�
Rd
�

, we find

kLsf kW p;w

k
� kD˛Lsf kp;w D

8̂<̂
:
Z
Rd

jD˛f .x� s/j
p
wp .x/dx

9>=>;
1
p

D

8̂<̂
:
Z
Rd

jD˛f .u/j
p
wp .uC s/du

9>=>;
1
p

�

8<:
Z
K

jD˛f .u/j
p wp .s/

wp .�u/
du

9=;
1
p

�

8<:
Z
K

jD˛f .u/j
p wp .s/

sup
u2K

wp .�u/
du

9=;
1
p

�
w.s/

sup
u2K

w.�u/
kD˛f�Kkp :
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If we set c1 .f /D
kD˛f�Kkp

sup
u2K

w.�u/
, then there exists a constant c1 .f / > 0 such that

kLsf kW p;w

k
� c1 .f /w .s/ . (2.7)

Also we know that there exists a constant c2 .f / > 0 such that

kLsf kq;v � c2 .f /v .s/ (2.8)

for all f 2 Lqv
�
Rd
�

. If we set c .f /Dminfc1 .f / ;c2 .f /g, then we get

kLsf k
q;p

k;v;w
� c .f /.vCw/.s/ (2.9)

by inequalities (2.7) and (2.8). Also we know that

kLsf k
q;p

k;v;w
� .vCw/.s/kf k

q;p

k;v;w
(2.10)

by Theorem 2. Hence the proof is completed from (2.9) and (2.10). �

Proposition 1. Let 1� q1;q2;p1;p2 <1 and v1;v2;w1;w2 be weight functions
on Rd . Then

A
q1;p1
k;v1;w1

�
Rd
�
� A

q2;p2
k;v2;w2

�
Rd
�

if and only if there is a constant M > 0 such that

kf k
q2;p2
k;v2;w2

�M kf k
q1;p1
k;v1;w1

for every f 2 Aq1;p1
k;v1;w1

�
Rd
�

.

Proof. Assume that Aq1;p1
k;v1;w1

�
Rd
�
� A

q2;p2
k;v2;w2

�
Rd
�

. We define the norm

kf k D kf k
q1;p1
k;v1;w1

Ckf k
q2;p2
k;v2;w2

for all f 2Aq1;p1
k;v1;w1

�
Rd
�

. Let .fn/ be a Cauchy sequence in
�
A
q1;p1
k;v1;w1

�
Rd
�
;k:k

�
.

Hence .fn/ is a Cauchy sequence in�
A
q1;p1
k;v1;w1

�
Rd
�
;k:k

q1;p1
k;v1;w1

�
and

�
A
q2;p2
k;v2;w2

�
Rd
�
;k:k

q2;p2
k;v2;w2

�
.

Since
�
A
q1;p1
k;v1;w1

�
Rd
�
;k:k

q1;p1
k;v1;w1

�
and

�
A
q2;p2
k;v2;w2

�
Rd
�
;k:k

q2;p2
k;v2;w2

�
are Banach

spaces, there exist f 2 Aq1;p1
k;v1;w1

�
Rd
�

and g 2 A
q2;p2
k;v2;w2

�
Rd
�

such that

kfn�f k
q1;p1
k;v1;w1

! 0 and kfn�gk
q2;p2
k;v2;w2

! 0.

If we use the inequalities k:kp1 � k:k
q1;p1
k;v1;w1

and k:kp2 � k:k
q2;p2
k;v2;w2

, then we find
kfn�f kp1 ! 0 and kfn�gkp2 ! 0. Thus there is a subsequence

�
fnk

�
of .fn/

such that fnk ! f a.e. and also there is a subsequence
�
fnkl

�
of

�
fnk

�
such that

fnkl ! g a.e. Therefore we find f D g a.e., consequently we get kfn�f k ! 0.
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Hence
�
A
q1;p1
k;v1;w1

�
Rd
�
;k:k

�
is a Banach space. We consider the unit function I from�

A
q1;p1
k;v1;w1

�
Rd
�
;k:k

�
onto

�
A
q1;p1
k;v1;w1

�
Rd
�
;k:k

q1;p1
k;v1;w1

�
: Since kI .f /kq1;p1

k;v1;w1
D

kf k
q1;p1
k;v1;w1

� kf k, the unit function is continuous. Then it is homeomorphism by
Banach Theorem. This means that k:k and k:kq1;p1

k;v1;w1
are equivalent, so there is a

constant M > 0 such that
kf k �M kf k

q1;p1
k;v1;w1

(2.11)

for all f 2 Aq1;p1
k;v1;w1

�
Rd
�

. If we use the definiton of k:k and the inequality (2.11),

then we obtain kf kq2;p2
k;v2;w2

�M kf k
q1;p1
k;v1;w1

.

Conversely, if kf kq2;p2
k;v2;w2

�M kf k
q1;p1
k;v1;w1

for all f 2 Aq1;p1
k;v1;w1

�
Rd
�

, we can

easily that the inclusion Aq1;p1
k;v1;w1

�
Rd
�
� A

q2;p2
k;v2;w2

�
Rd
�

holds. �

It is easy to obtain the following proposition by aid of Proposition 1.

Proposition 2. Let v1;v2;w1;w2 be weight functions on Rd and 1� q;p <1. If
v2 � v1 and w2 � w1, then Aq;p

k;v1;w1

�
Rd
�
� A

q;p

k;v2;w2

�
Rd
�

.

Theorem 8. Let˝ � Rd be an open set and v1;v2;w1;w2 be weight functions on
Rd satisfying v2 � v1 and w2 � w1. Then

A
q;p

k;v1;w1
.˝/ ,! A

q;p

l;v2;w2
.˝/

for all k; l 2ZC where k > l .

Proof. Let f 2 Aq;p
k;v1;w1

.˝/ be given, so we write
f 2 L

q
v1 .˝/ and f 2 W p;w1

k
.˝/. It is known that Lqv1 .˝/ � L

q
v2 .˝/ where

v2 � v1. Also we know that W p;w1
k

.˝/ � W
p;w2
l

.˝/ where w2 � w1 and k > l .
Therefore we obtain
f 2L

q
v2 .˝/\W

p;w2
l

.˝/DA
q;p

l;v2;w2
.˝/. So we findAq;p

k;v1;w1
.˝/�A

q;p

l;v2;w2
.˝/.

There exists a constant c1 > 0 such that

kf kq;v2 � c1 kf kq;v1 (2.12)

for all f 2 Lqv1 .˝/, because v2 � v1. Moreover, since W p;w1
k

.˝/ ,! W
p;w2
l

.˝/

where k > l and w2 � w1, there exists a constant c2 > 0 such that

kf k
W
p;w2
l

� c2 kf kW p;w1
k

(2.13)

for all f 2W p;w1
k

.˝/. If we set c Dmaxfc1; c2g, we get

kf k
q;p

l;v2;w2
� c

�
kf kq;v1Ckf kW p;w1

k

�
� c kf k

q;p

k;v1;w1

from the inequalities (2.12) and (2.13) This completes the proof. �
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We prove the following theorem with using method in [23].

Theorem 9. Let v1;v2;w1;w2 be weight functions on Rd satisfying v2� v1,w2�
w1 and k; l 2ZC with k > l . If ˝ � Rd be an open set such that �.˝/ <1, then

A
s;r
k;v1;w1

.˝/� A
q;p

l;v2;w2
.˝/

where 1� q < s <1 and 1� p < r <1.

Proof. Assume that f 2 As;r
k;v1;w1

.˝/, so we write f 2 Lsv1 .˝/ and
f 2 W

r;w1
k

.˝/. If we set ˛ D s
q

where 1 � q < s <1 and let ˇ be conjugate
exponent of ˛, then we find

kf kqq;v1 D

Z
˝

jf .x/jq v
q
1 .x/dx �

8<:
Z
˝

�
jf .x/jq v

q
1 .x/

� s
q dx

9=;
q
s
8<:
Z
˝

.�˝/
ˇ dx

9=;
1
ˇ

�

0@Z
˝

jf .x/js vs1 .x/dx

1A
q
s

Œ�.˝/�
1
ˇ D kf kqs;v1 Œ�.˝/�

1
ˇ (2.14)

by Hölder inequality. Since �.˝/ <1 and f 2 Lsv1 .˝/, we obtain f 2 Lqv1 .˝/
from (2.14). Hence we have f 2 Lqv2 .˝/, because v2 � v1. Also we can see
that W r;w1

k
.˝/ � W

p;w1
k

.˝/ where 1 � p < r <1 and �.˝/ <1 by similar
method. Since w2 � w1 and k > l , we find W

p;w1
k

.˝/ � W
p;w2
l

.˝/. So we
get W r;w1

k
.˝/ � W

p;w2
l

.˝/, therefore we write f 2 W p;w2
l

.˝/. Thus we obtain
f 2 L

q
v2 .˝/\W

p;w2
l

.˝/D A
q;p

l;v2;w2
.˝/. This completes the proof. �

Theorem 10. Let v1;v2;w1;w2 be weight functions on Rd satisfying v2 � v1,
w2 � w1 and k; l 2ZC with k > l . If ˝ � Rd be an open set such that �.˝/ <1,
then there exist c .f / > 0 and c > 0 such that

c .f /.v2Cw2/.s/� kLsf k
q;p

l;v2;w2
� c .v2Cw2/.s/ kf k

s;r
k;v1;w1

for all f 2 As;r
k;v1;w1

.˝/, f ¤ 0 where 1� q < s <1 and 1� p < r <1.

Proof. For given f 2 As;r
k;v1;w1

.˝/, there exists a constant c > 0 such that

c .f /.v2Cw2/.s/� kLsf k
q;p

l;v2;w2
(2.15)

by Theorem 7 and Theorem 9. Since v2 � v1, there is a constant c1 > 0 such that

kf kq;v2 � c1 kf kq;v1 : (2.16)

Also sinceW p;w1
k

.˝/ ,!W
p;w2
l

.˝/ where w2 �w1 and k > l , there is a constant
c2 > 0 such that

kf k
W
p;w2
l

� c2 kf kW p;w1
k

: (2.17)
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If we set m1 Dmaxfc1; c2g, we obtain

kLsf k
q;p

l;v2;w2
D kLsf kq;v2CkLsf kW p;w2

l

� v2 .s/kf kq;v2Cw2 .s/kf kW p;w2
l

� v2 .s/c1 kf kq;v1Cw2 .s/c2 kf kW p;w1
k

�m1 .v2Cw2/.s/kf k
q;p

k;v1;w1

by using (2.16) and (2.17). Also we can see that As;r
k;v1;w1

.˝/ � A
q;p

k;v1;w1
.˝/ by

Theorem 9 and so there exists a constant m2 > 0 such that

kf k
q;p

k;v1;w1
�m2 kf k

s;r
k;v1;w1

by Proposition 1. Thus there exists a constant c > 0 such that

kLsf k
q;p

l;v2;w2
� c .v2Cw2/.s/kf k

s;r
k;v1;w1

(2.18)

for all f 2 As;r
k;v1;w1

.˝/. If we combine (2.15) with (2.18), the proof is completed.
�

We prove the following theorem with using method in [1].

Theorem 11. Let ˝ � Rd be open set, v1;v2;w1;w2 be weight functions on Rd

satisfying v2 � v1, w2 � w1 and k; l 2 ZC with k > l . If 1
s
D

�
q1
C
1��
q2

, 1
r
D

�
p1
C
1��
p2

for some � with 0 < � < 1, then

A
q1;p1
k;v1;w1

.˝/\A
q2;p2
k;v1;w1

.˝/� A
s;r
l;v2;w2

.˝/

where 1� q1 < s < q2 <1 and 1� p1 < r < p2 <1.

Proof. Suppose that f 2Aq1;p1
k;v1;w1

.˝/\A
q2;p2
k;v1;w1

.˝/, so we write f 2Lq1v1 .˝/\
L
q2
v1 .˝/ and f 2 W p1;w1

k
.˝/\W

p2;w1
k

.˝/. If we set t D q1
s�

, then we see t 0 D
q2

s.1��/
is conjugate exponent of t . Thus we obtain

kf kss;v1 D

Z
˝

jf .x/js vs1 .x/dx

D

Z
˝

jf .x/js� vs�1 .x/ jf .x/js.1��/ v
s.1��/
1 .x/dx

�

8<:
Z
˝

h
jf .x/js� vs�1 .x/

iq1
s�
dx

9=;
s�
q1
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Z
˝

h
jf .x/js.1��/ v

s.1��/
1 .x/

i q2
s.1��/

dx

9=;
s.1��/
q2

D kf ks�q1;v1 kf k
s.1��/
q2;v1

by Hölder inequality. Since f 2 Lq1v1 .˝/\L
q2
v1 .˝/, we get f 2 Lsv1 .˝/. Also

we can show that f 2 W r;w1
k

.˝/ by similar method under the hypothesis. Hence
we find f 2 Lsv1 .˝/\W

r;w1
k

.˝/ D A
s;r
k;v1;w1

.˝/. We know that As;r
k;v1;w1

.˝/ �

A
s;r
l;v2;w2

.˝/ where v2 � v1, w2 � w1 and k > l by Theorem 8, therefore we get
f 2 A

s;r
l;v2;w2

.˝/. �

3. MULTIPLIER SPACES OF
�
A
1;p

k;w;w

�
Rd
�
;L1w

�
Rd
��

In this section we call the intersection space L1w
�
Rd
�
\W

p;w

k

�
Rd
�

as

A
1;p

k;w;w

�
Rd
�

and equipped with the sum norm kf k1;p
k;w
D kf k1;wCkf kW p;w

k
. We

denote the space of multipliers from A
1;p

k;w;w

�
Rd
�

to L1w
�
Rd
�

by

M
�
A
1;p

k;w;w

�
Rd
�
;L1w

�
Rd
��

. It is known that L1w
�
Rd
�

is a closed ideal in the

space Mw

�
Rd
�

which is defined by

Mw

�
Rd
�
D

8̂<̂
:� W � is a bounded measure and k�k! D

Z
Rd

w d j�j<1

9>=>; :
We will show thatM

�
A
1;p

k;w;w

�
Rd
�
;L1w

�
Rd
��
ŠMw

�
Rd
�

by using results in the
second section.

Proposition 3. If�2Mw

�
Rd
�

and f 2A1;p
k;w;w

�
Rd
�

, then��f 2A1;p
k;w;w

�
Rd
�

and k��f k1;p
k;w
� k�k! kf k

1;p

k;w
.

Proof. Since s!Lsf is a continuous function from Rd to A1;p
k;w;w

�
Rd
�

for f 2

A
1;p

k;w;w

�
Rd
�

and � is a bounded Borel measure, then
R
Rd
kLsf k

1;p

k;w
d j�j.s/ <1.

So, the integral
R
Rd
Lsfd�.s/ belong to A1;p

k;w;w

�
Rd
�

by [16, Proposition 3.2.62].

Therefore we get
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k��f k
1;p

k;w
D


Z
Rd

Lsfd�.s/


1;p

k;w

�

Z
Rd

kLsf k
1;p

k;w
d j�j.s/

�

Z
Rd

kf k
1;p

k;w
w.s/d j�j.s/D kf k

1;p

k;w
k�k! :

�

Proposition 4. A1;p
k;w;w

�
Rd
�

is an essential Banach ideal in L1w
�
Rd
�
:

Proof. Let f 2A1;p
k;w;w

�
Rd
�

and g 2L1w
�
Rd
�

. By Theorem 4, we can easily see

that f �g 2 A1;p
k;w;w

�
Rd
�

and we find

kf �gk
1;p

k;w
D kf �gk1;wCkf �gkW p;w

k

� kf k1;w kgk1;wCkf kW p;w

k
kgk1;w

� kf k
1;p

k;w
kgk1;w :

We known that C1c
�
Rd
�

is a dense subset of L1w
�
Rd
�

[10] and we can easily see

that C1c
�
Rd
�
� A

1;p

k;w;w

�
Rd
�

. Hence we find that A1;p
k;w;w

�
Rd
�

is a dense subset

of L1w
�
Rd
�

. So we get that A1;p
k;w;w

�
Rd
�

is a dense Banach ideal in L1w
�
Rd
�

. Now

let f 2 A1;p
k;w;w

�
Rd
�

and " > 0. By Theorem 2, there is a neighbourhood U of the

unit element e of Rd such that

kLsf �f k
1;p

k;w
< "

for all s 2 Rd . Let .'n/n2N be as in Definition 1, so there exists n0 2 N such that
supp'n0 � U . Thus

k'n �f �f k
1;p

k;w
D


Z
Rd

'n .s/.Lsf �f /ds


1;p

k;w

� kLsf �f k
1;p

k;w

Z
Rd

'n .s/ds

D kLsf �f k
1;p

k;w
< "

for all n� n0. Therefore A1;p
k;w;w

�
Rd
�

is an essential Banach ideal in L1w
�
Rd
�

. �
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Theorem 12. Let T W A1;p
k;w;w

�
Rd
�
! L1w

�
Rd
�

be a linear transformation, then
the following are equivalent.

i) T 2M
�
A
1;p

k;w;w

�
Rd
�
;L1w

�
Rd
��

.

ii) There exists a unique measure � 2Mw

�
Rd
�

such that Tf D ��f for each

f 2 A
1;p

k;w;w

�
Rd
�

.
Moreover the correspondence between T and � defines an isometric algebra

isomorphism of M
�
A
1;p

k;w;w

�
Rd
�
;L1w

�
Rd
��

onto Mw

�
Rd
�

.

Proof. Let � 2Mw

�
Rd
�

and Tf D ��f for each f 2 A1;p
k;w;w

�
Rd
�

. Then,

kTf k1;w D k��f k1;w D

Z
Rd

ˇ̌̌̌
ˇ̌̌Z
Rd

f .x� s/�.s/ds

ˇ̌̌̌
ˇ̌̌w.x/dx

�

Z
Rd

0B@Z
Rd

jf .x� s/j j�.s/jds

1CAw.x/dx
�

Z
Rd

0B@Z
Rd

jf .x/j j�.s/jds

1CAw.xC s/dx
�

Z
Rd

0B@Z
Rd

jf .x/jw.x/dx

1CAw.s/ j�.s/jds
� kf k1;w k�kw � kf k

1;p

k;w
k�kw .

Hence we get T 2M
�
A
1;p

k;w;w

�
Rd
�
;L1w

�
Rd
��

and kT k � k�k! .

Conversely, suppose that T 2M
�
A
1;p

k;w;w

�
Rd
�
;L1w

�
Rd
��

. Therefore we have

kTf k1;w � kT kkf k
1;p

k;w
D kT k

�
kf k1;wCkf kW p;w

k

�
for each f 2A1;p

k;w;w

�
Rd
�

. In [7, Lemma 2.1], it is obtained lim
s!1

kf CLsf kp;w D

2
1
p kf kp;w for all f 2 Lpw

�
Rd
�

using the method in [11]. Since the norm k:kW p;w

k

is a finite sum of Lpw norms, we find lim
s!1

kf CLsf kW p;w

k
D 2

1
p kf kW p;w

k
. So we

get

2kTf k1;w D lim
s!1

kTf CTLsf k1;w D lim
s!1

kT .f CLsf /k1;w
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� lim
s!1

kT k
�
kf CLsf k1;wCkf CLsf kW p;w

k

�
� kT k

�
2kf k1;wC2

1
p kf kW p;w

k

�
:

Therefore we have

kTf k1;w � kT k
�
kf k1;wC2

1
p
�1
kf kW p;w

k

�
:

Repeating this process n times, we see that

kTf k1;w � kT k

�
kf k1;wC2

n
�
1
p
�1
�
kf kW p;w

k

�
:

Since p > 1 we obtain lim
n!1

2
n
�
1
p
�1
�
D 0 and so we conclude that

kTf k1;w � kT kkf k1;w .

Hence T is continuous on A1;p
k;w;w

�
Rd
�

, considered as a subspace of L1w
�
Rd
�

.

Thus T defines a continuous linear transformation from A
1;p

k;w;w

�
Rd
�

as a subspace

of L1w
�
Rd
�

to L1w
�
Rd
�

which commutes with translation. Since A1;p
k;w;w

�
Rd
�

is

dense in L1w
�
Rd
�

, T determines a unique element T 0 of

M
�
L1w

�
Rd
��

and kT 0k � kT k. There exists a unique element � 2 Mw

�
Rd
�

such that T 0f D � � f for each f 2 L1w
�
Rd
�

and k�kw D kT
0k. Consequently

Tf D �� f for each f 2 A1;p
k;w;w

�
Rd
�

and k�kw � kT k. Hence (i) and (ii) are
equivalent. It is evident that the correspondence between T and � defines isometric
algebra isomorhism from M

�
A
1;p

k;w;w

�
Rd
�
;L1w

�
Rd
��

onto Mw

�
Rd
�

. �
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