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Abstract. In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced
by Burton (see [6] Theorem 3) to establish new results on the existence and positivity of solutions
for the totally nonlinear neutral periodic differential equation of the form

d

dt
x .t/D�a.t/x3 .t/C

d

dt
Q.t;x .g .t///CG

�
t;x3 .t/ ;x3 .g .t//

�
;

x .tCT /D x .t/ :

We invert this equation to construct a sum of a completely continuous map and a large contraction
which is suitable for the application of a modification of Krasnoselskii’s theorem.
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1. INTRODUCTION

In the past decades, very much attention has been given to neutral differential equa-
tions (see [1–16], [18] and the references therein). The main reason for this interest is
that delay differential equations play an important role in applications. For instance,
in biological applications, delay equations give better description of fluctuations in
population than the ordinary ones. As known in Hale [13], Hale and Lunel [14] neut-
ral delay differential equations appear as models of electrical networks which contain
lossless transmission lines. Such networks arise, for example, in high speed compu-
ters where lossless transmission lines are used to interconnect switching circuits.

Existence, uniqueness, stability and positivity of solutions of functional differen-
tial equations are of great interest in mathematics and its applications to the mo-
deling of various practical problems (see [1–16], [18]). Positivity is one of the most
common and most important characteristics of mathematical models. In problem of
economics, the positivity is quite important for processes that model interest rate dy-
namics on financial market, because the interest must be positive. Also, in fluid flow
problems, densities, pressures, and concentrations are always positive.

c 2013 Miskolc University Press
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The primary motivation for the present work are the papers by Y. M. Dib et al.
[10] and Yankson [18]. In [10], the authors used Krasnoselskii’s fixed point theorem
to establish the existence of periodic solutions for the nonlinear neutral differential
equation

d

dt
x .t/D�a.t/x .t/C

d

dt
Q.t;x .t �g .t///CG .t;x .t/ ;x .t �g .t/// ; (1.1)

where the nonlinear terms Q and G and the function a are continuous in all argu-
ments. Also, the authors used the contraction mapping principle to show the unique-
ness of periodic solutions and stability of the zero solution of (1.1).

In [18], the author used a modification of Krasnoselskii’s fixed point theorem to
establish the existence and positivity of solutions for the totally nonlinear neutral
periodic differential equation

x0 .t/D�a.t/x3 .t/C c .t/x0 .g .t//g0 .t/Cq
�
t;x3 .g .t//

�
;

x .tCT /D x .t/ ; (1.2)

where T > 0 be fixed, the nonlinear term q is an L1-Carathéodory function and the
function a 2 L1 Œ0;T � is bounded. Also, the author used the contraction mapping
principle to show the uniqueness of periodic solutions of (1.2).

In this paper, we consider the totally nonlinear neutral periodic differential equa-
tion

d

dt
x .t/D�a.t/x3 .t/C

d

dt
Q.t;x .g .t///CG

�
t;x3 .t/ ;x3 .g .t//

�
;

x .tCT /D x .t/ ; (1.3)

where T >0 be fixed, the nonlinear termsQ andG are anL1-Carathéodory functions
and the function a 2 L1 Œ0;T � is bounded. Our purpose here is to use a modification
of Krasnoselskii’s fixed point theorem due Burton (see [6] Theorem 3) to show the
existence and positivity of periodic solutions for equation (1.3). Clearly, the present
problem is totally nonlinear so that the variation of parameters can not be applied
directly. Then, we resort to the idea of adding and subtracting a linear term. As noted
by Burton in [6], the added term destroys a contraction already present in part of the
equation but it replaces it with the so called a large contraction mapping which is
suitable for fixed point theory. During the process we have to transform (1.3) into an
integral equation written as a sum of two mappings; one is a large contraction and
the other is completely continuous. After that, we use a variant of Krasnoselskii fixed
point theorem, to show the existence and positivity of a periodic solution.

Note that in our consideration the neutral term d
dt
Q.t;x .g .t/// of (1.3) produces

nonlinearity in the derivative term d
dt
x .g .t//. The neutral term d

dt
x .g .t// of (1.2)

in [18] enters linearly. As a consequence, our analysis is different form that in [18].
In Section 2, we present the inversion of totally nonlinear neutral periodic dif-

ferential equation (1.3) and Krasnoselskii-Burton’s fixed point theorem. For details
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on Krasnoselskii-Burton theorem we refer the reader to [6, 7]. We present our main
results on existence and positivity in Section 3.

2. PRELIMINARIES

The following definition is essential in our analysis.

Definition 1. A function F W Œ0;T ��Rn! R is an L1-Carathéodory function if it
satisfies the following conditions
.c1/ For each ´ 2 Rn; the mapping t ! F .t;´/ is Lebesgue measurable.
.c2/ For almost all t 2 Œ0;T � ; the mapping ´! F .t;´/ is continuous on Rn.
.c3/ For each r > 0; there exists fr 2 L

1 .Œ0;T � ;R/ such that for almost all t 2
Œ0;T � and for all ´ such that j´j< r; we have jF .t;´/j � fr .t/ :

Define the set PT D f' 2 C .R;R/ W ' .tCT /D ' .t/g and the norm
k'k D sup

0�t�T

j' .t/j. Then .PT ;k:k/ is a Banach space. We will assume that the

following conditions hold.
.h1/ a 2 L1

Loc .R;R/ is positive and bounded, satisfies a.tCT / D a.t/ for all t
and

1� e�
R t

t�T a.s/ds
�
1

�
¤ 0:

.h2/ g 2 PT :

.h3/ Q and G are an L1-Carathéodory functions, and Q.tCT;x/ D Q.t;x/ ;
G .tCT;x;y/DQ.t;x;y/ for all t .

Lemma 1. Suppose that conditions .h1/ ; .h2/ and .h3/ hold. Then x 2 PT is a
solution of equation (1.3) if and only if

x .t/D �

Z t

t�T

a.u/
�
x .u/�x3 .u/

�
e�

R t
u a.s/dsduCQ.t;x .g .t///

C�

Z t

t�T

�
G
�
u;x3 .u/ ;x3 .g .u//

�
�a.u/Q.u;x .g .u///

�
e�

R t
u a.s/dsdu:

(2.1)

Proof. Let x 2 PT be a solution of (1.3). First we write this equation as
d

dt
fx .t/�Q.t;x .g .t///g

D �a.t/fx .t/�Q.t;x .g .t///gCa.t/
˚
x .t/�x3 .t/

	
CG

�
t;x3 .t/ ;x3 .g .t//

�
�a.t/Q.t;x .g .t/// :

Multiply both sides of the above equation by e
R t

0 a.s/ds and then integrate from t �T

to t to obtainZ t

t�T

h
.x .u/�Q.u;x .g .u////e

R u
0 a.s/ds

i0
du
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D

Z t

t�T

a.u/
�
x .u/�x3 .u/

�
e
R u

0 a.s/dsdu

C

Z t

t�T

�
G
�
u;x3 .u/ ;x3 .g .u//

�
�a.u/Q.u;x .g .u///

�
e
R u

0 a.s/dsdu:

As a consequence, we arrive

.x .t/�Q.t;x .g .t////e
R t

0 a.s/ds

� .x .t �T /�Q.t �T;x .g .t �T ////e
R t�T

0 a.s/ds

D

Z t

t�T

a.u/
�
x .u/�x3 .u/

�
e
R u

0 a.s/dsdu

C

Z t

t�T

�
G
�
u;x3 .u/ ;x3 .g .u//

�
�a.u/Q.u;x .g .u///

�
e
R u

0 a.s/dsdu:

Dividing both sides of the above equation by e
R t

0 a.s/ds and the fact that x .t/ D
x .t �T /; g .t/D g .t �T / and Q.t;x/DQ.t �T;x/, we obtain

x .t/�Q.t;x .g .t///

D �

Z t

t�T

a.u/
�
x .u/�x3 .u/

�
e�

R t
u a.s/dsdu

C�

Z t

t�T

�
G
�
u;x3 .u/ ;x3 .g .u//

�
�a.u/Q.u;x .g .u///

�
e�

R t
u a.s/dsdu:

Since each step is reversible, the converse follows easily. This completes the proof.
�

Krasnoselskii (see [5, 17]) combined the contraction mapping theorem and
Shauder’s theorem and formulated the following hybrid and attractive result.

Theorem 1 (Krasnoselskii). Let M be a closed convex nonempty subset of a Ba-
nach space .S;k:k/ : Suppose that A and B map M into S such that
.i/ x;y 2M; implies AxCBy 2M,
.i i/ A is completely continuous, and
.i i i/ B is a contraction with constant ˛ < 1.

Then there exists ´ 2M with ´D A´CB´.

This is a captivating result and has a number of interesting applications. In recent
years much attention has paid to this theorem. Burton [5] observed that Krasnoselskii
result can be more interesting in applications with certain changes and formulated in
Theorem 3 bellow (see [4] for the proof).

Definition 2 (Large Contraction). Let .M;d/ be a metric space and B WM!M.
B is said to be a large contraction if '; 2M, with ' ¤  then d.B';B / <
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d.'; / and if for all " > 0 there exists ı < 1 such that

Œ'; 2M; d.'; /� "�) d.B';B /� ıd.'; /:

Theorem 2. Let .M;d / be a complete metric space and B be a large contraction.
Suppose there is an x 2M and L > 0, such that d .x;Bnx/� L for all n� 1. Then
B has a unique fixed point in M.

Theorem 3 (Krasonselskii-Burton). Let M be a closed bounded convex non-empty
subset of a Banach space .S;k:k/. Suppose that A; B map M into M and that
.i/ 8x;y 2M) AxCBy 2M;

.i i/ A is completely continuous, and

.i i i/ B is a large contraction.
Then there is a ´ 2M with ´D A´CB´:

3. EXISTENCE RESULTS

We present or existence results in this section. To this end, we first define the
operator H by

.H'/.t/D �

Z t

t�T

a.u/
�
' .u/�'3 .u/

�
e�

R t
u a.s/dsduCQ.t;' .g .t///

C�

Z t

t�T

�
G
�
u;'3 .u/ ;'3 .g .u//

�
�a.u/Q.u;' .g .u///

�
e�

R t
u a.s/dsdu; (3.1)

From Lemma 1 we see that fixed points of H are solutions of (1.3) and vice versa.
In order to employ theorem 3 we need to express the operator H as the sum of two
operators, one of which is completely continuous and the other of which is a large
contraction. Let .H'/.t/D .A'/.t/C .B'/.t/ where

.A'/.t/DQ.t;' .g .t///

C�

Z t

t�T

�
G
�
u;'3 .u/ ;'3 .g .u//

�
�a.u/Q.u;' .g .u///

�
e�

R t
u a.s/dsdu; (3.2)

and

.B'/.t/D �

Z t

t�T

a.u/
�
' .u/�'3 .u/

�
e�

R t
u a.s/dsdu: (3.3)

We need the following condition on the nonlinear term Q.
.h4/ The function Q.t;x/ is continuous in t and there exist bounded positive

periodic functions q1;q2 2 L
1 Œ0;T �, with period T , such that

jQ.t;x/j � q1 .t/ jxjCq2 .t/ ;

for all x 2 R.
Our first lemma in this section shows that A WPT !PT is completely continuous.

Lemma 2. Suppose that conditions .h1/�.h4/ hold. ThenA WPT !PT is comp-
letely continuous.
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Proof. From (3.2) and conditions .h1/� .h3/, it follows trivially that

e�
R tCT

uCT a.s/ds
D e�

R t
u a.s/ds . Consequently, we have that

.A'/.tCT /D .A'/.t/ :

That is, if ' 2 PT then A' is periodic with period T .
To see that A is continuous. Let f'ig � PT be such that 'i ! ' as i!1. By the

Dominated Convergence Theorem,

lim
i!1

j.A'i /.t/� .A'/.t/j

� lim
i!1

ˇ̌
Q
�
t;'

i
.g .t//

�
�Q.t;' .g .t///

ˇ̌
lim

i!1
�

Z t

t�T

˚ˇ̌
G
�
u;'3

i .u/ ;'
3
i .g .u//

�
�G

�
u;'3 .u/ ;'3 .g .u//

�ˇ̌
Ca.u/ jQ.u;'i .g .u///�Q.u;' .g .u///jge

�
R t

u a.s/dsdu

D lim
i!1

ˇ̌
Q
�
t;'

i
.g .t//

�
�Q.t;' .g .t///

ˇ̌
C�

Z t

t�T

�
lim

i!1

ˇ̌
G
�
u;'3

i .u/ ;'
3
i .g .u//

�
�G

�
u;'3 .u/ ;'3 .g .u//

�ˇ̌
Ca.u/ lim

i!1
jQ.u;'i .g .u///�Q.u;' .g .u///j

�
e�

R t
u a.s/dsdu

D 0:

Hence A W PT ! PT is continuous.
Finally, we show thatA is completely continuous. Let C�PT be a closed bounded

subset and let C be such that k'k � C for all ' 2 C. then

j.A'/.t/j � q�1C Cq
�
2

C�

Z t

t�T

�ˇ̌
G
�
u;'3 .u/ ;'3 .g .u//

�ˇ̌
Ca.u/ jQ.u;' .g .u///j

�
e�

R t
u a.s/dsdu

� q�1C Cq
�
2 C�N

�Z t

t�T

gC .u/duC

Z t

t�T

a.u/qC .u/du

�
� q�1C Cq

�
2 C�N

�Z t

t�T

gC .u/duC˛

Z t

t�T

qC .u/du

�
�K;

where q�1 D max
u2Œ0;T �

q1 .t/, q�2 D max
u2Œ0;T �

q2 .t/, N D max
u2Œt�T;t�

e�
R t

u a.s/ds and ˛ D

max
u2Œt�T;t�

a.u/. And so, the family of functions A' is uniformly bounded.

Again, let ' 2 C. Without loss of generality, we can pick t1 < t2 such that t2� t1 <
T . Then

j.A'/.t2/� .A'/.t1/j
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D jQ.t2;' .t2//

C�

Z t2

t2�T

�
G
�
u;'3 .u/ ;'3 .g .u//

�
�a.u/Q.u;' .g .u///

�
e�

R t2
u a.s/dsdu

�Q.t1;' .t1//

��

Z t1

t1�T

�
G
�
u;'3 .u/ ;'3 .g .u//

�
�a.u/Q.u;' .g .u///

�
e�

R t1
u a.s/dsdu

ˇ̌̌̌
:

We can rewrite the left hand side as the sum of three integrals. We obtain the follo-
wing

j.A'/.t2/� .A'/.t1/j

� jQ.t2;' .t2//�Q.t1;' .t1//j

C�

Z t2

t1

�ˇ̌
G
�
u;'3 .u/ ;'3 .g .u//

�ˇ̌
Ca.u/ jQ.u;' .g .u///j

�
e�

R t2
u a.s/dsdu

C�

Z t1

t2�T

�ˇ̌
G
�
u;'3 .u/ ;'3 .g .u//

�ˇ̌
Ca.u/ jQ.u;' .g .u///j

�
�

ˇ̌̌
e�

R t2
u a.s/ds

� e�
R t1

u a.s/ds
ˇ̌̌
du

C�

Z t2�T

t1�T

�ˇ̌
G
�
u;'3 .u/ ;'3 .g .u//

�ˇ̌
Ca.u/ jQ.u;' .g .u///j

�
e�

R t1
u a.s/dsdu

� jQ.t2;' .t2//�Q.t1;' .t1//jC2�N

�Z t2

t1

gC .u/C˛qC .u/du

�
C�

Z t1

t2�T

ŒgC .u/C˛qC .u/�
ˇ̌̌
e�

R t2
u a.s/ds

� e�
R t1

u a.s/ds
ˇ̌̌
du:

Now jQ.t2;' .t2//�Q.t1;' .t1//j ! 0 and
R t2

t1
gC .u/C˛qC .u/du! 0 as

.t2� t1/! 0. Also, sinceZ t1

t2�T

ŒgC .u/C˛qC .u/�
ˇ̌̌
e�

R t2
u a.s/ds

� e�
R t1

u a.s/ds
ˇ̌̌
du

�

Z T

0

ŒgC .u/C˛qC .u/�
ˇ̌̌
e�

R t2
u a.s/ds

� e�
R t1

u a.s/ds
ˇ̌̌
du;

and
ˇ̌̌
e�

R t2
u a.s/ds � e�

R t1
u a.s/ds

ˇ̌̌
! 0 as .t2� t1/! 0, then by the Dominated Con-

vergence Theorem,Z t1

t2�T

ŒgC .u/C˛qC .u/�
ˇ̌̌
e�

R t2
u a.s/ds

� e�
R t1

u a.s/ds
ˇ̌̌
du! 0;
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as .t2� t1/! 0. Thus jA' .t2/�A' .t1/j ! 0 as .t2� t1/! 0 independently of
' 2 C. As such, the family of functions A' is equicontinuous on C. By the Arzelà-
Ascoli Theorem, A is completely continuous and the proof is complete. �

Proposition 1. Let k�k be the supremum norm,

MD f' 2 S W k'k �
p
3=3g;

and define .B'/.t/ WD ' .t/�'3 .t/. Then B is a large contraction of the set M.

Proof. For each t 2 R we have, for '; real functions,

j.B'/.t/� .B /.t/j D j'.t/�'3.t/� .t/C 3.t/j

D j'.t/� .t/jj1� .'2.t/C'.t/ .t/C 2.t//j:

Then for

j'.t/� .t/j2 D '2.t/�2'.t/ .t/C 2.t/� 2.'2.t/C 2.t//;

and for '2.t/C 2.t/ < 1, we have

j.B'/.t/� .B /.t/j D j'.t/� .t/j
�
1� .'2.t/C 2.t//Cj'.t/ .t/j

�
� j'.t/� .t/j

�
1� .'2.t/C 2.t//C

'2.t/C 2.t/

2

�
� j'.t/� .t/j

�
1�

'2.t/C 2.t/

2

�
:

Thus, B is pointwise a large contraction. But application B is still a large contraction
for the supremum norm. For, let " 2 .0;1/ be given and let '; 2M with k'� k �
".

(a) Suppose that for some t we have "=2� j'.t/� .t/j. Then

."=2/2 � j'.t/� .t/j2 � 2.'2.t/C 2.t//;

that is
'2.t/C 2.t/� "2=8:

For all such t we have

j.B'/.t/� .B /.t/j � j'.t/� .t/j

�
1�

"2

16

�
� k'� k

�
1�

"2

16

�
:

(b) Suppose that for some t we have

j'.t/� .t/j � "=2:

Then
j.B'/.t/� .B /.t/j � j'.t/� .t/j � .1=2/k'� k:

Consequently, we obtain

kB'�B k �max
�
1=2;1�

"2

16

�
k'� k
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�

�
1�

"2

16

�
k'� k:

�

For the rest of the paper we define

MD f' 2 S W k'k � Lg;

where LD
p
3=3.

We need the following condition on the nonlinear term G:

.h5/ There exist positive periodic functions g1;g2;g3 2 L
1 Œ0;T �, with period T ,

such that
jG .t;x;y/j � g1 .t/ jxjCg2 .t/ jyjCg3 .t/ ;

for all x;y 2 R.

Lemma 3. Suppose that conditions .h4/ and .h5/ hold. Also suppose there exist
constants ˇ;ı > 0 and J � 3 such that

Œg1 .t/Cg2 .t/�L
3
Cg3 .t/� ˇLa.t/ ; (3.4)

q1 .t/LCq2 .t/� ıL; (3.5)

and
J .2ıCˇ/� 1: (3.6)

For A defined by .3:3/, if ' 2M, then j.A'/.t/j � L=J < L for all t .

Proof. Let ' 2M. Then k'k � L. Thus for A defined by (3.2) we have that

j.A'/.t/j � jQ.t;' .g .t///jC�

Z t

t�T

ˇ̌
G
�
u;'3 .u/ ;'3 .g .u//

�ˇ̌
e�

R t
u a.s/dsdu

C�

Z t

t�T

a.u/ jQ.u;' .g .u///je�
R t

u a.s/dsdu:

It follows from conditions .h4/, .h5/, (3.4)–(3.6) that

j.A'/.t/j � q1 .t/LCq2 .t/

C�

Z t

t�T

˚
Œg1 .u/Cg2 .u/�L

3
Cg3 .u/

	
e�

R t
u a.s/dsdu

C�

Z t

t�T

a.u/fq1 .u/LCq2 .u/ge
�
R t

u a.s/dsdu

� ıLCˇL�

Z t

t�T

a.u/e�
R t

u a.s/dsduC ıL�

Z t

t�T

a.u/e�
R t

u a.s/dsdu

� .2ıCˇ/L�
L

J
< L:

Therefore A maps M into itself. �
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Lemma 4. Suppose .h1/� .h5/ and (3.4)–(3.6) hold. For A;B defined in (3.2)
and (3.3), if '; 2M are arbitrary, then

A'CB WM!M:

Moreover, B is a large contraction on M with a unique fixed point in M.

Proof. Let '; 2M be arbitrary. Note first that j .t/j �
p
3=3 implies

j .t/� 3.t/j � .2
p
3/=9:

Using the definition of B , and the result of Lemma 4, we obtain

j.A'/.t/C .B /.t/j � j.A'/.t/jC j.B /.t/j

�

p
3

3J
C
2
p
3

9
� L:

Thus, A'CB 2M.
Left to show that B is a large contraction with a unique fixed point in M. Propo-

sition 1 shows that  � 3 is a large contraction in the supremum norm. For any ",
from the proof of that proposition, we have found a � < 1, such that

j.B /.t/� .B'/.t/j � �

Z t

t�T

a.u/�k �'ke�
R t

u a.s/dsdu

� �k �'k:

Further, since 0 2M the above inequality shows, when ' D 0, we see that B WM!
M. This completes the proof. �

Theorem 4. Let .S;k:k/ be the Banach space of continuous T -periodic real func-
tions and M D f' 2 S W k'k � Lg, where L D

p
3=3. Suppose .h1/� .h5/ and

(3.4)–(3.6) hold. Then equation (1.3) possesses a T -periodic solution ' in the subset
M.

Proof. By Lemma 1, ' is a solution of (1.3) if

' D A'CB';

where A and B are given by (3.2), (3.3) respectively. By Lemma 2, A WM!M is
completely continuous. By Lemma 4,A'CB 2M whenever '; 2M. Moreover,
B WM!M is a large contraction. Clearly, all the hypotheses of Theorem 3 of
Krasnoselskii-Burton are satisfied. Thus, there exists a fixed point ' 2M such that
' D A'CB'. Hence (1.3) has a T -periodic solution in M. �

For our last result, we give sufficient conditions under which there exists positive
solutions of equation (1.3). We begin by defining some new quantities. Let

mD min
u2Œt�T;t�

e�
R t

u a.s/ds; M D max
u2Œt�T;t�

e�
R t

u a.s/ds:
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Given constants 0 < L< K�
p
3=3, define the set

M1 D f' 2 PT W L� ' .t/� K; t 2 Œ0;T �g.
Assume that the following conditions hold.
.h6/ There exist constants 0 < q� < L� such that q�L �Q.t;�/ � L�K for all

� 2M1 and t 2 Œ0;T �.
.h7/ There exist constants 0 < L< K such that

.1�q�/L

�mT
� a.u/

�
� ��3

�
CG

�
u;�3;�3

�
�a.u/Q.u;�/�

.1�L�/K

�MT
;

for all �;� 2M1 and u 2 Œt �T; t �.

Theorem 5. Suppose that conditions .h1/� .h4/, .h6/ and .h7/ hold. Then there
exists a positive solution of (1.3).

Proof. As in the proof of Theorem 4, we just need to show that condition .i i i/ of
Theorem 3 is satisfied. Let '; 2M1. Then

.A'/.t/C .B /.t/

DQ.t; .g .t///C�

Z t

t�T

˚
a.u/

�
' .u/�'3 .u/

�
CG

�
u;'3 .u/ ;'3 .g .u//

�
�a.u/Q.u;' .g .u///

	
e�

R t
u a.s/dsdu

� q�LC�mT
.1�q�/L

�mT
D L:

Likewise

.A'/.t/C .B /.t/� L�KC�MT
.1�L�/K

�MT
D K:

By Theorem 3, the operator H has a fixed point in M1. This fixed point is a positive
solution of (1.3) and the proof is complete. �
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