

Miskolc Mathematical Notes Vol. 15 (2014), No 2, pp. 317-325

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2014.723

Galois group for some class field

Abdelmalek Azizi and Mohammed Talbi

HU e-ISSN 1787-2413

GALOIS GROUP FOR SOME CLASS FIELD

ABDELMALEK AZIZI AND MOHAMMED TALBI

Received 24 September, 2013

Abstract. For some imaginary quartic cyclic fields \mathbb{K} , we will study the capitulation problem of the 2-class ideals of \mathbb{K} and we will determine the structure of the Galois group of the second Hilbert 2-class field of \mathbb{K} over \mathbb{K} .

2010 Mathematics Subject Classification: 11R27; 11R37

Keywords: cyclic quartic fields, class group, Hilbert class field

1. INTRODUCTION

Let \mathbb{F}/\mathbb{L} a finite extension of number fields and $O_{\mathbb{L}}$ (resp. $O_{\mathbb{F}}$) the ring of integers of \mathbb{L} (resp. of \mathbb{F}). We say, since Hilbert, that an ideal of $O_{\mathbb{L}}$ capitulates in \mathbb{F} , if it becomes principal by extension of scalars to $O_{\mathbb{F}}$, and, of course, when an ideal \mathfrak{a} of $O_{\mathbb{L}}$ capitulates in \mathbb{F} , then the class $[\mathfrak{a}]$ of \mathfrak{a} capitulates in \mathbb{F} (ie. $[\mathfrak{a}O_{\mathbb{F}}]$ is trivial). Therefore, the study of the capitulation problem is precisely to describe the group of all classes of ideals of \mathbb{L} which capitulate in \mathbb{F} , where \mathbb{F} is an unramified abelian extension of \mathbb{L} .

Proposition 1 ([8]). Let \mathbb{G} a 2-group of finite order 2^m and \mathbb{G}' its derived subgroup. Then \mathbb{G}/\mathbb{G}' is of type (2,2) if and only if \mathbb{G} is isomorphic to one of 2-groups:

$$Q_{m} = \langle \sigma, \tau \rangle \quad where \quad \sigma^{2^{m-2}} = \tau^{2} = a, a^{2} = 1, \tau^{-1}\sigma\tau = \sigma^{-1};$$

$$D_{m} = \langle \sigma, \tau \rangle \quad where \quad \sigma^{2^{m-1}} = \tau^{2} = 1, \tau^{-1}\sigma\tau = \sigma^{-1};$$

$$S_{m} = \langle \sigma, \tau \rangle \quad where \quad \sigma^{2^{m-1}} = \tau^{2} = 1, \tau^{-1}\sigma\tau = \sigma^{2^{m-2}-1};$$

$$(2,2) = \langle \sigma, \tau \rangle \quad where \quad \sigma^{2} = \tau^{2} = 1, \tau^{-1}\sigma\tau = \sigma.$$

Where Q_m is the quaternionic group, D_m the dihedral group, S_m the semi-dihedral group of order 2^m and (2.2) is an abelian group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Suppose that \mathbb{G} is a 2-group of finite order 2^m such that \mathbb{G}/\mathbb{G}' is of type (2,2), then \mathbb{G} is isomorphic to Q_m , D_m , S_m or (2,2) defined in the Proposition 1. Let $\{\sigma, \tau\}$ generates \mathbb{G} such that the relationships cited in the Proposition 1 are verified, by a simple calculation we can see that the derived subgroup $\mathbb{G}' = [\mathbb{G}, \mathbb{G}] = \langle \sigma^2 \rangle$

© 2014 Miskolc University Press

and G has three subgroups of index 2: $H_1 = \langle \sigma \rangle$, $H_2 = \langle \sigma^2, \tau \rangle$ and $H_3 = \langle \sigma^2, \sigma \tau \rangle$. Moreover if G is of type (2, 2), then the subgroups H_i are cyclic of order 2, if G $\simeq Q_3$, then the subgroups H_i are cyclic of order 4 and if G is isomorphic to Q_m (m > 3), D_m or S_m , then H_1 is cyclic and H_2/H_2' and H_3/H_3' are of type (2, 2) where H_2' (resp. H_3') is the derived subgroup of H_2 (resp. H_3).

Throughout the remainder of this section we denote by M a number field, $M_2^{(1)}$ the first 2-Hilbert class field of M, $M_2^{(2)}$ the second 2-Hilbert class field of M, $C_{\rm M}$ the class group of M, $C_{2,\rm M}$ the 2-part of $C_{\rm M}$, G the Galois group of $M_2^{(2)}/M$ and G' its derived sub-group. Then G' $\simeq Gal(M_2^{(2)}/M_2^{(1)})$ and G/G' $\simeq Gal(M_2^{(1)}/M)$, and we know from the class field theory that $Gal(M_2^{(1)}/M) \simeq C_{2,\rm M}$, so G/G' $\simeq C_{2,\rm M}$.

Definition 1. Let \mathbb{F} be a cyclic unramified extension of \mathbb{M} and j is the mapping of $C_{\mathbb{M}}$ into $C_{\mathbb{F}}$ that maps to the class of an ideal \mathfrak{a} of \mathbb{M} the class of the ideal generated by \mathfrak{a} in \mathbb{F} . Then the extension \mathbb{F}/\mathbb{M} is called:

- of type (A) if and only if $\# \ker j \cap N_{\mathbb{F}/\mathbb{M}}(C_{\mathbb{F}}) > 1$;
- of type (B) if and only if $\# \ker j \cap N_{\mathbb{F}/\mathbb{M}}(C_{\mathbb{F}}) = 1$.

Now suppose that $C_{2,\mathbb{M}} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, then $\mathbb{G}/\mathbb{G}' \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and as \mathbb{G} is a 2-finite group, then \mathbb{G}' is cyclic. Thus the Hilbert 2-class field towers of \mathbb{M} ends in $\mathbb{M}_2^{(2)}$.

In addition, we know that if \mathbb{G} has order 2^m and $\mathbb{G}/\mathbb{G}' \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, then \mathbb{G} is isomorphic to Q_m , D_m , S_m or to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. In all these cases, we have $\mathbb{G}' = \langle \sigma^2 \rangle$ and the three subgroups of index 2 in \mathbb{G} are: $H_1 = \langle \sigma \rangle$, $H_2 = \langle \sigma^2, \tau \rangle$ and $H_3 = \langle \sigma^2, \sigma\tau \rangle$, and if $\mathbb{G}' \neq 1$, then $\mathbb{M}_2^{(1)} \neq \mathbb{M}_2^{(2)}$ and $\langle \sigma^4 \rangle$ is the only subgroup of \mathbb{G}' of index 2.

Let \mathbb{L} the subfield of $\mathbb{M}_2^{(2)}$ left fixed by $\langle \sigma^4 \rangle$, \mathbb{F}_i (i = 1, 2, 3) the subfield of $\mathbb{M}_2^{(2)}$ left fixed by H_i and j_i the mapping j defined for $\mathbb{F} = \mathbb{F}_i$.

Theorem 1 ([8]). Assume that $\mathbb{G}/\mathbb{G}' \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, so we have

- (1) If $\mathbb{M}_2^{(1)} = \mathbb{M}_2^{(2)}$, then the fields \mathbb{F}_i are of type (A), $\# \ker j_i = 4$ for i = 1, 2, 3and $\mathbb{G} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$;
- (2) If $Gal(\mathbb{L}/\mathbb{M}) \simeq Q_3$, then the fields \mathbb{F}_i are of type (A), $\# \ker j_i = 2$ for i = 1, 2, 3 and $\mathbb{G} \simeq Q_3$;
- (3) If $Gal(\mathbb{L}/\mathbb{M}) \simeq D_3$, then the fields \mathbb{F}_2 and \mathbb{F}_3 are of type (B) and $\#\ker j_2 =$ #ker $j_3 = 2$. Moreover, if \mathbb{F}_1 is of type (B) then $\#\ker j_1 = 2$ and $\mathbb{G} \simeq S_m$. If \mathbb{F}_1 is of type (A) and $\#\ker j_1 = 2$, then $\mathbb{G} \simeq Q_m$. Finally if \mathbb{F}_1 is of type (A) and $\#\ker j_1 = 4$, then $\mathbb{G} \simeq D_m$.

Theorem 2 ([6]). Let \mathbb{L}/\mathbb{M} be an unramified cyclic extension of prime degree, then the number of classes that capitulate in \mathbb{L}/\mathbb{M} is

$$\mathbb{L}: \mathbb{M}][E_{\mathbb{M}}: N_{\mathbb{L}/\mathbb{M}}(E_{\mathbb{L}})],$$

where $E_{\mathbb{M}}$ (resp. $E_{\mathbb{L}}$) is the group of units of \mathbb{M} (resp. of \mathbb{L}).

For more details about the capitulation problem see [8, 11, 12].

2. Units of some number fields

Proposition 2 ([1]). Let \mathbb{K}_0 a number field, abelian real and β an algebraic integer in \mathbb{K}_0 , totally positive, without square factors. Assume that $\mathbb{F} = \mathbb{K}_0(\sqrt{-\beta})$ is a quadratic extension of \mathbb{K}_0 , abelian over \mathbb{Q} and $i = \sqrt{-1} \notin \mathbb{F}$. Let $\{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r\}$ be a fundamental system of units of \mathbb{K}_0 . We choose, without limiting the generality, units ε_i positive. Then we have:

- (1) If there is a unit of \mathbb{K}_0 such that $\varepsilon = \varepsilon_1^{j_1} \varepsilon_2^{j_2} \dots \varepsilon_{r-1}^{j_{r-1}} \varepsilon_r$ (close to a permutation), where the $j_k \in \{0, 1\}$, such that $\beta \varepsilon$ is a square in \mathbb{K}_0 , then $\{\varepsilon_1, \dots, \varepsilon_{r-1}, \sqrt{-\varepsilon}\}$ is a fundamental system of units of \mathbb{F} ;
- (2) Otherwise $\{\varepsilon_1, \ldots, \varepsilon_r\}$ is a fundamental system of units of \mathbb{F} .

Corollary 1 ([2]). Let $\mathbb{L} = \mathbb{Q}(\sqrt{-n\varepsilon\sqrt{d}})$ a cyclic extension of degree 4 over \mathbb{Q} , where ε is the fundamental unit of $\mathbb{Q}(\sqrt{d})$ with d a positive integer squarefree and n a positive integer, then $\{\varepsilon\}$ is a fundamental system of units of \mathbb{L} .

Theorem 3 ([2]). Let $\mathbb{K}_0 = \mathbb{Q}(\sqrt{p}, \sqrt{p'})$ where p and p' are two different primes such that $p \equiv p' \equiv 1 \mod 4$, ε_1 (resp. ε_2 , ε_3) the fundamental unit of $\mathbb{Q}(\sqrt{p})$ (resp. $\mathbb{Q}(\sqrt{p'})$, $\mathbb{Q}(\sqrt{pp'})$) and $\mathbb{F} = \mathbb{K}_0(\sqrt{-n\varepsilon_1\sqrt{p}})$ where n is a positive integer square-free. Then we have:

- (1) If ε_3 has norm 1, then $\{\varepsilon_1, \varepsilon_2, \sqrt{\varepsilon_3}\}$ is a fundamental system of units of \mathbb{K}_0 and of \mathbb{F} ;
- (2) Otherwise, {√ε₁ε₂ε₃, ε₂, ε₃} is a fundamental system of units of K₀ and of F.

Now, using the results of M. N. Gras [4], we'll define a fundamental system of units of real cyclic extension of degree 4 over Q. Let $\mathbb{L} = k(\sqrt{\varepsilon_0 \sqrt{l}})$ where *l* is a prime number congruent to 1 modulo 8 and ε_0 is the fundamental unit of $k = \mathbb{Q}(\sqrt{l})$, then \mathbb{L}/\mathbb{Q} is a real cyclic extension of degree 4 with Galois group $H = \langle \gamma \rangle$ and quadratic subfield k. Since \mathbb{L} has conductor $F_{\mathbb{L}} = l$, we have $\mathbb{L} \subset \mathbb{Q}^{(l)}$ and there exists a character χ' of $Gal(\mathbb{Q}^{(l)}/\mathbb{Q}) \simeq (\mathbb{Z}/l\mathbb{Z})^*$ such that ker $\chi' = Gal(\mathbb{Q}^{(l)}/\mathbb{L})$. Let $\chi = \chi' + \chi'^{-1}$, then χ is a rational character of $\mathbb{Q}^{(l)}$ and \mathbb{L} is fixed by the common kernel of χ' and χ'^{-1} . Let $E_{\mathbb{L}}$ be the group of units of \mathbb{L} , E_{χ} the group of χ -relative units of \mathbb{L} , $|E_{\mathbb{L}}|$ (resp. $|E_{\chi}|$) the group of absolute values of $E_{\mathbb{L}}$ (resp.

 E_{χ} , $|E^{\mathbb{L}}| = |E_{\mathbb{L}}| \oplus |E_{\chi}|$, $Q = [|E_{\mathbb{L}}| : |E^{\mathbb{L}}|]$ and ε_{χ} a generator of E_{χ} . Then we have the following result:

Theorem 4 ([4]). Let $\mathbb{L} = k(\sqrt{\varepsilon_0 \sqrt{l}})$ where *l* is a prime number congruent to 1 modulo 8 and ε_0 the fundamental unit of $\mathbf{k} = \mathbb{Q}(\sqrt{l})$, then:

- (1) Q = 2;
- (2) There exists ξ in $E_{\mathbb{L}}$ such that $\xi^2 = \pm \varepsilon_0 \varepsilon_{\gamma}^{1-\sigma}$ and $\{\xi, \xi^{\sigma}, \xi^{\sigma^2}\}$ is a fundamental system of units of \mathbb{L} .

Remark 1. Since $\xi^2 = \pm \varepsilon_0 \varepsilon_{\gamma}^{1-\sigma}$, then:

(1) $\xi^{1+\sigma} = \pm \varepsilon_{\gamma};$ (1) $\xi^{1+\sigma^{2}} = \pm \varepsilon_{0};$ (2) $\xi^{1+\sigma^{2}} = \pm \varepsilon_{0};$ (3) $\xi^{1+\sigma+\sigma^{2}+\sigma^{3}} = \varepsilon_{\chi}^{1+\sigma^{2}} = \varepsilon_{0}^{1+\sigma};$ (4) $N_{k/\mathbb{Q}}(\varepsilon_{0}) = N_{\mathbb{L}/k}(\varepsilon_{\chi}) = N_{\mathbb{L}/\mathbb{Q}}(\xi) = -1.$

Lemma 1. With the same notation of Theorem 4, $\{\xi, \xi^{\sigma}, \xi^{\sigma^2}\}$ is a fundamental system of units of $\mathbb{F} = \mathbb{L}(\sqrt{-n})$ where n is an integer different from 1, relatively prime to l and square-free.

Proof. By Proposition 2, to show that $\{\xi, \xi^{\sigma}, \xi^{\sigma^2}\}$ is a fundamental system of units of \mathbb{F} it suffices to show that $n\mu$ is not a square in \mathbb{L} , for $\mu = \xi_1'^{j_1} \xi_2'^{j_2} \xi_3'$ where $\{\xi'_1, \xi'_2, \xi'_3\} = \{\xi, \xi^{\sigma}, \xi^{\sigma^2}\}$ and $j_1, j_2 \in \{0, 1\}$. Indeed, if $\mu = \xi$, then if $n\xi = x^2$ in \mathbb{L} , so by calculating the norm in \mathbb{L}/k , we find

that $\xi^{1+\sigma^2} = \pm \varepsilon_0$ is a square in k, which is impossible. If $\mu = \xi^{\sigma}$, then if $n\xi^{\sigma} = \pm n\frac{\varepsilon_{\chi}}{\xi} = x^2$ in \mathbb{L} , so by using the norm in \mathbb{L}/k , we find that

 $\pm \frac{\varepsilon_0^{1+\sigma}}{\varepsilon_0} = \pm \varepsilon_0^{-1}$ is a square in k, which is absurd.

If $\mu = \xi^{\sigma^2}$, then if $n\xi^{\sigma^2} = \pm n\frac{\varepsilon_0}{\xi} = x^2$ in \mathbb{L} , so by calculating the norm in \mathbb{L}/k , we find that $\pm \frac{\varepsilon_0^2}{\varepsilon_0} = \pm \varepsilon_0$ is a square in k, which is not the case. If $\mu = \xi^{1+\sigma} = \pm \varepsilon_{\chi}$, then if $\pm n\varepsilon_{\chi} = x^2$ in \mathbb{L} , so by calculating the norm in \mathbb{L}/k , we

find that $\varepsilon_{\gamma}^{1+\sigma^2} = \varepsilon_0^{1+\sigma} = -1$ is a square in k, which is absurd.

If $\mu = \xi^{1+\sigma^2} = \pm \varepsilon_0$, then $\pm n\varepsilon_0$ can not be a square in \mathbb{L} . If $\mu = \xi^{\sigma+\sigma^2}$, then if $n\xi^{\sigma+\sigma^2} = x^2$ in \mathbb{L} , so by calculating the norm in \mathbb{L}/k , we find

that $\xi^{1+\sigma+\sigma^2+\sigma^3} = -1$ is a square in k, which is not the case. If $\mu = \xi^{1+\sigma+\sigma^2}$, then if $n\xi^{1+\sigma+\sigma^2} = x^2$ in \mathbb{L} , so by calculating the norm in \mathbb{L}/k , we find that $\xi^{1+\sigma+\sigma^2+\sigma^3}\xi^{1+\sigma^2} = \pm \varepsilon_0$ is a square in k, which is impossible, which completes the proof of the lemma.

320

3. Capitulation of the 2-ideal class of ${\rm K}$ and structure of ${\rm G}_2$

In the following, let $\mathbb{K} = k(\sqrt{-pq\varepsilon_0\sqrt{l}})$ where ε_0 is the fundamental unit of $k = \mathbb{Q}(\sqrt{l})$ with l is a prime number congruent to 1 modulo 8, p and q two prime numbers such that $p \equiv -q \equiv 1 \mod 4$ and $(\frac{p}{l}) = (\frac{q}{l}) = -1$, $\mathbb{K}_2^{(1)}$ the Hilbert 2-class field of \mathbb{K} , $\mathbb{K}_2^{(2)}$ the Hilbert 2-class field of $\mathbb{K}_2^{(1)}$, \mathbb{G}_2 the Galois group of $\mathbb{K}_2^{(2)}/\mathbb{K}$ and for an ideal \mathfrak{a} of \mathbb{K} , we note $[\mathfrak{a}]$ the class of \mathfrak{a} . Then, by [3], $C_{2,\mathbb{K}}$, the 2-class group of \mathbb{K} , is of type (2, 2). Using the Results of [7] for the calculation of the genus fields of an extension of degree 2^s on \mathbb{Q} , we find that $\mathbb{K}_2^{(1)} = \mathbb{K}^{(*)} = \mathbb{K}(\sqrt{p}, \sqrt{-q})$, where $\mathbb{K}^{(*)}$ is the genus field of \mathbb{K} , whose quadratic subfields over \mathbb{K} are $\mathbb{F}_1 = \mathbb{K}(\sqrt{p})$, $\mathbb{F}_2 = \mathbb{K}(\sqrt{-q})$ and $\mathbb{F}_3 = \mathbb{K}(\sqrt{-pq})$.

We study the capitulation problem of the 2-ideal classes of K in different sub-quadratic extension \mathbb{F}_i/\mathbb{K} of $\mathbb{K}_2^{(1)}/\mathbb{K}$, and hence we determine the structure of \mathbb{G}_2 .

Proposition 3. Let $\mathbb{K} = k(\sqrt{-pq\varepsilon_0}\sqrt{l})$, \mathcal{P} the prime ideal of \mathbb{K} above p and \mathcal{Q} that above q. Then the classes $[\mathcal{P}]$, $[\mathcal{Q}]$ and $[\mathcal{P}\mathcal{Q}]$ are of order 2 in \mathbb{K} , $C_{2,\mathbb{K}}$ is generated by the classes $[\mathcal{P}]$ and $[\mathcal{Q}]$. Also \mathcal{P} capitulates in \mathbb{F}_1 , \mathcal{Q} capitulates in \mathbb{F}_2 and $\mathcal{P}\mathcal{Q}$ capitulates in \mathbb{F}_3 .

Proof. The class $[\mathcal{P}]$ has order 2, indeed, since p is inert in k/Q and p ramifies in K/Q, then $\mathcal{P}^2 = (p)$. Assume that $\mathcal{P} = (\alpha)$ for some α in K, which is equivalent to $(\alpha^2) = (p)$ in K. So there is therefore a unit ε of K such that $p\varepsilon = \alpha^2$, but there exist a and b in k such that $\alpha = a + b\sqrt{-pq\varepsilon_0\sqrt{l}}$, thus $p\varepsilon = a^2 - pq\varepsilon_0\sqrt{l}b^2 + 2ab\sqrt{-pq\varepsilon_0\sqrt{l}}$ and as $\{\varepsilon_0\}$ is a fundamental system of units of K (Corollary 1) and

 $i = \sqrt{-1} \notin \mathbb{K}$, then $p\varepsilon \in k$, therefore *a* or b = 0. If b = 0, then $p\varepsilon = a^2$, thus, if ε has norm 1 (the norm in k/\mathbb{Q}), *p* will be norm in k/\mathbb{Q} which is not the case because $(\frac{p}{l}) = -1$, if ε has norm -1 we find that -1 is a square in \mathbb{Q} which is impossible. Similarly, if a = 0 we find that $\pm l$ is a square in \mathbb{Q} , thus $[\mathcal{P}]$ has order 2 and similarly one shows that $[\mathcal{Q}]$ and $[\mathcal{P}Q]$ orders are 2, therefore $C_{2,\mathbb{K}}$ is generated by $[\mathcal{P}]$ and $[\mathcal{Q}]$. To show that \mathcal{P} capitulates in \mathbb{F}_1 , it suffices to see that $\sqrt{p} \in \mathbb{F}_1$ and $(\sqrt{p}^2) = (p)$ in \mathbb{F}_1 , so \mathcal{P} capitulated in \mathbb{F}_1 and even \mathcal{Q} capitulated in \mathbb{F}_2 and $\mathcal{P}\mathcal{Q}$ capitulated in \mathbb{F}_3 .

Proposition 4 ([5]). Let \mathbb{M} a number field which contains the *m*-th roots of unity, \mathbb{L} a finite extension of \mathbb{M} , $\alpha \in \mathbb{M}^*$ and $\beta \in \mathbb{L}^*$. We denote by *P* a prime ideal of \mathbb{M} , and \mathcal{P} a prime ideal of \mathbb{L} above *P*. Then

$$\prod_{\mathcal{P}} \left(\frac{\beta, \alpha}{\mathcal{P}} \right)_m = \left(\frac{N_{\mathbb{L}/\mathbb{M}}(\beta), \alpha}{P} \right)_m,$$

where the product is taken for all prime ideals of \mathbb{L} that are above *P*.

Theorem 5. Let $\mathbb{K} = \mathbb{k}(\sqrt{-pq\varepsilon_0\sqrt{l}})$ where ε_0 is the fundamental unit of $\mathbb{k} = \mathbb{Q}(\sqrt{l})$ with l is a prime number congruent to 1 modulo 8, p and q be two prime numbers such that $p \equiv -q \equiv 1 \mod 4$ and $(\frac{p}{l}) = (\frac{q}{l}) = -1$, $\mathbb{F}_1 = \mathbb{K}(\sqrt{p})$, $\mathbb{F}_2 = \mathbb{K}(\sqrt{-q})$ and $\mathbb{F}_3 = \mathbb{K}(\sqrt{-pq})$. Then in each extension \mathbb{F}_i , $i \in \{1, 2, 3\}$, there exist exactly two classes of $C_{2,\mathbb{K}}$ which capitulate and the group \mathbb{G}_2 is quaternionic of order 2^m with m > 3.

Proof. Let ε_2 (resp. ε_3) the fundamental unit of $\mathbb{Q}(\sqrt{p})$ (resp. $\mathbb{Q}(\sqrt{lp})$), \mathcal{P} the prime ideal of K above p, \mathcal{Q} that above q, then, by Theorem 3, $\{\sqrt{\varepsilon_0\varepsilon_2\varepsilon_3}, \varepsilon_2, \varepsilon_3\}$ is a fundamental system of units of \mathbb{F}_1 , since $N_{\mathbb{F}_1/\mathbb{K}}(\sqrt{\varepsilon_0\varepsilon_2\varepsilon_3}) = \pm \varepsilon_0$ and $N_{\mathbb{F}_1/\mathbb{K}}(\varepsilon_2) = N_{\mathbb{F}_1/\mathbb{K}}(\varepsilon_3) = -1$, then $N_{\mathbb{F}_1/\mathbb{K}}(E_{\mathbb{F}_1}) = E_{\mathbb{K}}$, therefore, by Theorem 2, we found that only two classes of $C_{2,\mathbb{K}}$ capitulate in \mathbb{F}_1 , namely $[\mathcal{P}]$ and its square. Also the extension \mathbb{F}_1/\mathbb{K} is of type (B), indeed, let $\mathbb{K}' = \mathbb{k}(\sqrt{-q\varepsilon_0\sqrt{l}})$, then we have $\mathbb{K}\mathbb{K}' = \mathbb{F}_1$, since $N_{\mathbb{K}/\mathbb{k}}(\mathcal{P}) = p$ and p is unramified in \mathbb{K}'/\mathbb{k} , then to show that \mathcal{P} is inert in \mathbb{F}_1/\mathbb{K} , it suffices to show that p is inert in \mathbb{K}'/\mathbb{k} (translation theorem) and for this we compute the norm residue symbol $\left(\frac{p,-q\varepsilon_0\sqrt{l}}{p}\right)$. Since $p \in \mathbb{Q}$ is inert in \mathbb{k}/\mathbb{Q} and $-q\varepsilon_0\sqrt{l} \in \mathbb{k}$, therefore using the Proposition 4, we find

$$\left(\frac{p,-q\varepsilon_0\sqrt{l}}{p}\right) = \left(\frac{p,N_{k/\mathbb{Q}}(-q\varepsilon_0\sqrt{l})}{p}\right) = \left(\frac{p,lq^2}{p}\right) = \left(\frac{l}{p}\right) = -1,$$

so p is inert in \mathbb{K}'/\mathbb{K} , which gives that \mathcal{P} is inert in \mathbb{F}_1/\mathbb{K} , then \mathbb{F}_1/\mathbb{K} is of type (B). Similarly, we show that extension \mathbb{F}_2/\mathbb{K} is of type (B), using Theorem 1, only two classes of $C_{2,\mathbb{K}}$ capitulate in \mathbb{F}_2 , namely $[\mathcal{Q}]$ and its square.

Using the notation of Theorem 4, we have that $\{\xi, \xi^{\sigma}, \xi^{\sigma^2}\}$ is a fundamental system

322

of units of \mathbb{F}_3 , since $N_{\mathbb{F}_3/\mathbb{K}}(\xi) = N_{\mathbb{F}_3/\mathbb{K}}(\xi^{\sigma^2}) = \pm \varepsilon_0$ and $N_{\mathbb{F}_3/\mathbb{K}}(\xi^{\sigma}) = \pm \varepsilon_0^{-1}$, then we have $N_{\mathbb{F}_3/\mathbb{K}}(E_{\mathbb{F}_3}) = E_{\mathbb{K}}$, using Theorem 2, we found that only two classes of $C_{2,\mathbb{K}}$ capitulate in \mathbb{F}_3 , namely $[\mathcal{P}Q]$ and its square. Moreover, the extension \mathbb{F}_3/\mathbb{K} is of type (A), indeed, let $\mathbb{L} = \mathbb{K}(\sqrt{\varepsilon_0\sqrt{l}})$, then we have $\mathbb{K}\mathbb{L} = \mathbb{F}_3$, $N_{\mathbb{K}/\mathbb{K}}(\mathcal{P}) = p$ and p is unramified in \mathbb{L}/\mathbb{K} , so to show that \mathcal{P} is inert in \mathbb{F}_3/\mathbb{K} , it suffices to show that p is inert in \mathbb{L}/\mathbb{K} , for this, we compute the norm residue symbol $\left(\frac{p,\varepsilon_0\sqrt{l}}{p}\right)$. We have $p \in \mathbb{Q}$ is inert in \mathbb{K}/\mathbb{Q} and $\varepsilon_0\sqrt{l} \in \mathbb{K}$, so by Proposition 4, we have $\left(\frac{p,\varepsilon_0\sqrt{l}}{p}\right) = \left(\frac{p,N_{\mathbb{K}/\mathbb{Q}}(\varepsilon_0\sqrt{l})}{p}\right) = \left(\frac{p,l}{p}\right) = (\frac{l}{p}) = -1$, therefore p is inert in \mathbb{K}/\mathbb{K} and like $\mathcal{P}\mathcal{Q}$ capitulates in \mathbb{F}_3/\mathbb{K} , and similarly one shows that \mathcal{Q} remains inert in \mathbb{F}_3/\mathbb{K} and like $\mathcal{P}\mathcal{Q}$ is of type (A), therefore, using Theorem 1, the group \mathbb{G}_2 is isomorphic to Q_m with m > 3.

Example 1. Let $\mathbb{K} = \mathbb{Q}(\sqrt{-55(4+\sqrt{17})\sqrt{17}})$, $\mathbb{F}_1 = \mathbb{K}(\sqrt{5})$, $\mathbb{F}_2 = \mathbb{K}(\sqrt{-11})$ and $\mathbb{F}_3 = \mathbb{K}(\sqrt{-55})$. By Theorem 5, in each extension \mathbb{F}_i there are exactly two classes of $C_{2,\mathbb{K}}$ which capitulate and $\mathbb{G}_2 \simeq Q_m$ with m > 3.

Corollary 2. With the same notation of Theorem 5, we have $\#\mathbb{G}_2 = 4h_2(\mathbb{K}_0)$ where $\mathbb{K}_0 = \mathbb{Q}(\sqrt{l}, \sqrt{-pq})$ and $h_2(\mathbb{K}_0)$ its 2-class number.

Proof. We have $\mathbb{K}_{2}^{(1)}/\mathbb{F}_{3}$ is an unramified extension and the extension $\mathbb{F}_{3}/\mathbb{K}$ is of type (A), then, according to [8], $C_{2,\mathbb{F}_{3}}$ is cyclic, thus \mathbb{F}_{3} and $\mathbb{K}_{2}^{(1)}$ has the same Hilbert 2-class field which is $\mathbb{K}_{2}^{(2)}$, therefore $\#\mathbb{G}_{2} = 2h_{2}(\mathbb{F}_{3})$. Moreover $\mathbb{F}_{3}/\mathbb{K}$ is a biquadratic normal extension with Galois group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and quadratic subfields \mathbb{K} , \mathbb{K}_{0} and $\mathbb{L} = k(\sqrt{\varepsilon_{0}\sqrt{l}})$, so, by using [9], page 247, we find that

$$h_2(\mathbb{F}_3) = \frac{1}{2}q(\mathbb{F}_3/\mathbf{k})h_2(\mathbb{K})h_2(\mathbb{K}_0)h_2(\mathbb{L}),$$

where $q(\mathbb{F}_3/k)$ is the unit index of \mathbb{F}_3/k and $h_2(\mathbb{F})$ is the 2-class number of a number field \mathbb{F} . We have $h_2(\mathbb{K}) = 4$, according to [13] we have $h_2(\mathbb{L}) = 1$, by Corollary 1 we have $\{\varepsilon_0\}$ is a fundamental system of units of \mathbb{K} , using the Proposition 2 we show that $\{\varepsilon_0\}$ is a fundamental system of units of \mathbb{K}_0 , according to Lemma 1, we have $\{\xi, \xi^{\sigma}, \xi^{\sigma^2}\}$ is a fundamental system of units of \mathbb{L} and \mathbb{F}_3 , which gives that $q(\mathbb{F}_3/k) = 1$, thus $h_2(\mathbb{F}_3) = 2h_2(\mathbb{K}_0)$, therefore $\#\mathbb{G}_2 = 4h_2(\mathbb{K}_0)$.

Corollary 3. Let $\mathbb{K} = k(\sqrt{-pq\varepsilon_0\sqrt{l}})$ where ε_0 is the fundamental unit of $k = \mathbb{Q}(\sqrt{l})$ with l a prime number congruent to 1 modulo 8, p and q be two primes such that $p \equiv -q \equiv 1 \mod 4$ and $(\frac{p}{l}) = (\frac{q}{l}) = (\frac{p}{q}) = -1$, then $\mathbb{G}_2 \simeq Q_4$.

Proof. According to the Theorem 5, \mathbb{G}_2 is quaternionic of order 2^m with m > 3. Let $\mathbb{K}_0 = \mathbb{Q}(\sqrt{l}, \sqrt{-pq})$, since $(\frac{p}{l}) = (\frac{q}{l}) = (\frac{p}{q}) = -1$, then, according to [10], we have $h_2(\mathbb{K}_0) = 4$, so, using Corollary 2, we find that $\mathbb{G}_2 \simeq Q_4$.

Example 2. Let $\mathbb{K} = \mathbb{Q}(\sqrt{-15(4+\sqrt{17})\sqrt{17}})$, $\mathbb{F}_1 = \mathbb{K}(\sqrt{5})$, $\mathbb{F}_2 = \mathbb{K}(\sqrt{-3})$ and $\mathbb{F}_3 = \mathbb{K}(\sqrt{-15})$. According to the Theorem 5, in each extension \mathbb{F}_i there exist exactly two classes of $C_{2,\mathbb{K}}$ which capitulate and the group \mathbb{G}_2 is quaternionic of order 2^m with m > 3. Furthermore, since $(\frac{5}{3}) = -1$, then, according to the Corollary 3, $\mathbb{G}_2 \simeq Q_4$.

REFERENCES

- A. Azizi, "Sur les unités de certains corps de nombres de degré 8 sur Q," Ann. Sci. Math. Québec, vol. 29, no. 2, pp. 111–129, 2005.
- [2] A. Azizi and M. Talbi, "Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques," Archivum Mathematicum (BRNO), vol. 44, no. 4, pp. 271–284, 2008.
- [3] E. Brown and C. J. Parry, "The 2-class group of certain biquadratic number fields ii," *Pacific Journal of Mathematics*, vol. 78, no. 1, pp. 11–26, 1978.
- [4] M. N. Gras, "Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de Q," Publ. Math. Fac. Sciences de Besançon, Théorie des Nombres, vol. 2, pp. 1–79, 1977–78.
- [5] H. Hasse, "Neue begründung und verallgemeinerung der theorie des normenrestsymbols," J. Reine Angew. Math., vol. 162, pp. 134–144, 1930.
- [6] F. P. Heider and B. Schmithals, "Zur kapitulation der idealklassen in unverzweigten primzyklischen erweiterungen," J. Reine Angew. Math., vol. 366, pp. 1–25, 1982.
- [7] M. Ishida, *The genus fields of algebraic number fields*, ser. Lecture notes in mathematics. London: Springer-Verlag, 1976, vol. 555.
- [8] H. Kisilevsky, "Number fields with class number congruent to 4 modulo 8 and hilbert's theorem 94," J. Number Theory, vol. 8, no. 3, pp. 271–279, 1976.
- [9] F. Lemmermeyer, "Kuroda's class number formula," *Acta Arithmetica*, vol. 66, no. 3, pp. 245–260, 1994.
- [10] T. M. McCall, C. J. Parry, and R. R. Ranalli, "Imaginary bicyclic biquadratic fields with cyclic 2-class group," *Journal of Number Theory*, vol. 53, no. 1, pp. 88–99, 1995.
- [11] K. Miyake, "Algebraic investigations of Hilbert's theorem 94, the principal ideal theorem and capitulation problem," *Expos. Math.*, vol. 7, no. 4, pp. 289–346, 1989.
- [12] H. Suzuki, "A generalisation of Hilbert's theorem 94," Nagoya Math. J., vol. 121, pp. 161–169, 1991.
- [13] L. C. Washington, Introduction to cyclotomic fields (Book 83), 2nd ed., ser. Graduate texts in mathematics. New York: Springer–Verlag, 1997.

Authors' addresses

Abdelmalek Azizi

Mohamed First University, Department of Mathematics and Computer Sciences, Faculty of Sciences, Oujda, Morocco

E-mail address: abdelmalekazizi@yahoo.fr

324

Mohammed Talbi Regional Center of Education and Training, Oujda, Morocco *E-mail address:* talbimm@yahoo.fr