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Abstract. For some imaginary quartic cyclic fields K, we will study the capitulation problem of
the 2-class ideals of K and we will determine the structure of the Galois group of the second
Hilbert 2-class field of K over K.
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1. INTRODUCTION

Let F=L a finite extension of number fields andOL (resp. OF ) the ring of integers
of L (resp. of F ). We say, since Hilbert, that an ideal of OL capitulates in F , if it
becomes principal by extension of scalars to OF , and, of course, when an ideal a
of OL capitulates in F , then the class Œa� of a capitulates in F (ie. ŒaOF � is trivial).
Therefore, the study of the capitulation problem is precisely to describe the group
of all classes of ideals of L which capitulate in F , where F is an unramified abelian
extension of L.

Proposition 1 ([8]). Let G a 2-group of finite order 2m and G0 its derived sub-
group. Then G=G0 is of type .2;2/ if and only if G is isomorphic to one of 2-groups:

Qm D h�;�i where �2
m�2

D �2 D a;a2 D 1;��1�� D ��1I

Dm D h�;�i where �2
m�1

D �2 D 1;��1�� D ��1I

Sm D h�;�i where �2
m�1

D �2 D 1;��1�� D �2
m�2�1

I

.2;2/D h�;�i where �2 D �2 D 1;��1�� D �:

Where Qm is the quaternionic group, Dm the dihedral group, Sm the semi-dihedral
group of order 2m and .2:2/ is an abelian group isomorphic to Z=2Z�Z=2Z.

Suppose that G is a 2-group of finite order 2m such that G=G0 is of type .2;2/,
then G is isomorphic to Qm, Dm, Sm or .2;2/ defined in the Proposition 1. Let
f�;�g generates G such that the relationships cited in the Proposition 1 are verified,
by a simple calculation we can see that the derived subgroup G0 D ŒG;G� D h�2i
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and G has three subgroups of index 2: H1 D h�i, H2 D h�2; �i and H3 D h�2;��i.
Moreover if G is of type .2;2/, then the subgroups Hi are cyclic of order 2, if G'
Q3, then the subgroups Hi are cyclic of order 4 and if G is isomorphic to Qm (m>
3),Dm or Sm, thenH1 is cyclic andH2=H 02 andH3=H 03 are of type .2;2/ whereH 02
(resp. H 03) is the derived subgroup of H2 (resp. H3).

Throughout the remainder of this section we denote by M a number field, M.1/
2 the

first 2-Hilbert class field of M, M.2/
2 the second 2-Hilbert class field of M, CM the

class group of M, C2;M the 2-part of CM, G the Galois group of M.2/
2 =M and G0 its

derived sub-group. Then G0 ' Gal.M.2/
2 =M.1/

2 / and G=G0 ' Gal.M.1/
2 =M/, and

we know from the class field theory that Gal.M.1/
2 =M/' C2;M, so G=G0 ' C2;M.

Definition 1. Let F be a cyclic unramified extension of M and j is the mapping of
CM into CF that maps to the class of an ideal a of M the class of the ideal generated
by a in F . Then the extension F=M is called:

� of type .A/ if and only if #kerj \NF=M.CF / > 1;
� of type .B/ if and only if #kerj \NF=M.CF /D 1.

Now suppose that C2;M'Z=2Z�Z=2Z, then G=G0'Z=2Z�Z=2Z and as G
is a 2-finite group, then G0 is cyclic. Thus the Hilbert 2-class field towers of M ends
in M.2/

2 .
In addition, we know that if G has order 2m and G=G0 ' Z=2Z�Z=2Z, then G
is isomorphic to Qm, Dm, Sm or to Z=2Z�Z=2Z. In all these cases, we have
G0 D h�2i and the three subgroups of index 2 in G are: H1 D h�i,H2 D h�2; �i and
H3 D h�

2;��i, and if G0 ¤ 1, then M.1/
2 ¤M.2/

2 and h�4i is the only subgroup of
G0 of index 2.
Let L the subfield of M.2/

2 left fixed by h�4i, Fi (i D 1;2;3) the subfield of M.2/
2 left

fixed by Hi and ji the mapping j defined for F D Fi .

Theorem 1 ([8]). Assume that G=G0 'Z=2Z�Z=2Z, so we have

(1) If M.1/
2 DM.2/

2 , then the fields Fi are of type .A/, #kerji D 4 for i D 1;2;3
and G'Z=2Z�Z=2Z;

(2) If Gal.L=M/'Q3, then the fields Fi are of type .A/, #kerji D 2 for i D
1;2;3 and G'Q3;

(3) If Gal.L=M/'D3, then the fields F2 and F3 are of type .B/ and #kerj2 D
#kerj3 D 2. Moreover, if F1 is of type .B/ then #kerj1 D 2 and G' Sm. If
F1 is of type .A/ and #kerj1 D 2, then G'Qm. Finally if F1 is of type .A/
and #kerj1 D 4, then G'Dm.
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Theorem 2 ([6]). Let L=M be an unramified cyclic extension of prime degree,
then the number of classes that capitulate in L=M is

ŒL WM�ŒEM WNL=M.EL/�;

where EM .resp. EL/ is the group of units of M .resp. of L/.

For more details about the capitulation problem see [8, 11, 12].

2. UNITS OF SOME NUMBER FIELDS

Proposition 2 ([1]). Let K0 a number field, abelian real and ˇ an algebraic in-
teger in K0, totally positive, without square factors. Assume that F D K0.

p
�ˇ/ is

a quadratic extension of K0, abelian over Q and i D
p
�1 62 F . Let f"1; "2; : : : ; "rg

be a fundamental system of units of K0. We choose, without limiting the generality,
units "j positive. Then we have:

(1) If there is a unit of K0 such that "D "j11 "
j2
2 : : : "

jr�1
r�1 "r .close to a permutation/,

where the jk 2 f0;1g, such that ˇ" is a square in K0, then f"1; : : : ; "r�1;
p
�"g

is a fundamental system of units of F ;
(2) Otherwise f"1; : : : ; "rg is a fundamental system of units of F .

Corollary 1 ([2]). Let LDQ.
p
�n"
p
d/ a cyclic extension of degree 4 over Q,

where " is the fundamental unit of Q.
p
d/ with d a positive integer squarefree and

n a positive integer, then f"g is a fundamental system of units of L.

Theorem 3 ([2]). Let K0DQ.
p
p;
p
p0/ where p and p0 are two different primes

such that p � p0 � 1 mod 4, "1 .resp. "2, "3/ the fundamental unit of Q.
p
p/ .resp.

Q.
p
p0/, Q.

p
pp0// and F D K0.

p
�n"1

p
p/ where n is a positive integer square-

free. Then we have:
(1) If "3 has norm 1, then f"1; "2;

p
"3g is a fundamental system of units of K0

and of F ;
(2) Otherwise, f

p
"1"2"3; "2; "3g is a fundamental system of units of K0 and of

F .

Now, using the results of M. N. Gras [4], we’ll define a fundamental system of

units of real cyclic extension of degree 4 over Q. Let L D k.
q
"0
p
l/ where l is a

prime number congruent to 1modulo 8 and "0 is the fundamental unit of kDQ.
p
l/,

then L=Q is a real cyclic extension of degree 4with Galois groupH D h
i and quad-
ratic subfield k. Since L has conductor FL D l , we have L�Q.l/ and there exists a
character �0 of Gal.Q.l/=Q/' .Z=lZ/� such that ker�0 DGal.Q.l/=L/.
Let �D �0C�0�1, then � is a rational character of Q.l/ and L is fixed by the com-
mon kernel of �0 and �0�1. Let EL be the group of units of L, E� the group of
�-relative units of L, jELj (resp. jE�j) the group of absolute values of EL (resp.
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E�), jELj D jELj˚ jE�j, Q D ŒjELj W jE
Lj� and "� a generator of E�. Then we

have the following result:

Theorem 4 ([4]). Let LD k.
q
"0
p
l/ where l is a prime number congruent to 1

modulo 8 and "0 the fundamental unit of kDQ.
p
l/, then:

(1) QD 2;
(2) There exists � in EL such that �2 D ˙"0"1��� and f�;�� ; ��

2

g is a funda-
mental system of units of L.

Remark 1. Since �2 D˙"0"1��� , then:

(1) �1C� D˙"�;
(2) �1C�

2

D˙"0;
(3) �1C�C�

2C�3 D "1C�
2

� D "1C�0 ;
(4) Nk=Q."0/DNL=k."�/DNL=Q.�/D�1.

Lemma 1. With the same notation of Theorem 4, f�;�� ; ��
2

g is a fundamental
system of units of F D L.

p
�n/ where n is an integer different from 1, relatively

prime to l and square-free.

Proof. By Proposition 2, to show that f�;�� ; ��
2

g is a fundamental system of
units of F it suffices to show that n� is not a square in L, for �D � 01

j1� 02
j2� 03 where

f� 01; �
0
2; �
0
3g D f�;�

� ; ��
2

g and j1;j2 2 f0;1g.
Indeed, if �D � , then if n� D x2 in L, so by calculating the norm in L=k, we find
that �1C�

2

D˙"0 is a square in k, which is impossible.
If �D �� , then if n�� D˙n "�

�
D x2 in L, so by using the norm in L=k, we find that

˙
"
1C�
0

"0
D˙"�10 is a square in k, which is absurd.

If �D ��
2

, then if n��
2

D˙n "0
�
D x2 in L, so by calculating the norm in L=k, we

find that˙ "
2
0

"0
D˙"0 is a square in k, which is not the case.

If �D �1C� D˙"�, then if˙n"� D x2 in L, so by calculating the norm in L=k, we
find that "1C�

2

� D "1C�0 D�1 is a square in k, which is absurd.

If �D �1C�
2

D˙"0, then˙n"0 can not be a square in L.
If �D ��C�

2

, then if n��C�
2

D x2 in L, so by calculating the norm in L=k, we find
that �1C�C�

2C�3 D�1 is a square in k, which is not the case.
If �D �1C�C�

2

, then if n�1C�C�
2

D x2 in L, so by calculating the norm in L=k,
we find that �1C�C�

2C�3�1C�
2

D˙"0 is a square in k, which is impossible, which
completes the proof of the lemma. �
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3. CAPITULATION OF THE 2-IDEAL CLASS OF K AND STRUCTURE OF G2

In the following, let K D k.
q
�pq"0

p
l/ where "0 is the fundamental unit of

kDQ.
p
l/ with l is a prime number congruent to 1 modulo 8, p and q two prime

numbers such that p��q � 1 mod 4 and .p
l
/D .q

l
/D�1, K.1/2 the Hilbert 2-class

field of K, K.2/2 the Hilbert 2-class field of K.1/2 , G2 the Galois group of K.2/2 =K
and for an ideal a of K, we note Œa� the class of a. Then, by [3], C2;K, the 2-class
group of K, is of type .2;2/. Using the Results of [7] for the calculation of the genus
fields of an extension of degree 2s on Q, we find that K.1/2 D K.�/ D K.

p
p;
p
�q/,

where K.�/ is the genus field of K, whose quadratic subfields over K are F1DK.
p
p/,

F2 D K.
p
�q/ and F3 D K.

p
�pq/.

We study the capitulation problem of the 2-ideal classes of K in different sub-quadratic
extension Fi=K of K.1/2 =K, and hence we determine the structure of G2.

k

K

F3

K.1/2

K.2/2

F1 F2

,
,

,
,

l
l

l
l

,
,

,
,

l
l

l
l

Proposition 3. Let K D k.
q
�pq"0

p
l/, P the prime ideal of K above p and

Q that above q. Then the classes ŒP �, ŒQ� and ŒP Q� are of order 2 in K, C2;K is
generated by the classes ŒP � and ŒQ�. Also P capitulates in F1, Q capitulates in F2
and P Q capitulates in F3.

Proof. The class ŒP � has order 2, indeed, since p is inert in k=Q and p ramifies
in K=Q, then P 2 D .p/. Assume that P D .˛/ for some ˛ in K, which is equivalent
to .˛2/D .p/ in K. So there is therefore a unit " of K such that p"D ˛2, but there

exist a and b in k such that ˛ D aC b
q
�pq"0

p
l , thus p" D a2�pq"0

p
lb2C

2ab

q
�pq"0

p
l and as f"0g is a fundamental system of units of K (Corollary 1) and
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i D
p
�1 … K, then p" 2 k, therefore a or b D 0. If b D 0, then p" D a2, thus,

if " has norm 1 (the norm in k=Q), p will be norm in k=Q which is not the case
because .p

l
/ D �1, if " has norm �1 we find that �1 is a square in Q which is

impossible. Similarly, if aD 0 we find that˙l is a square in Q, thus ŒP � has order 2
and similarly one shows that ŒQ� and ŒPQ� orders are 2, therefore C2;K is generated
by ŒP � and ŒQ�. To show that P capitulates in F1, it suffices to see that

p
p 2 F1 and

.
p
p2/ D .p/ in F1, so P capitulated in F1 and even Q capitulated in F2 and P Q

capitulated in F3. �

Proposition 4 ([5]). Let M a number field which contains the m-th roots of unity,
L a finite extension of M, ˛ 2M� and ˇ 2 L�. We denote by P a prime ideal of M,
and P a prime ideal of L above P . ThenY

P

�
ˇ;˛

P

�
m

D

�
NL=M.ˇ/;˛

P

�
m

;

where the product is taken for all prime ideals of L that are above P .

Theorem 5. Let K D k.
q
�pq"0

p
l/ where "0 is the fundamental unit of k D

Q.
p
l/ with l is a prime number congruent to 1 modulo 8, p and q be two prime

numbers such that p � �q � 1 mod 4 and .p
l
/ D .q

l
/ D �1, F1 D K.

p
p/, F2 D

K.
p
�q/ and F3 D K.

p
�pq/. Then in each extension Fi , i 2 f1;2;3g, there exist

exactly two classes of C2;K which capitulate and the group G2 is quaternionic of
order 2m with m> 3.

Proof. Let "2 .resp. "3/ the fundamental unit of Q.
p
p/ .resp. Q.

p
lp//, P the

prime ideal of K above p, Q that above q, then, by Theorem 3, f
p
"0"2"3; "2; "3g is a

fundamental system of units of F1, since NF1=K.
p
"0"2"3/D˙"0 and NF1=K."2/D

NF1=K."3/ D �1, then NF1=K.EF1/ D EK, therefore, by Theorem 2, we found that
only two classes of C2;K capitulate in F1, namely ŒP � and its square. Also the ex-

tension F1=K is of type (B), indeed, let K0 D k.
q
�q"0

p
l/, then we have KK0 D F1,

since NK=k.P / D p and p is unramified in K0=k, then to show that P is inert in
F1=K, it suffices to show that p is inert in K0=k (translation theorem) and for this

we compute the norm residue symbol
�
p;�q"0

p
l

p

�
. Since p 2Q is inert in k=Q and

�q"0
p
l 2 k, therefore using the Proposition 4, we find 
p;�q"0

p
l

p

!
D

 
p;Nk=Q.�q"0

p
l/

p

!
D

�
p;lq2

p

�
D .

l

p
/D�1;

so p is inert in K0=k, which gives that P is inert in F1=K, then F1=K is of type (B).
Similarly, we show that extension F2=K is of type (B), using Theorem 1, only two
classes of C2;K capitulate in F2, namely ŒQ� and its square.
Using the notation of Theorem 4, we have that f�;�� ; ��

2

g is a fundamental system
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of units of F3, since NF3=K.�/D NF3=K.�
�2/D˙"0 and NF3=K.�

� /D˙"�10 , then
we have NF3=K.EF3/ D EK, using Theorem 2, we found that only two classes of
C2;K capitulate in F3, namely ŒPQ� and its square. Moreover, the extension F3=K

is of type (A), indeed, let L D k.
q
"0
p
l/, then we have KL D F3, NK=k.P / D p

and p is unramified in L=k, so to show that P is inert in F3=K, it suffices to show

that p is inert in L=k, for this, we compute the norm residue symbol
�
p;"0
p
l

p

�
. We

have p 2Q is inert in k=Q and "0
p
l 2 k, so by Proposition 4, we have

�
p;"0
p
l

p

�
D�

p;Nk=Q."0
p
l/

p

�
D

�
p;l
p

�
D . l

p
/D�1, therefore p is inert in L=k, what gives that P

is inert in F3=K, and similarly one shows that Q remains inert in F3=K and like P Q

capitulates in F3=K, then by applying the Artin reciprocity law, we find that F3=K
is of type (A), therefore, using Theorem 1, the group G2 is isomorphic to Qm with
m> 3. �

Example 1. Let KDQ.
q
�55.4C

p
17/
p
17/, F1DK.

p
5/, F2DK.

p
�11/ and

F3 D K.
p
�55/. By Theorem 5, in each extension Fi there are exactly two classes of

C2;K which capitulate and G2 'Qm with m> 3.

Corollary 2. With the same notation of Theorem 5, we have #G2 D 4h2.K0/
where K0 DQ.

p
l ;
p
�pq/ and h2.K0/ its 2-class number.

Proof. We have K.1/2 =F3 is an unramified extension and the extension F3=K is
of type .A/, then, according to [8], C2;F3 is cyclic, thus F3 and K.1/2 has the same
Hilbert 2-class field which is K.2/2 , therefore #G2 D 2h2.F3/. Moreover F3=k is a
biquadratic normal extension with Galois group isomorphic to Z=2Z�Z=2Z and

quadratic subfields K, K0 and L D k.
q
"0
p
l/, so, by using [9], page 247, we find

that

h2.F3/D
1

2
q.F3=k/h2.K/h2.K0/h2.L/;

where q.F3=k/ is the unit index of F3=k and h2.F / is the 2-class number of a number
field F . We have h2.K/D 4, according to [13] we have h2.L/D 1, by Corollary 1
we have f"0g is a fundamental system of units of K, using the Proposition 2 we
show that f"0g is a fundamental system of units of K0, according to Lemma 1, we
have f�;�� ; ��

2

g is a fundamental system of units of L and F3, which gives that
q.F3=k/D 1, thus h2.F3/D 2h2.K0/, therefore #G2 D 4h2.K0/. �

Corollary 3. Let K D k.
q
�pq"0

p
l/ where "0 is the fundamental unit of k D

Q.
p
l/ with l a prime number congruent to 1 modulo 8, p and q be two primes such

that p ��q � 1 mod 4 and .p
l
/D .q

l
/D .p

q
/D�1, then G2 'Q4.
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Proof. According to the Theorem 5, G2 is quaternionic of order 2m with m > 3.
Let K0 DQ.

p
l ;
p
�pq/, since .p

l
/D .q

l
/D .p

q
/D�1, then, according to [10], we

have h2.K0/D 4, so, using Corollary 2, we find that G2 'Q4. �

Example 2. Let KDQ.
q
�15.4C

p
17/
p
17/, F1 D K.

p
5/, F2 D K.

p
�3/ and

F3DK.
p
�15/. According to the Theorem 5, in each extension Fi there exist exactly

two classes of C2;K which capitulate and the group G2 is quaternionic of order 2m

with m> 3. Furthermore, since .5
3
/D�1, then, according to the Corollary 3, G2 '

Q4.
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