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Abstract. In this paper, we first introduce the class of generalized nonexpansive mappings in
Banach spaces. This class contains both the classes of nonexpansive and ˛-nonexpansive map-
pings. In addition, we obtain some fixed point and coincidence point theorems for generalized
nonexpansive mappings in uniformly convex Banach spaces. Our results extend some well-
known results in literature.
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1. INTRODUCTION AND PRELIMINARIES.

Recently, Aoyama and Kohsaka [2] introduced the class of ˛-nonexpansive map-
pings in Banach spaces and obtained a fixed point theorem for ˛-nonexpansive map-
pings in uniformly convex Banach spaces. The class of ˛-nonexpansive mappings
contains the class of nonexpansive mappings and is related to the classes of firmly
nonexpansive mappings and �-hybrid mappings in Banach spaces, for more inform-
ation on firmly nonexpansive mappings and �-hybrid mappings see [3], [4], [5], [8],
[1] and references therein.
In this paper, we introduce the class of generalized nonexpansive mappings in Banach
spaces. This class contains the class of ˛-nonexpansive mappings. In addition, we
obtain some fixed point and coincidence point theorems for generalized nonexpans-
ive mappings in uniformly convex and p-uniformly convex Banach spaces. Our fixed
point theorems generalize some of the results obtained in [2].
In the rest of this section, we recall some definitions and facts which will be used in
the next section.
Throughout this paper, every Banach space is real. Let E be a Banach space and let
C be a nonempty subset of E. We denote the fixed point set of T by F.T /. For a
Banach space E, the norm of E is denoted by k:k. Strong convergence of a sequence
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fxng in E to x 2E is denoted by xn! x. For a Banach space E, we denote the unit
sphere and the closed unit ball centered at the origin of E by SE and BE , respect-
ively. We also denote the closed ball with radius r > 0 centered at the origin of E by
rBE . Let E be a Banach space with dimension E � 2. The modulus of convexity of
E is the function ıE W .0;2�! Œ0;1� defined by

ıE .�/D inff1�k
xCy

2
k W kxk D 1;kyk D 1; kx�yk � �g:

A Banach space E is said to be uniformly convex if for each � 2 .0;2�, there exists
ı > 0 such that k .xCy/

2
k� 1�ı whenever x;y 2 SE and kx�yk� �. In other words,

E is uniformly convex if and only if ıE .�/ > 0 for each � 2 .0;2�. Every uniformly
convex Banach space is reflexive [9].
A Banach space E is called p-uniformly convex if there exists a constant c > 0 such
that ıE .�/� c�p for all � 2 .0;2�. Notice that there is no p-uniformly convex Banach
space for p > 2; see, for example [10].
In the sequel we will need the following lemmas.

Lemma 1 ([12]). The Banach space E is uniformly convex if and only if k:k2 is
uniformly convex on bounded convex sets, i.e., for each r > 0 and � 2 .0;2r�, there
exists ı > 0 such that

ktxC .1� t /yk2 � tkxk2C .1� t /kyk2� t .1� t /ı;

for all t 2 .0;1/ and for all x;y 2 rBE with kx�yk � �.

Lemma 2 ([11]). Let 1 < p � 2 be a given real number. Let E be a p-uniformly
convex Banach space. Then, there exists a constant d > 0 such that

ktxC .1� t /ykp � tkxkpC .1� t /kykp� .tp.1� t /C t .1� t /p/dkx�ykp;

for all t 2 .0;1/ and for all x;y 2E.

A function g of a nonempty subset C of a Banach space E into R is said to be
coercive if g.´n/!1 whenever f´ng is a sequence in C such that k´nk!1. Let
l1 denotes the Banach space of bounded real sequences with the supremum norm. It
is known that there exists a bounded linear functional� on l1 such that the following
three conditions hold:

(1) If ftng 2 l1 and tn � 0 for every n 2N, then �.ftng/� 0I
(2) If tn D 1 for every n 2N, then �.ftng/D 1;
(3) �.ftnC1g/D �.ftng/ for all ftng 2 l1.

Such a functional� is called a Banach limit and the value of� at ftng 2 l1 is denoted
by �ntn [9]. Let � be a Banach limit and let ftng 2 l1 be such that limn!1 tn D t ,
then the Banach limit of ftng is also t . It is known that the reflexivity of the Banach
space E implies the following.
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Lemma 3 ([9]). Let E be a reflexive Banach space, let C be a nonempty, closed,
and convex subset of E, and let g W C ! R be a convex, continuous, and coercive
function. Then there exists u 2 C such that g.u/D infg.C /.

Definition 1 ([2]). Let E be a Banach space, let C be a nonempty subset of E,
and let ˛ be a real number such that 0 � ˛ < 1. A mapping T W C ! E is said to be
˛-nonexpansive if

kT x�Tyk2 � ˛kT x�yk2C˛kTy�xk2C .1�2˛/kx�yk2

for all x;y 2 C .

The following is the main result of Aoyama and Kohsaka [2].

Theorem 1. Let E be a uniformly convex Banach space, let C be a nonempty,
closed and convex subset of E, and let T W C ! C be an ˛-nonexpansive mapping
for some real number ˛ such that ˛ < 1. Then F.T / is nonempty if and only if there
exists x 2 C such that fT nxg is bounded.

2. FIXED POINT THEORY

We first give the definition of generalized nonexpansive mappings.

Definition 2. Let E be a Banach space, and let C be a nonempty subset of E.
Let p > 1, ˛1 � 0,...,˛m � 0 with ˙miD1˛i D 1; and let a;b;c;d 2 R with b < ˛1 for
mD 1 and b � ˛1 for m > 1, aC c > 0 and aCbC c � 1. A mapping T W C ! C

is said to be generalized nonexpansive if

˙miD1˛ikT
ix�T iykp � akx�ykpCbkTy�xkpC cky�T xkpCdkx�T xkp

for all x;y 2 C .

In the following, we give an example of a generalized nonexpansive mapping
which is not an ˛-nonexpansive mapping.

Example 1. Let E D R, C D Œ
p
2;
p
3� and let Q denotes the set of rational num-

bers. Let T W C ! C be defined as

T x D

� p
2; x 2Q
p
3: x 62Q

Then T 2x D
p
3 for each x 2 C and so

jT 2x�T 2yj2 D 0� jx�yj2; for each x;y 2 Œ
p
2;
p
3�:

Thus T is a generalized nonexpansive map. Now, we show that T is not ˛-nonexpansive.
On the contrary, assume that there exists 0� ˛ < 1 such that

jT x�Tyj2�˛jT x�yj2C˛jTy�xj2C.1�2˛/jx�yj2; for each x;y 2 Œ
p
2;
p
3�:
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Let x 2Q and y 62Q with
p
2 < x < y <

p
3. Then from the above we would have

.
p
3�
p
2/2 � ˛j

p
2�yj2C˛j

p
3�xj2C .1�2˛/jx�yj2

< ˛.
p
3�
p
2/2C˛.

p
3�
p
2/2C .1�2˛/.

p
3�
p
2/2 D .

p
3�
p
2/2;

a contradiction.

Now, we are ready to state our first main result.

Theorem 2. Let E be a Banach space, let C be a nonempty, closed, and convex
subset of E, and let T W C ! C be a generalized nonexpansive mapping. Assume
that E is uniformly convex if p D 2 and assume that E is p-uniformly convex for
1<p <2. Then

Sm
iD1F.T

i /¤¿ if there exists x0 2C such that fT nx0g is bounded
and either d D 0 or limn!1 kT nx0�T nC1x0kD 0. Moreover, if

Sm
iD1F.T

i /¤¿
then there exists x0 2 C such that fT nx0g is bounded.

Proof. Notice first that if x0 2
Sm
iD1F.T

i / then there exists 1� j �m such that
T jx0 D x0 and so fT nx0 W n 2Ng D fT x0; :::;T jx0g. Thus the sequence fT nx0g is
bounded. Now assume that there exists x0 2 C such that fT nx0g is bounded. Let �
be a Banach limit and let y 2 C be given. For each bounded sequence ftng 2 l1 the
value of � at ftng 2 l1 is denoted by �ntn. Since T is generalized nonexpansive, we
have

˙miD1˛ikT
nCix0�T

iykp

� akT nx0�yk
p
CbkTy�T nx0k

p

C cky�T nC1x0k
p
CdkT nx0�T

nC1x0k
p;

for all n 2N, where p > 1, ˛i � 0,˙miD1˛i D 1; b < ˛1, aCc > 0 and aCbCc � 1.
Since � is a Banach limit, we have

˙miD1˛i�nkT
nCix0�T

iykp

� a�nkT
nx0�yk

p
Cb�nkTy�T

nx0k
p

C c�nky�T
nC1x0k

p
Cd�nkT

nx0�T
nC1x0k

p:

Thus by our assumptions

.
˛1�b

aC c
/�nkT

nx0�Tyk
p
C˙miD2

˛i

aC c
�nkT

nx0�T
iykp � �nkT

nx0�yk
p

(2.1)
Let g W C ! R be a function defined by g.y/ D �nkT nx0�ykp for all y 2 C .

Now we assert that g is a convex, continuous, and coercive function. The convexity
of g follows immediately from Lemmas 1 and 2. We show that g is continuous. Let
fymg be a sequence in C such that ym! y. Then by the mean value theorem, we
have

jkT nx0�ymk
p
�kT nx0�yk

p
j D jkT nx0�ymk�kT

nx0�ykjjpc
p�1
m;n j;
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for all m;n 2N, where

minfkT nx0�ymk;kT nx0�ykg � cm;n �maxfkT nx0�ymk;kT nx0�ykg:

Hence

jkT nx0�ymk
p
�kT nx0�yk

p
j

� jkT nx0�ymk�kT
nx0�ykjp.kT

nx0�ymkCkT
nx0�yk/

p�1

� kym�yksupfp.kT nx0�ymkCkT nx0�yk/p�1 Wm;n 2Ng;

for all m;n 2N. This shows that the function h W C ! l1 defined by

h.´/D fkT nx0�´k
p
gn; ´ 2 C

is continuous. Thus gD �ıh is also continuous. We next show that g is coercive. If
f´mg is a sequence in C such that k´mk!1, then we have

kT nx0�´mk
p
� .jk´mk�kT

nx0kj/
p

and hence g.´m/!1:
It follows from Lemma 3 that there exists u 2 C such that g.u/ D infg.C /. Now,
we prove that such a point u is unique. Suppose that there exist u1;u2 2 C such
that u1 ¤ u2 and g.u1/ D g.u2/ D infg.C /. If p D 2 then from Lemma 1 for
� Dk u1�u2 k> 0, we have ı > 0 such that

k
1

2
.T nx0�u1/C

1

2
.T nx0�u2/k

2
�
1

2
kT nx0�u1k

2
C
1

2
kT nx0�u2/k

2
� ı;

for all n 2N. If 2¤ p > 1 then from Lemma 2, we get

k
1

2
.T nx0�u1/C

1

2
.T nx0�u2/k

p

�
1

2
kT nx0�u1k

p
C
1

2
kT nx0�u2/k

p
� .
1

2
/pdku1�u2k;

for all n 2N. The above inequalities imply that g.u1Cu2

2
/ < infg.C /. On the other

hand, since u1Cu2

2
2 C , we have infg.C /� g.u1Cu2

2
/, a contradiction. Hence there

exists a unique u 2 C such that g.u/D infg.C /. Now we show that there exists j 2
f1;2; :::;mg such that g.T ju/� g.u/. On the contrary, assume that g.u/ < g.T iu/,
for each 1� i �m. Since by our assumptions ˛1�b

aCc
C˙miD2

˛i

aCc
� 1 then, we get

g.u/ <
˛1�b

aC c
g.T u/C˙miD2

˛i

aC c
g.T i /

which contradicts (2.1). Hence there exists j 2 f1;2; :::;mg such that g.T ju/� g.u/.
By the assumption on T , we also know that T ju 2 C , and so T ju D u for some
j 2 f1;2; :::;mg. �

Theorem 2 immediately implies the following corollary.
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Corollary 1. LetE be a uniformly convex Banach space, and letC be a nonempty,
closed, and convex subset of E. Let T W C ! C be a mapping satisfying

kT x�Tyk2 � akx�yk2CbkT x�yk2C ckx�Tyk2Cdkx�T xk2;

for all x;y 2C , where b < 1, aCc > 0 and aCbCc � 1. Then F.T / is nonempty if
there exists x0 2C such that fT nx0g is bounded and either d D 0 or limn!1 kT nx0�
T nC1x0k D 0.

The following corollary is a new coincident point result.

Corollary 2. LetE be a uniformly convex Banach space, and letC be a nonempty,
closed, bounded and convex subset ofE. Let T WC !C and S WC !C be mappings
such that T .C / � S.C / and S.C / is convex and closed. Assume that T and S
satisfying

kT x�Tyk2 � .1�2˛/kSx�Syk2C˛kT x�Syk2C˛kSx�Tyk2;

for all x;y 2 C , where 0 � ˛ < 1. Then T and S have a coincidence point, that is,
there exists u 2 C such that T uD Su.

Proof. We use the technique in [6]. There exists D � C such that S.D/D S.C /
and S WD!C is one-to-one. Now, define a mapR WS.D/!S.D/ byR.Sx/DT x.
Since S is one-to-one on D and T .C /� S.C /, R is well-defined. Note that

kR.Sx/�R.Sy/k2 D kT x�Tyk2

� .1�2˛/kSx�Syk2C˛kT x�Syk2C˛kSx�Tyk2

D .1�2˛/kSx�Syk2C˛kR.Sx/�Syk2C˛kSx�R.Sy/k2

for all Sx;Sy 2 S.D/. Since S.D/ D S.C / is convex, closed and bounded, by
using Corollary 1, R has a fixed point in S.C /, that is, there exists u 2 C such that
R.Su/D Su, and so T uD Su. �

Corollary 3. Let 1 < p < 2, E be a p-uniformly convex Banach space, and let
C be a nonempty, closed, and convex subset of E. Let T W C ! C be a mapping
satisfying

kT x�Tykp � .1�2˛/kx�ykpC˛kT x�ykpC˛kx�Tykp;

for all x;y 2 C , where 0 � ˛ < 1. Then F.T / is nonempty if and only if there exists
x0 2 C such that fT nx0g is bounded.

Corollary 4. Let 1 < p < 2, E be a p-uniformly convex Banach space, and let
C be a nonempty, closed, and convex subset of E. Let T W C ! C be a mapping
satisfying

kT x�Tykp � .1�2˛/kx�ykpC˛kT x�ykpC˛kx�Tykp;

for all x;y 2 C , where 0 � ˛ < 1. Then F.T / is nonempty if and only if there exists
x0 2 C such that fT nx0g is bounded.
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By the same technique as in the proof of Corollary 2, we can deduce the following
coincidence point result from Corollary 4. For some previous studies of coincident
point theory, see [7].

Corollary 5. Let 1 < p < 2, E be a p-uniformly convex Banach space, and let
C be a nonempty, closed, bounded and convex subset of E. Let T W C ! C and
S W C ! C be mappings such that T .C / � S.C / and S.C / is convex and closed.
Assume that T and S satisfying

kT x�Tykp � .1�2˛/kSx�SykpC˛kT x�SykpC˛kSx�Tykp;

for all x;y 2 C , where 0 � ˛ < 1. Then T and S have a coincidence point, that is,
there exists u 2 C such that T uD Su.
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