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Abstract. Let H be a subgroup of a finite group G. We say that: (1) H is � -quasinormal in G if
H permutes with every Sylow subgroup Q of G such that .jH j; jQj/D 1 and .jH j; jQG j/¤ 1;
(2)H is � -supplemented inG ifG has a subgroup T ofG such thatGDHT andH \T �H�G ,
where H�G is the subgroup generated by all those subgroups of H which are � -quasinormal in
G. We investigate the influence of � -supplemented subgroups on the structure of finite groups.
Some recent known results are generalized and unified.
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1. INTRODUCTION

This paper deals with finite groups. We use the standard terminology as in [10]. G
denotes always a group, jGj is the order of G and the set of distinct primes dividing
jGj will be denoted by �.G/. A group G is called p-supersolvable if it is p-solvable
and all its G-chief p-factors are cyclic. A group G is called p-nilpotent if it is p-
solvable and all its G-chief p-factors are central in G. Obviously, a p-nilpotent
group is also a p-supersolvable group and G is supersolvable (or nilpotent) if and
only if G is p-supersolvable (or p-nilpotent) for any p 2 �.G/. If G D HK and
K is p-supersolvable (or supersolvable, p-nilpotent), then we call that H has a p-
supersolvable (or supersolvable, p-nilpotent) supplement K in G.

A subgroupH of a groupG is said to be S -quasinormal (or S -permutable) inG if
H permutes with all Sylow subgroups of G, i.e.,HS D SH for any Sylow subgroup
S of G. This concept was first introduced by Kegel in [12]. Later, many authors
generalized S -quasinormal concept; see, for example, [5, 13, 14, 34]. A subgroup H
is said to be s-semipermutable in G if H permutes with every Sylow p-subgroup
of G such that .p; jH j/ D 1. More recently, Lukanenko and Skiba [19] introduced
the concept of � -quasinormal subgroup as follows: A subgroup H of G is said to
be � -quasinormal in G if H permutes with every Sylow subgroup Q of G such that
.jH j; jQj/ D 1 and .jH j; jQG j/ ¤ 1. It is clear that s-semipermutability implies
� -quasinormality by definition; however, the converse is not true, as seen in [20,
Example 1].
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On the other hand, some subgroups with supplemented properties were introduced
recently. In particular, Ballester-Bolinches, Wang and Guo [7] called that a subgroup
H of a group G is c-supplemented in G if there is a subgroup K of G such that G D
HK andH \K �HG , whereHG is the normal core ofH inG. In 2007, Skiba [25]
again gave the concept of S -supplemented subgroup as follows: A subgroupH of G
is called S -supplemented in G if there exists a subgroup K such that G DHK and
H \K �HsG , where HsG is the subgroup of H generated by all those subgroups
of H which are S -quasinormal in G. If we take G D< a;b j a16 D b4 D 1;ba D
a3b >, then < b2 > is an S -supplemented subgroup of G. However < b2 > is not
c-supplemented inG. Hence, S -supplemented subgroups generalize c-supplemented
subgroups.

There is no obvious general relationship between � -quasinormal subgroups and
S -supplemented subgroups. Hence it is meaningful to unify and generalize above
series subgroups. On the basis of these definitions, we now introduce the following
new concept:

Definition 1. A subgroup H of a group G is said to be � -supplemented in G if G
has a subgroup T of G such that G D HT and H \T � H�G , where H�G is the
subgroup generated by all those subgroups of H which are � -quasinormal in G.

The next two examples show that the class of all � -supplemented subgroups is wi-
der than the class of all � -quasinormal subgroups and the class of all S -supplemented
subgroups.

Example 1. Let G D S4 be the symmetric group of degree 4 and H D< .14/ >.
Obviously, H is � -supplemented in G. However, H is not � -quasinormal in G.

Example 2. Let G D< a;b;c j a5 D b4 D c5 D 1;b�1ab D a2; Œa;c� D Œb;c� D
1 > and H D< b2 >. It is easy to see that H is � -supplemented in G, but not S -
supplemented in G.

Let F be a class of groups. We call F a formation provided that (i) if G 2 F and
H E G, then G=H 2 F , and (ii) if G=M and G=N are in F , then G=.M \N/ is
in F for any normal subgroups M;N of G. A formation F is said to be saturated
if G=˚.G/ 2 F implies that G 2 F . In this paper, U and N will denote the class
of all supersolvable groups and the class of all nilpotent groups, respectively. It is
well known that both U and N are saturated formations. A chief factor H=K of
a group G is called F -central provided ŒH=K�.G=CG.H=K// 2 F . The product
of all normal subgroups of G whose G-chief factors are F -central in G is called
the F -hypercentre of G and denoted by ZF .G/. Noticing that for any N -central
chief factor H=K of G we have CG.H=K/ D G. Hence the N -hypercentre of G
coincides with the hypercentre Z1.G/ of G. Another fact is that any chief factor
of G under ZU.G/ is of prime order. The major aim of the present paper is to find
cyclicity conditions for G-chief factors of normal subgroups of a group G by some
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� -supplemented subgroups. As their applications, we not only extend some known
results in [1, 2, 4, 7, 9, 15, 16, 22, 28, 29, 32], but also give more simple proofs.

2. PRELIMINARIES

Lemma 1 ([19, Lemma 2.3]). Let G be a group and E �K �G.
.1/ If E is � -quasinormal in G, then E is � -quasinormal in K.
.2/ Suppose that E is normal in G and �.K=E/D �.K/. If K is � -quasinormal

in G, then K=E is � -quasinormal in G=E.
.3/ Suppose that E is normal in G. Then HE=E is � -quasinormal in G=E fore

every � -quasinormal subgroup E in G satisfying .jH j; jEj/D 1.
.4/ If E is � -quasinormal in G and E � Op.G/ for some prime p, then E is

S -quasinormal in G.

Lemma 2. Let H be a � -supplemented subgroup of a group G.
.1/ If H � L�G, then H is � -supplemented in L.
.2/ If E E G, E �H � G and H is a p-group for some prime p, then H=E is

� -supplemented in G=E.
.3/ If H is a �-subgroup and E is a normal � 0-subgroup of G, then HE=E is

� -supplemented in G=E.

Proof. By the hypothesis, there is a subgroup K of G such that G D HK and
H \K �H�G .
.1/ LDL\HK DH.L\K/ andH \.L\K/DH \K �H�G �H�K . Hence

H is � -supplemented in L.
.2/ We have G=E D HK=E D H=E �EK=E and .H=E/\ .KE=E/ D .H \

KE/=E D .H \K/E=E � H�GE=E D H�G=E � .H=E/�.G=E/ by Lemma 1.
Hence H=E is � -supplemented in G=E.
.3/ Since .jG W Kj; jEj/ D 1 and E E G, we have E � K. It is easy to see that

G=E DHE=E �KE=E DHE=E �K=E and .HE=E/\.K=E/D .HE\K/=E D
.H \K/E=E � H�GE=E � .HE=E/�.G=E/ by Lemma 1. Hence HE=E is � -
supplemented in G=E. �

Lemma 3 ([33, p.38, Theorem 7.19]). Let H be a normal subgroup of G. Then
H �ZU.G/ if and only if H=˚.H/�ZU.G=˚.H//.

Lemma 4 ([26, Lemma A]). Let E be a normal subgroup of a group G. Suppose
that for every non-cyclic Sylow subgroup P of E, either all maximal subgroups of P
or all cyclic subgroups of P of prime order and order 4 are S -supplemented in G.
Then each G-chief factor below E is cyclic.

Lemma 5 ([8, p.362, Proposition 3.11]). If F1 and F2 are two saturated forma-
tions such that F1 � F2, then ZF1

.G/�ZF2
.G/.

The generalized Fitting subgroup F �.G/ of G is the unique maximal normal qu-
asinilpotent subgroup of G. F �.G/ is an important subgroup of G and it is a natural
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generalization of F.G/. The definition and important properties can be found in
[11, Chapter X].

Lemma 6 ([11, X, 13]). Let G be a group. Then:
.1/ If F �.G/ is solvable, then F �.G/D F.G/.
.2/ CG.F

�.G//� F.G/.

Lemma 7 ([27, Theorem C]). Let E be a normal subgroup of a group G. If
F �.E/�ZU.G/, then E �ZU.G/.

Lemma 8 ([10, p.434, Satz 5.4 and p.281, Satz 5.2]). If G is a group which is
not p-nilpotent but all of its proper subgroups are p-nilpotent, then it is a minimal
non-nilpotent group .that is, G is not nilpotent but all of its proper subgroups are
nilpotent/. Then
.1/ G has a normal Sylow p-subgroup P for some prime p and G D PQ, where

Q is a non-normal cyclic q-subgroup for some prime q ¤ p.
.2/ P=˚.P / is a minimal normal subgroup of G=˚.P /.
.3/ If P is non-abelian and p > 2, then the exponent of P is p; If P is non-abelian

and p D 2, then the exponent of P is 4.
.4/ If P is abelian, then the exponent of P is p.

Lemma 9 ([28, Lemma 2.8]). Let M be a maximal subgroup of G, P a normal
p-subgroup of G such that G D PM , where p is a prime. Then P \M is a normal
subgroup of G.

Lemma 10 ([33, p.220, Theorem 6.3]). Let P be a normal p-subgroup of G such
that jG=CG.P /j is a power of p. Then P �Z1.G/.

3. MAIN RESULTS

Theorem 1. Suppose that p is the smallest prime dividing the order of a group
G and G has a normal subgroup E such that G=E is p-nilpotent. If every cyclic
subgroupH of E with prime order p or order 4 .if pD 2/ having no p-supersoluble
supplement in G is � -supplemented in G, then G is p-nilpotent.

Proof. Suppose that the theorem is false, and let G be a counterexample of mini-
mal order .

(1) The hypotheses are inherited by all proper subgroups of G and G is a group
which is not nilpotent but whose proper subgroups are all nilpotent.

In fact, 8K < G, since G=E is p-nilpotent, K=.K \E/ Š KE=E is also p-
nilpotent. Let H be any cyclic subgroup of K\E with prime order p or order 4 (if
p D 2). Obviously, H is a cyclic subgroup of E with prime order p or order 4. If H
has a p-supersoluble supplement T in G, then H has a p-supersoluble supplement
T \K inK. IfH is � -supplemented inG, thenH is � -supplemented inK by Lemma
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2(1). Thus K satisfies the hypotheses of the theorem. By the choice of G, K is p-
nilpotent. Then G is a group which is not p-nilpotent but whose proper subgroups
are all p-nilpotent. By Lemma 8, G D PQ and P EG.

(2) G=.P \E/ is p-nilpotent.
Since G=P Š Q is p-nilpotent, G=E is p-nilpotent and G=.P \E/ . G=P �

G=E, we have G=.P \E/ is p-nilpotent.
(3) P �E.
IfP —E, thenP \E <P . SoQ.P \E/<QP DG. ThusQ.P \E/ is nilpotent

by Step (1) and so Q.P \E/ D Q� .P \E/. Since G=.P \E/ D P=.P \E/ �
Q.P \E/=.P \E/, it follows that Q.P \E/=.P \E/E G=.P \E/ by Step (2).
Now Q char Q.P \E/EG implies that G D P �Q, a contradiction.

(4) For every cyclic subgroup L of P with order p or 4, if there is a subgroup T
of G such that G D LT , then T DG.

Let L be a cyclic subgroup of prime order p or of order 4 in P and assume
that there exists a subgroup T of G such that G D LT . Obviously, P D P \G D
P \LT D L.P \T /. Since P=˚.P / is abelian, we have .P \T /˚.P /=˚.P / E
G=˚.P /. By Step (1), P \T � ˚.P / or P D .P \T /˚.P /D P \T . If the for-
mer holds, then L D P and so G is p-nilpotent by [24, P.280, Theorem 10.1.9], a
contradiction. Hence P D P \T and T DG.

(5) Every cyclic subgroupL ofP with prime order p or of order 4 is S -quasinormal
in G.

If L has a p-supersoluble supplement T in G, then G D T is p-supersoluble
by Step (4) and so G is p-nilpotent since p is the smallest prime dividing jGj, a
contradiction. Thus we may assume all cyclic subgroups of P with order p or 4 are
� -supplemented in G. In view of Step (4), all cyclic subgroups of P with order p or
4 are � -quasinormal in G. By Lemma 1(4), all cyclic subgroups of P with order p
or 4 are S -quasinormal in G.

(6) Final contradiction.
For every x 2 P , we have j < x > j D p or 4 by Step (1), and so < x > is S -

quasinormal inG by Step (5). By [24, P.280, Theorem 10.1.9], we have< x >Q is a
proper subgroup of G, and so < x >QD< x > �Q by Step (1). Then we conclude
that G D P �Q, a contradiction. �

Theorem 2. Suppose that P is a normal p-subgroup of a group G. If every cyclic
subgroup of P with order p or 4 .if p D 2/ having no p-supersoluble supplement in
G is � -supplemented in G, then P �ZU.G/.

Proof. We distinguish two cases:
Case I. p D 2.
Pick an arbitrary Sylow q-subgroupGq ofG, where q¤ 2. Consider the subgroup

W D GqP . Let L be a cyclic subgroup of P with order 2 or 4. If L has a 2-
supersoluble supplement T in G, then L has a 2-supersoluble supplement T \W in
W . If L is � -supplemented in G, then L is also � -supplemented in W by Lemma
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2(1). Applying Theorem 1, we have W is 2-nilpotent. Hence W D P �Gq . This
implies that Op.G/ � CG.P /. In view of Lemma 10, P � Z1.G/. Consequently,
P �ZU.G/ from Lemma 5.

Case II. p > 2.
First suppose that some cyclic subgroup L of P with order p has a p-supersoluble

supplement T in G. So G D LT D PT . If T D G, then P � ZU.G/ and we are
done. Hence we may assume that T < G, which shows that L\T D 1 and T is a
maximal subgroup ofG. Clearly, P DP \LT DL.P \T / and P \T is a maximal
subgroup of P . By Lemma 9, P \T is normal in G. Since every cyclic subgroup of
P \T with order p having no p-supersoluble supplement in G is � -supplemented in
G, P \T � ZU.G/ by induction. Noticing that P=.P \T / is a normal subgroup
of G=.P \T / with order p, we have P=.P \T / � ZU.G=P \T /. It follows that
P � ZU.G/. Now we may assume that all cyclic subgroups of P with order p are
� -supplemented inG. From Lemma 1(4) we have that all cyclic subgroups of P with
order p are S -supplemented in G since P � Op.G/. In view of Lemma 4, we have
also P �ZU.G/. �

Theorem 3. LetE be a normal subgroup of a groupG. Suppose that for each p 2
�.E/ and non-cyclic Sylow p-subgroup P ofE, all cyclic subgroups of P with order
p or 4 .if p D 2/ having no p-supersoluble supplement in G are S -supplemented in
G. Then E �ZU.G/.

Proof. Let q be the smallest prime dividing jEj and L a cyclic subgroup of the
Sylow q-subgroup Q of E with order q or 4 (if q D 2). If L has a q-supersoluble
supplement T in G, then L has a q-supersoluble supplement T \E in E. If L is � -
supplemented in G, then L is also � -supplemented in E by Lemma 2(1). In view of
Theorem 1, E is q-nilpotent. Let Eq0 be the normal q0-complement of E. If E DQ,
thenE �ZU.G/ by Theorem 2. Hence we may assume thatEq0 ¤ 1. SinceEq0 char
E E G, Eq0 E G. By the hypothesis of the theorem, for each p 2 �.Eq0/ and non-
cyclic Sylow p-subgroup P of Eq0 , all cyclic subgroups of P with order p having
no p-supersoluble supplement in G are S -supplemented in G. By induction, Eq0 �

ZU.G/. By Lemma 2(3), it is easy to see that all cyclic subgroups of QEq0=Eq0

with order q or 4 .if q D 2/ having no q-supersoluble supplement in G=Eq0 are
S -supplemented in G=Eq0 . By induction, we have also E=Eq0 � ZU.G=Eq0/. It
follows that E �ZU.G/. �

Corollary 1. LetE be a normal subgroup of a groupG. Suppose that every cyclic
subgroup of each non-cyclic Sylow subgroup ofE with prime order or order 4 having
no supersoluble supplement in G are S -supplemented in G. Then E �ZU.G/.

Theorem 4. Let P be a normal p-subgroup of a group G, where p is a prime
dividing the order of G. Suppose that every maximal subgroup of P having no p-
supersoluble supplement in G is � -supplemented in G. Then P �ZU.G/.
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Proof. We distinguish two cases:
Case I. ˚.P /¤ 1.
Obviously, P=˚.P / is a normal p-subgroup of G=˚.P /. Let P1=˚.P / be a

maximal subgroup of P=˚.P /. Then P1 is a maximal subgroup of P . If P1 has a
p-supersoluble supplement T in G, then P1=˚.P / has a p-supersoluble supplement
T˚.P /=˚.P / in G=˚.P /. If P1 is � -supplemented in G, then P1=˚.P / is � -
supplemented in G=˚.P / by Lemma 2. Therefore, G=˚.P / satisfies the hypothesis
of the theorem. By induction, P=˚.P / � ZU.G=˚.P //. In view of Lemma 3, we
have P �ZU.G/.

Case II. ˚.P /D 1.
This shows that P is abelian. First suppose that some maximal subgroup V of

P has a p-supersoluble supplement T in G. Then G D V T D PT and P \T ¤
1. Since P \ T E T , we may assume that T has a minimal normal subgroup N
contained in P \T . It is clear that jN j D p. From G D PT , we have N is also
normal inG. With the similar argument in Case I, the hypothesis of the theorem holds
for .G=N;P=N/. By induction, we have P=N � ZU.G=N/. It follows that P �
ZU.G/. Now we may assume that every maximal subgroup of P is � -supplemented
in G. In view of Lemma 1, every maximal subgroup of P is S -supplemented in G
since P �Op.G/. Then we have also P �ZU.G/ by Lemma 4. �

Corollary 2. Let P be a normal p-subgroup of G. Suppose that every maximal
subgroup of P having no supersoluble supplement in G is � -supplemented in G.
Then P �ZU.G/.

In connection with Theorem 3 and Lemma 4 the following natural question arises:

Question. Let E be a normal subgroup of a group G. Suppose that for every non-
cyclic Sylow subgroup P of E all maximal subgroups of P having no supersoluble
supplement in G are � -supplemented in G. Is then E �ZU.G/?

4. SOME APPLICATIONS

Theorem 5. Let F be a saturated formation containing U. Suppose that G is
a group with a solvable normal subgroup E such that G=E 2 F . If every maxi-
mal subgroup of each non-cyclic Sylow subgroup of F.E/ having no supersoluble
supplement in G is � -supplemented in G, then G 2 F .

Proof. By Theorem 4, F.E/ � ZU.G/. Since U � F , we have that F.E/ �
ZF .G/ by Lemma 5. In view of the solvability of E and Lemma 6, F �.E/ D
F.E/ � ZF .G/. By Lemma 7, E � ZF .G/. Since G=ZF .G/ Š

.G=E/=.ZF .G/=E/ 2 F , we have G 2 F . �

Theorem 6. Let F be a saturated formation containing U. If there is a normal
subgroup E of a group G such that G=E 2 F and every cyclic subgroup of E with
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prime order or order 4 having no supersoluble supplement in G is � -supplemented
in G, then G 2 F .

Proof. Since E �ZU.G/ by Theorem 3 and ZU.G/�ZF .G/ by Lemma 5, we
have E � ZF .G/. Hence G=ZF .G/ Š .G=E/=.ZF .G/=E/ 2 F . It follows that
G 2 F . �

Theorem 7. Let F be a saturated formation containing U and let G be a group.
If there is a normal subgroup E such that G=E 2 F and every cyclic subgroup of
F �.E/ with prime order or order 4 having no supersoluble supplement in G is � -
supplemented in G, then G 2 F .

Proof. By Theorem 3, F �.E/�ZU.G/ and since ZU.G/�ZF .G/ by Lemma
5, we have F �.E/ � ZF .G/. In view of Lemma 7, E � ZF .G/. Hence G 2 F

since G=E 2 F . �

Theorem 8. Let F be a saturated formation containing U. Suppose that G is
a group with a solvable normal subgroup E such that G=E 2 F . If every cyclic
subgroup of F.E/ with prime order or order 4 having no supersoluble supplement in
G is � -supplemented in G, then G 2 F .

Proof. Since E is solvable, F �.E/D F.E/ by Lemma 6. Applying Theorem 7,
we have G 2 F . �

Corollary 3 ([22, Theorem 3.1]). Assume that G is solvable and every maximal
subgroup of the Sylow subgroups of F.G/ is normal in G. Then G is supersolvable.

Corollary 4 ([4, Corollary 4.4]). Suppose thatG is a solvable group with a normal
subgroup E such that G=E is supersolvable. If all maximal subgroups of any Sylow
subgroup of F.E/ are S -quasinormal in G, then G is supersolvable.

A subgroup H of a group G is c-normal in G if there is a normal subgroup K of
G such that G DHK and H \K �HG , where HG is the normal core of H in G.

Corollary 5 ([15, Theorem 2]). Let G be a group and E a solvable normal subg-
roup of G such that G=E is supersolvable. If every maximal subgroup of each Sylow
subgroup of F.E/ is c-normal in G, then G is supersolvable.

Corollary 6 ([34, Theorem 2]). Let F be a saturated formation containing U, the
class of all supersolvable groups. Suppose that G is a group with a solvable normal
subgroup E such that G=E 2 F . If all maximal subgroups of all Sylow subgroups of
F.E/ are s-semipermutable in G, then G 2 F .

Corollary 7 ([16, Theorem 1.2]). Suppose that G is a solvable group with a nor-
mal subgroup E such that G=E is supersolvable. If every maximal subgroup of each
Sylow subgroup of F.E/ is complement in G, then G is supersolvable.
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Corollary 8 ([30, Theorem 1]). Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup E such that G=E 2 F .
If every maximal subgroup of each Sylow subgroup of F.E/ is c-normal in G, then
G 2 F .

Corollary 9 ([1, Theorem 1.4]). Let F be a saturated formation containing U.
Suppose that G is a solvable group with a normal subgroup E such that G=E 2 F .
If every maximal subgroup of each Sylow subgroup of F.E/ is S -quasinormal in G,
then G 2 F .

Corollary 10 ([28, Theorem 4.5]). Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup E such that G=E 2 F .
If every maximal subgroup of each Sylow subgroup of F.E/ is c-supplemented in G,
then G 2 F .

Corollary 11 ([9, Theorem 1.6]). Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup E such that G=E 2 F .
If every maximal subgroup of each Sylow subgroup of F.E/ is complemented in G,
then G 2 F .

A subgroup H is called Q-supplemented in a group G, if there exists a subgroup
K of G such that G D HK and H \K is contained in HQG , where HQG is the
maximal quasinormal subgroup of G contained in H .

Corollary 12 ([21, Theorem 3.6]). Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup E such that G=E 2 F .
If every maximal subgroup of each Sylow subgroup of F.E/ is Q-supplemented in
G, then G 2 F .

Corollary 13 ([34, Theorem 3]). Let F be a saturated formation containing U.
If there is a normal subgroup E of G such that G=E 2 F and every cyclic subgroup
of E with prime order or order 4 is s-semipermutable in G, then G 2 F .

Corollary 14 ([29, Theorem 4.2]). If every cyclic subgroup of a group G with
prime order or order 4 is c-normal in G, then G is supersolvable.

Corollary 15 ([35, Theorem 3.1]). Let G be a group and E a normal subgroup
of a group G such that G=E is supersolvable. If every minimal subgroup of E is
c-supplemented in G and if every cyclic subgroup of E with order 4 is c-normal in
G, then G is supersolvable.

Corollary 16 ([7, Theorem 4.1]). If every cyclic subgroup ofGU with prime order
or order 4 is c-supplemented in G, then G is supersolvable.

Corollary 17 ([23, Theorem 3.9]). Let F be a saturated formation containing U.
Then G 2 F if and only if there is a normal subgroup E of G such that G=E 2 F

and the subgroups prime order or order 4 of E with are c-normal in G.
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Corollary 18 ([2, Theorem 1]). Let F be a saturated formation containing U. If
there is a normal subgroup E of G such that G=E 2 F and every cyclic subgroup of
E with prime order or order 4 is S -quasinormal in G, then G 2 F .

Corollary 19 ([6, Theorem 3.4]). Let F be a saturated formation containing U.
If every cyclic subgroup of GF with prime order or order 4 is c-normal in G, then
G 2 F .

Corollary 20 ([31, Theorem 3.2]). Let F be a saturated formation containing U

and let G be a group. If there is a normal subgroup E such that G=E 2 F and the
subgroups of F �.E/ with prime order or order 4 are c-normal in G, then G 2 F .

Corollary 21 ([18, Theorem 3.3]). Let F be a saturated formation containing U

and let G be a group. If there is a normal subgroup E such that G=E 2 F and
the subgroups of F �.E/ with prime order or order 4 are S -quasinormal in G, then
G 2 F .

Corollary 22 ([32, Theorem 1.2]). Let F be a saturated formation containing U

and let G be a group. If there is a normal subgroup E such that G=E 2 F and
the subgroups of F �.E/ with prime order or order 4 are c-supplemented in G, then
G 2 F .

Corollary 23 ([3, Corollary 1]). Suppose thatG is a group with a normal solvable
subgroup E such that G=E is supersolvable. If every subgroup of F.E/ of prime
order or order 4 is S -quasinormal in G, then G is supersolvable.

Corollary 24 ([15, Theorem 3]). Let G be a group and E a solvable normal
subgroup of G such that G=E is supersolvable. If all minimal subgroups and all
cyclic subgroups of F.E/ with order 4 are c-normal in G, then G is supersolvable.

Corollary 25 ([28, Theorem 4.1]). Let F be a saturated formation containing
U. Suppose that G is a group with a solvable normal subgroup E such that G=E 2
F . If all minimal subgroups and all cyclic subgroups of F.E/ with order 4 is c-
supplemented in G, then G 2 F .

Corollary 26 ([30, Theorem 2]). Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup E such that G=E 2 F .
If all minimal subgroups and all cyclic subgroups of F.E/ with order 4 is c-normal
in G, then G 2 F .

Corollary 27 ([17, Theorem 3]). Let F be a saturated formation containing U.
A group G 2 F if and only if there is a solvable normal subgroup E of G such that
G=E 2 F and the subgroups of F.E/ with prime order or order 4 is c-normal in G.

Corollary 28 ([3, Theorem ]). A group G 2 F if and only if there is a solvable
normal subgroup E of G such that G=E 2 F and the subgroups of F.E/ with prime
order or order 4 is S -quasinormal in G.
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Corollary 29 ([34, Theorem 4]). Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup E such that G=E 2
F . If all minimal subgroups and all cyclic subgroups of F.E/ with order 4 is s-
semipermutable in G, then G 2 F .
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