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1. INTRODUCTION

A major theme in universal algebra is the study of classes of algebras of the same
type that are closed under one or more constructions [2]. For algebraic structures of
a given type it might be useful to investigate various classes (e.g., varieties, torsion
classes, radical classes, convexities) in order to classify the structures. By the classi-
fication we mean the division of algebraic structures into classes, according to their
common features.

The general study of varieties of algebras with finitary operations was developed
by G. Birkhoff in the 1930’s. B.H. Neumann initiated the investigation of varieties of
groups [20]. In the 70’s J. Martinez began the study of varieties of `-groups [16] and
later he studied also torsion classes of `-groups [17]. Further, torsion theory for acts
(semigroup action on sets) was developed in [15]. Radical classes, as a generalization
of torsion classes, of lattice ordered groups were introduced by J. Jakubı́k [8]. These
classes were explored for different types of operators. Some other results for radical
classes of `-groups are found in [5, 25], for radical classes of generalized Boolean
algebras in [9] and for radical classes of MV-algebras are available in [10].

The notion of homogeneity has been applied in different fields of mathematics in
connection with deep results. As examples, it suffices to mention the investigation of
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continuous geometries [26] or the study of homogeneous Boolean algebras [22]. Ca-
meron and Nešetřil [3] introduced the notion of homomorphism-homogeneous struc-
tures; this notion is closely related to the classical notion of homogeneity. The im-
portance of the notion of homomorphism-homogeneity for algebras is considerable,
see e.g., [6, 13], or for relational structures [18, 19, 23].

Some properties of algebraic structures of a finite type can be described by means
of analogous properties of certain assigned monounary algebras. So monounary al-
gebras play a significant role in the study of algebraic structures (cf. monographs
[4, 7, 12]). The advantage of monounary algebras is their relatively simple visualiza-
tion, since they can be represented by oriented planar graphs. Monounary algebras
are often considered as special types of automata [1, 21]. Also, they were studied in
connection with other algebraic structures. For example, monounary algebras enri-
ched with certain relations have been studied in [14, 24].

Several classes of monounary algebras (e.g., varieties, retract varieties, convexit-
ies) were described in [7]. The aim of this work is a description of radical classes
of monounary algebras, where the radical classes are considered with respect to two
types of homogeneity. Namely, we characterize homogeneous radical classes and
homomorphism-homogeneous radical classes. In the end we deal also with homo-
geneous torsion classes and homomorphism-homogeneous torsion classes of mono-
unary algebras.

2. BASIC NOTATIONS AND DEFINITIONS

Let Z be the set of all integers, N be the set of all positive integers and N0 D

N[f0g. Next, let us denote by Card the system of all cardinal numbers.
For the basic notions and definitions concerning monounary algebras we refer to

[7]. Also, we will apply notions and definitions from [13]; let us recall some of them.

Definition 1. A monounary algebra is a pair .A;f / where A is a non-empty set
and f WA! A is a unary operation on A.

Notice that we will consider the empty set ¿ as a monounary algebra and instead
of .A;f / we will often write A as an abbreviation.

Let .A;f / be a monounary algebra. Then for x 2A, put f 0.x/D x and f �1.x/D
fy 2 AWf .y/ D xg. If for some n 2 N, f n�1.x/ is defined, then we set f n.x/ D
f .f n�1.x//.

An algebra .A;f / is called connected, if for each x;y 2 A there exist m;n 2N0

such that f m.x/D f n.y/.
A set B � A is called a connected component of .A;f /, if B is a maximal con-

nected subalgebra of A.
Let x 2 A be such that there exists m 2 N with f m.x/ D x. Then x is called

a cyclic element of A. If such m 2 N does not exist then we say that x is acyclic.
Let n 2 N be the smallest integer such that f n.x/ D x. Then the set of elements
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C D fx;f .x/; : : : ;f n�1.x/g is called a cycle of .A;f / and n is called the length of
C ; so C is an n-element cycle of A.

We denote by Z D .Z;f / a monounary algebra such that f .x/ D xC 1 for all
x 2 Z. Next, for n 2N, let Zn D .Zn;f / be a monounary algebra such that Zn D
f0;1; : : :n�1g and f .i/D iC1 . mod n/ for each i 2Zn.

For ˛ 2Card�f0g let V˛ D .V˛;f / be a connected monounary algebra possessing
no cycle and such that jf �1.v/j D ˛ for every element v 2 V˛. We remark that such
algebra exists for each ˛ 2Card�f0g and it is unique up to isomorphism.

LetAi ; i 2 I be a system of mutually disjoint algebras. Denote by
P
i2I

Ai a disjoint

union of algebras Ai , i 2 I . If there exists an algebra A such that Ai Š A, i 2 I and
jI j D k, then instead of

P
i2I

Ai we write k �A. Note that for k D 0 (I D¿), k �AD¿

(
P
i2I

Ai D¿).

Let A D .A;f / be a monounary algebra. For a connected component S � A let
cn.S/, the cycle number of S denote the length of the cycle in S . If S does not have
any cycle, we set cn.S/D1.

We say that a 2 A is a source in A if f �1.a/D¿.
A branch in a monounary algebra A is a finite or infinite sequence a1;a2;a3; : : :

such that

� ai D f .aiC1/ for all i � 1,
� ai is acyclic for all i � 1, and
� if the sequence is finite, that if it has the form a1;a2;a3; : : : ;an, then an is

a source in A.

For an acyclic element a 2A, the height of a (ht.a/, for short) means the least number
k � 1 such that f k.a/ is a cyclic element. If no such k exists, we set ht.a/D1.

A connected monounary algebra A is said to be regular if

� A possesses a cycle, and
� either every branch in A is infinite, or every branch in A is finite and ht.a/D

ht.b/ for all sources a;b in A.

Note that a connected algebra consisting of solely cyclic elements is regular.
If A is a regular algebra, then the height of A, denoted by ht.A/, is defined as

follows:

� ht.A/D 0 if there are no acyclic elements in A (i.e., A is a cycle);
� ht.A/D1 if every branch starting at a cyclic element of A is infinite;
� otherwise, ht.A/ denotes the common height of all the sources in A.

Definition 2. A monounary algebra .A;f / is said to be homogeneous if for each
x;y 2 A there is an automorphism ' of A such that '.x/D y.
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Definition 3. We say that a monounary algebra A D .A;f / is homomorphism-
homogeneous if every homomorphism 'WB!A from a finitely generated subalgebra
B of A into A extends to an endomorphism of A.

We will consider the empty set ¿ as a homogeneous and
homomorphism-homogeneous monounary algebra, too.

3. HOMOGENEOUS RADICAL CLASSES

In this section we characterize classes of monounary algebras which are radical
with respect to homogeneity. Homogeneous monounary algebras have been descri-
bed in the paper [11].

Definition 4. A non-empty class K of monounary algebras is called a homogene-
ous radical class (hr-class, for short) if it satisfies the following conditions:

(0) K is closed with respect to isomorphisms,
(1) whenever A 2K and B is a homogeneous subalgebra of A, then B 2K ,
(2) for each monounary algebra D there exists its greatest homogeneous subal-

gebra belonging to K .

Note that the condition .2/ means that for each monounary algebra D, the system
of all homogeneous subalgebras of D belonging to K has a greatest element. The
following theorem is proved in [11].

Theorem 1 ([11]). Let A be a monounary algebra. Then A is homogeneous if and
only if either

(1) AŠ ˇ �Zn for ˇ 2Card, n 2N,
or

(2) AŠ ˇ �V˛ for ˛;ˇ 2Card, ˛ > 0.

Notice that the monounary algebra ˇ �Zn is isomorphic to a monounary algebra
consisting of ˇ cycles of length n.

We show some necessary conditions for a class K to be homogeneous radical.
First, it is proved that an hr-class does not contain a monounary algebra possessing a
subalgebra isomorphic to Z.

Lemma 1. Let K be an hr-class of monounary algebras and A be a monounary
algebra such that some its subalgebra is isomorphic to Z. Then the algebra A does
not belong to the class K .

Proof. By way of contradiction, suppose that A 2K . Denote by B a subalgebra
of A such that B ŠZ. According to Theorem 1, B is a homogeneous subalgebra of
A. Thus by .1/ of Definition 4, B 2K .

Let us consider a connected monounary algebraD without cyclic elements, having
the property that jf �1.x/j D 2 for only one element x 2 D and jf �1.y/j D 1 for
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each y 2D�fxg. Observe that D has two maximal homogeneous subalgebras Di
(i D 1;2) belonging to the class K and Di Š B (i D 1;2). But Di (i D 1;2) is not
the largest homogeneous subalgebra of D such that Di 2K . This contradicts the
condition .2/ of Definition 4 and completes the proof. �

Lemma 2. Let K be a class of monounary algebras satisfying .0/ and .1/ of
Definition 4. Further, let there exist A;B 2K and m;n 2 N, m ¤ n such that the
algebra A contains a subalgebra isomorphic to Zm and the algebra B contains a
subalgebra isomorphic to Zn. Then the class K does not satisfy .2/ of Definition 4.

Proof. By the assumption, Zm and Zn belong to the class K . Let us take a monou-
nary algebraD such thatDDZmCZn. The algebras Zm and Zn are homogeneous
subalgebras of D and Zm;Zn 2K . These subalgebras of D are maximal but none
of them is the largest homogeneous subalgebra of D belonging to K . Thus .2/ of
Definition 4 fails to hold. �

Corollary 1. If a class K of monounary algebras satisfies .0/ and .1/ of Defini-
tion 4 and contains an algebra A such that A possesses cycles of different lengths,
then the class K does not satisfy .2/ of Definition 4.

Proof. The assertion follows from Lemma 2 if we put B D A. �

Lemma 3. Let K be an hr-class of monounary algebras. If Zn 2K , then for each
cardinal ˛, ˛ �Zn 2K , too.

Proof. Assume that Zn 2 K and suppose, to the contrary, that ˛ �Zn … K for
some ˛ 2 Card. Obviously, ˛ … f0;1g. By .2/ of Definition 4, ˛ �Zn contains a
largest homogeneous subalgebra X such that X 2 K . Since ˛ �Zn … K , X is a
proper subalgebra of ˛ �Zn. Then there exists a homogeneous subalgebra Y of ˛ �Zn
such that Y ŠZn 2K and Y ªX . The subalgebra Y of ˛ �Zn is incomparable with
X because Y ªX . HenceX cannot be the largest homogeneous subalgebra of ˛ �Zn
such that X 2K , which is a contradiction. �

Theorem 2. Let K be a class of monounary algebras closed with respect to iso-
morphisms and let ¿ 2K . Then K is an hr-class if and only if either

(a) if A 2K then A possesses neither cycle nor subalgebra isomorphic to Z, or
(b) there exists n 2N such that

(i) ˛ �Zn 2K for each ˛ 2Card, and
(ii) if A 2K then A possesses neither m-element cycle for m ¤ n nor su-

balgebra isomorphic to Z.

Proof. Suppose that K is an hr-class. From Lemma 1 it follows that K does not
contain an algebra possessing a subalgebra isomorphic to Z. Next, we distinguish
two cases:
Case 1: Let for each A 2K , A possess no cycle. According to Lemma 1, A does not
contain a subalgebra which is isomorphic to Z. Hence, the condition .a/ is satisfied.
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Case 2: Suppose that there exists an algebra A0 2K such that A0 possesses a subal-
gebra isomorphic to Zn for some n 2 N. By Corollary 1, A0 does not contain any
m-element cycle for m¤ n. Now take A 2K . According to Lemma 2, A possesses
no subalgebra isomorphic to Zm for m ¤ n. Thus, condition .ii/ of case .b/ is va-
lid. Observe that Zn 2K because A0 2K and K satisfies .1/ of Definition 4. So,
condition .i/ of case .b/ follows from Lemma 3.

Next, we prove the converse implication of the theorem. The implication is trivial
in the case .a/. Now, assume that case .b/ holds. By assumption, .0/ of Definition 4
holds. Let A 2K and B be a homogeneous subalgebra of A. According to The-
orem 1, B Š ˇ �Zn for some ˇ 2 Card. Then by condition .i/ of case .b/, B 2K .
Hence, K satisfies .1/ of Definition 4. Let us consider an arbitrary monounary al-
gebraD. IfD has no subalgebra isomorphic to Zn then¿ is the largest homogeneous
subalgebra of D such that ¿ 2K . Otherwise, denote by E the sum of all subalgeb-
ras of D isomorphic to Zn. Then E is the largest homogeneous subalgebra of D,
E Š ˛ �Zn for some nonzero cardinal ˛, thus E 2K . This implies that K satisfies
.2/ of Definition 4. Therefore, K is an hr-class which concludes the proof. �

For an hr-class K denote by H .K/ the subclass of K such that H .K/ consists
of all homogeneous algebras of K . Then H .K/ is called a homogeneous part of K .
By Theorem 2, H .K/ is an hr-class.

4. HOMOMORPHISM-HOMOGENEOUS RADICAL CLASSES

The present section is devoted to the characterization of classes of monounary al-
gebras which are radical with respect to homomorphism-homogeneity of monounary
algebras.

The following theorem is proved in the paper [13].

Theorem 3 ([13]). Let A be a non-empty monounary algebra. Then A is
homomorphism-homogeneous if and only if A satisfies one of the following condi-
tions:

(1) every branch in A is infinite,
(2) every connected component in A is regular, and for any two connected com-

ponents S1;S2 � A, if cn.S1/ j cn.S2/ then ht.S1/� ht.S2/ or ht.S1/D 0.

Definition 5. A non-empty class K of monounary algebras will be called a
homomorphism-homogeneous radical class (for short, Hhr-class) if it satisfies the
following conditions:

(0) K is closed with respect to isomorphisms,
(1) whenever A 2K and B is a homomorphism-homogeneous subalgebra of A,

then B 2K ,
(2) for each monounary algebra D there exists its largest

homomorphism-homogeneous subalgebra belonging to K .
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From the above definition immediately follows

Corollary 2. Let K be a class of monounary algebras, closed with respect to
isomorphisms and let ¿ 2K . Further, assume that each A 2K possesses neither
cycle nor subalgebra isomorphic to Z. Then K is an Hhr-class.

We start by showing some necessary conditions for a class K to be homomor-
phism-homogeneous radical.

Lemma 4. Let K be a class of monounary algebras satisfying .0/ and .1/ of
Definition 5. Next, let A be a regular monounary algebra such that A has a unique
branch and ht.A/D 2. If A 2K then K does not satisfy .2/ of Definition 5.

Proof. Assume that A 2K and suppose, on the contrary, that K satisfies .2/ of
Definition 5. Denote by B a regular subalgebra of A such that ht.B/D 1; and let C
be the cycle of A. Note that B and C are homomorphism-homogeneous subalgebras
of A. Thus by .1/ of Definition 5, B;C 2K . Let us consider a monounary algebra
D D D1CD2 such that D1 Š A and D2 Š B . We show that D possesses no lar-
gest homomorphism-homogeneous subalgebra belonging to K . This will lead to a
contradiction. At first we make the following observations:

For E DE1CE2 where E1 ŠE2 Š B , we get that E1;E2 2K according to .0/
of Definition 5. Suppose that E …K . Then E possesses a largest homomorphism-
homogeneous subalgebra belonging to K , denote it by EK . Since EK is a proper
subalgebra of E there exists an element x 2 E�EK . Observe that there is a unique
i 2 f1;2g with x 2Ei ¤EK . On the other hand, EK is incomparable with Ei . Thus
EK cannot be the largest homomorphism-homogeneous subalgebra of E belonging
to K , which is a contradiction. Hence, E 2K .

Let F D F1CF2 where F1 Š A and F2 Š C . Then F1;F2 2K according to .0/
of Definition 5. Analogously as above we can show that F 2K .
Note thatD is not a homomorphism-homogeneous algebra and thatD possesses two
homomorphism-homogeneous subalgebras X;Y such that X Š E and Y Š F . So,
D contains two maximal homomorphism-homogeneous subalgebras belonging to K ,
namely X and Y , but none of them is the largest. This contradicts .2/ of Definition 5
and completes the proof. �

Corollary 3. Let K be a class of monounary algebras satisfying .0/ and .1/ of
Definition 5 andA be a monounary algebra possessing a regular subalgebra of height
greater than 1. If A 2K then K fails to be an Hhr-class.

Proof. Assume that A 2K and suppose, to the contrary, that K is an Hhr-class.
There exists a regular subalgebraB ofA such thatB has a unique branch and ht.B/D
2. According to Theorem 3, B is a homomorphism-homogeneous algebra. Then
from the assumption, B 2K . In view of Lemma 4, a class K does not satisfy .2/ of
Definition 5, a contradiction. �
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Lemma 5. Let K be a class of monounary algebras satisfying .0/ and .1/ of
Definition 5 and letA be a regular monounary algebra of nonzero height. If Z;A2K

then K does not satisfy .2/ of Definition 5.

Proof. By way of contradiction, suppose that Z;A 2 K and K satisfies .2/ of
Definition 5. Corollary 3 implies that ht.A/ < 2, hence ht.A/ D 1. Consider an
algebra D DZCA which is not a homomorphism-homogeneous algebra in view of
Theorem 3. According to .2/ of Definition 5, D possesses a largest homomorphism-
homogeneous subalgebra belonging to K , denote it by DK . Observe that DK is a
proper subalgebra ofD, therefore there exists an element x 2D�DK and either x 2
Z or x 2 A. By Theorem 3, Z and A are homomorphism-homogeneous subalgebras
ofD. Assume that x 2Z (or x 2A). Since ZªDK (orAªDK ),DK cannot be the
largest homomorphism-homogeneous subalgebra of D such that DK 2K . Hence,
D does not have a largest homomorphism-homogeneous subalgebra belonging to K .
This is a contradiction and completes the proof. �

The following assertion follows from Lemmas 4 and 5.

Corollary 4. Let K be an Hhr-class containing an algebra possessing a regular
monounary subalgebra of nonzero height. Then K does not contain an algebra with
a subalgebra isomorphic to Z and does not contain an algebra possessing a regular
subalgebra of height greater than one.

Next, if K is an Hhr-class such that Z 2K then K fails to contain an algebra
which possesses a regular subalgebra of nonzero height.

Notation 1. Let for n 2 N, Z1n be the class of all regular monounary algebras of
height 1 and cycle number n. Next, let Zn D fAWAŠZng.

Clearly, if K is an Hhr-class such that K \Zn ¤¿ then Zn �K . We show that
whenever K is an Hhr-class such that K \Z1n ¤¿ then Z1n �K .

Definition 6. Let A 2Z1n for some n 2N. Then the width of a cyclic element a in
A denoted by w.a/ is defined as follows:

w.a/D jf �1.a/j�1:

Lemma 6. Let K be an Hhr-class such that Z1n\K ¤¿ for some n 2N. Then
for each ˇ 2Card�f0g there exists an algebra Y 2 Z1n\K such that w.y/ = ˇ for
each cyclic element y 2 Y .

Proof. By way of contradiction, suppose that there exists ˇ 2Card�f0g such that
for every Y 2Z1n\K , w.y/ < ˇ for at least one cyclic element y 2 Y .

Let us consider an algebraD 2Z1n such that w.d/D ˇ for each cyclic element d 2
D. According to the assumption,D …K\Z1n, i.e.,D …K . By .2/ of Definition 5,D
possesses a largest homomorphism-homogeneous subalgebra belonging to K; denote
it by B . Then B ¤ ¿ and B © Zn because K \Z1n ¤ ¿. Also, B ¤ D because
D …K .
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Let di , i D 0;1; : : : ;n� 1, be the cyclic elements of D such that di D f .di�1/
(i � 1 is counted mod n). For di (i D 0;1; : : : ;n� 1) denote by Di , the set of all
acyclic elements x 2D such that f .x/D di , i.e., Di D f �1.di /�fdi�1g.

Now we show that if for some i D 0;1; : : : ;n� 1 there exists x 2 Di such that
x … B then Di \B D¿.
If jDi j D 1 then the assumption is obvious.
Let jDi j= 2. Assume that x … B , x 2Di for some i 2 f0;1; : : : ;n�1g and suppose,
to the contrary, that there exists an element y such that y 2 B \Di . Then C D .B �
fyg/[fxg is a subalgebra of D and C Š B . By .0/ of Definition 5, C 2K . Hence,
B cannot be the largest homomorphism-homogeneous subalgebra of D belonging to
K , a contradiction.

Because B ¤D and B ©Zn there exists at least one i 2 f0;1; : : : ;n�1g such that
Di \B D¿. On the other hand, for some j ¤ i (j 2 f0;1; : : : ;n�1g),¿¤Dj �B .
Otherwise, the assumption thatDi \B D¿ for each i D 0;1; : : : ;n�1, would imply
that B ŠZn, which is a contradiction.

Next we show that D possesses a subalgebra C such that C Š B and C ª B ,
(C ¤ B). Then this will be a contradiction with .2/ of Definition 5, and will comp-
lete the proof.
From the definition of D it follows that there exists an automorphism '0 of D such
that '0.j /D i . Since B is a subalgebra of D, the mapping ' D '0 �B is an embed-
ding of B intoD such that '.j /D i . Put C D '.B/. Then '.Dj /DDi . Let c 2Di .
Then c 2 '.B/D C , but c … ¿D B \Di . This implies that C ª B . By condition
.0/ of Definition 5 we have C 2K , which completes the proof. �

Lemma 7. Let K be a class of monounary algebras such that Z1n\K ¤ ¿ for
some n 2N. If K is an Hhr-class then Z1n �K .

Proof. Assume that K is an Hhr-class and suppose, to the contrary, that Z1n ªK .
Then there exists an algebra A 2 Z1n such that A …K . Let ˇ D maxfw.a/Wa 2 A, a
is cyclicg. Denote by B , an algebra such that B 2 Z1n and w.b/D ˇ for each cyclic
element b 2 B . Then according to Lemma 6, B 2 K . Observe, that B contains
a homomorphism-homogeneous subalgebra X such that X Š A. Because K is an
Hhr-class, we get that A 2K , which is a contradiction. �

Definition 7. For a class K of monounary algebras denote

P.K/D fi 2NWZ1i \K ¤¿g
and Q.K/D fi 2NWZi \K ¤¿g.

Note that if K is an Hhr-class of monounary algebras then obviously, P.K/ �

Q.K/, and if P.K/¤¿ then according to Lemma 7 we have:

P.K/D fi 2NWZ1i \K ¤¿g D fi 2NWZ1i �Kg:

Further, Q.K/D fi 2NWZi \K ¤¿g D fi 2NWZi �Kg.
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Lemma 8. Let K be an Hhr-class of monounary algebras such that Q.K/ D

Q¤¿. Then
P
i2Q

˛i �Zi 2K for each ˛i 2Card.

Proof. By way of contradiction, suppose that there exists ˛i 2Card, i 2Q, such
that D D

P
i2Q

˛i �Zi … K . Observe that D has to contain at least two connec-

ted components, since otherwise the assumption D D Zi for some i 2 Q would
imply that Zi ªK , a contradiction. By .2/ of Definition 5, D possesses a largest
homomorphism-homogeneous subalgebra belonging to K , denote it by DK . Since
D …K , we haveDK ¤D. ThenD possesses a subalgebra C ŠZj for some j 2Q
such that C ªDK . From the assumption that j 2Q D fi 2NWZi �Kg it follows
that C 2 K and note that C is a homomorphism-homogeneous subalgebra of D.
Then DK is incomparable with C . Thus DK cannot be the largest homomorphism-
homogeneous subalgebra of D and this is a contradiction. �

Lemma 9. Let K be an Hhr-class with Q.K/ ¤ ¿. Then K contains each A
such that if B is a connected component of A then either B 2Z1i for some i 2 P.K/

or B 2Zj for some j 2Q.K/.

Proof. If P.K/D¿ then the theorem follows from Lemma 8. Thus suppose that
P.K/¤¿ and letA be a monounary algebra such that ifB is a connected component
of A then either B 2 Z1i for some i 2 P.K/ or B 2 Zj for some j 2 Q.K/. If
A consists of cycles then the theorem follows from Lemma 8. So, suppose that
there exists at least one acyclic element of A. By way of contradiction, suppose that
A…K . By .2/ of Definition 5,A possesses the largest homomorphism-homogeneous
subalgebra AK such that AK 2K . Denote by B the subalgebra of A such that B
consists of all cyclic elements of A. According to Lemma 8 and .0/ of Definition 5,
B 2 K . Furthermore, B is a homomorphism-homogeneous subalgebra of A and
then B � AK . Because B � AK ¤ A, there exists an acyclic element x 2 A�AK .
Denote by X that connected component of A which contains the acyclic element
x. Note that X 2 Z1i for some i 2 P.K/ and X is a homomorphism-homogeneous
subalgebra ofA. According to Lemma 7, Z1i �K , so,X 2K . SinceX ªAK ,AK is
incomparable with X . Thus AK cannot be the largest homomorphism-homogeneous
subalgebra of A such that AK 2K , a contradiction. �

Lemma 10. Let K be an Hhr-class such that Z 2K . Then K contains each A
such that if B is a connected component of A then either B 2Zi for some i 2Q.K/

or every branch in B is infinite and B possesses no cycle.

Proof. Let us consider a monounary algebra A such that if B is a connected com-
ponent of A then either B 2 Zi for some i 2Q.K/ or every branch in B is infinite
and B possesses no cycle. Assume that K is an Hhr-class and suppose, to the cont-
rary, that A …K . By .2/ of Definition 5, A possesses the largest homomorphism-
homogeneous subalgebra AK belonging to K . Obviously, ¿¤ AK ¤ A. Consider
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the following two cases according to the definition of Q.K/.
Case 1: Let Q.K/D ¿. Because AK ¤ A, A possesses a subalgebra X such that
X Š Z and X ª AK . The subalgebra X of A is homomorphism-homogeneous and
by .0/ of Definition 5, X 2K . Since X ª AK , AK is incomparable with X . Thus
AK cannot be the largest homomorphism-homogeneous subalgebra of A such that
AK 2K , a contradiction.
Case 2: Let Q.K/ ¤ ¿. If A possesses a subalgebra X such that X Š Z and
X ª AK , then as in the previous case we get a contradiction. So, suppose that AK

possesses all acyclic elements of A. Then A�AK contains an i -element cycle for
some i 2Q.K/; denote it by Y . Because Zi �K for i 2Q.K/, Y 2K . Note that
Y is a homomorphism-homogeneous subalgebra of A. But then AK is incomparable
with Y , which is a contradiction and completes the proof. �

The following two theorems present a characterization of Hhr-classes; in the first
one we suppose that Z does not belong to the corresponding class K and thatQ.K/¤

¿, while in the second one, Z 2K .

Theorem 4. Let K be a class of monounary algebras such that Z … K and
P.K/ � Q.K/ ¤ ¿. Next, let K satisfy .0/ of Definition 5. Then K is an Hhr-
class if and only if the following conditions hold:

(a) ¿ 2K .
(b) For every A 2K , if B is a connected component of A then B 2Z1i for some

i 2 P.K/ or B 2 Zj for some j 2Q.K/ or B possesses neither cycle nor
subalgebra isomorphic to Z.

(c) The class K includes all algebras A such that if B is a connected component
of A then either B 2Z1i for some i 2 P.K/ or B 2Zj for some j 2Q.K/.

Proof. ”)” Suppose that K is an Hhr-class. Then the condition .a/ is obviously
valid. From the assumption that Z …K it follows that the class K does not contain
an algebra having a subalgebra which is isomorphic to Z.

By Corollary 3, the class K does not contain a monounary algebra possessing a
regular subalgebra of height greater than one. Obviously, if some i … P.K/ then
the class K does not contain a monounary algebra possessing a subalgebra from Z1i .
Also, if j …Q.K/ then K does not contain an algebra possessing a j -element cycle.
Hence, the condition .b/ is valid. The condition .3/ results from Lemma 9.

”(” Suppose that the conditions .a/, .b/ and .c/ are true. Clearly, .0/ of Defi-
nition 5 holds. Let A 2K , and let B be an arbitrary homomorphism-homogeneous
subalgebra of it. If B D ¿ then by the condition .a/, B 2K . Now suppose that
B ¤¿. Then by Theorem 3, if S is a connected component of B then either S 2Zi
for some i 2 Q.K/ or S 2 Z1j for some j 2 P.K/. Thus B 2K in view of the
condition .c/. Hence .1/ of Definition 5 holds. Next, we show that K satisfies .2/ of
Definition 5. LetD be an arbitrary monounary algebra. At first suppose thatD conta-
ins neither subalgebra belonging to Z1i for each i 2 P.K/ nor subalgebra belonging
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to Zj for each j 2Q.K/. Then the largest subalgebra of D belonging to K is ¿.
Now suppose that D possesses the largest non-empty subalgebra E such that if X is
a connected component of E then either X 2 Z1i for some i 2 P.K/ or X 2 Zj for
some j 2Q.K/. By Theorem 3, E is a homomorphism-homogeneous algebra and
by the condition .c/, E 2K . Then E is the largest homomorphism-homogeneous
subalgebra of D belonging to K . Thus .2/ of Definition 5 holds for the class K and
K is an Hhr-class. �

Theorem 5. Let K be a class of monounary algebras such that Z 2K and let K

satisfy .0/ of Definition 5. Then K is an Hhr-class if and only if
(a) ¿ 2K .
(b) For all A 2 K , if B is a connected component of A then B possesses a

subalgebra isomorphic to Z or B 2 Zi for some i 2Q.K/ or B possesses
neither cycle nor subalgebra isomorphic to Z.

(c) The class K includes all monounary algebrasA such that ifB is a connected
component of A then either B 2 Zi for some i 2Q.K/ or every branch in
B is infinite and B possesses no cyclic element.

Proof. ”) ” Suppose that K is an Hhr-class. Then the condition .a/ is obviously
valid.

From Lemma 5 it follows, that K does not contain an algebra possessing a regular
subalgebra of nonzero height. Thus P.K/D¿. Also, K does not contain an algebra
with an i -element cycle for i …Q.K/. Hence the condition .b/ holds.

According to Lemma 10, the condition .c/ is valid.
”( ” Assume that the conditions .a/, .b/ and .c/ are true. Obviously, .0/ of Defini-
tion 5 holds. Let A 2K and B be its any homomorphism-homogeneous subalgebra.
If B D¿ then by the condition .a/, B 2K . So, suppose that B ¤¿. Then accord-
ing to Theorem 3, if S is a connected component of B then either S 2 Zi for some
i 2Q.K/ or every branch in S is infinite and S possesses no cycle. Hence, B 2K

in view of the condition .c/. Thus .1/ of Definition 5 holds.
Next, we show that K satisfies .2/ of Definition 5. Let D be an arbitrary mono-

unary algebra. Assume that D possesses neither i -element cycle for i 2Q.K/ nor
subalgebra isomorphic to Z. Then ¿ is the largest homomorphism-homogeneous
subalgebra of D such that ¿ 2K . Now suppose that D possesses the largest non-
empty subalgebra E such that if X is a connected component of E then either every
branch in X is infinite and X possesses no cycle or X 2 Zi for some i 2 Q.K/.
By Theorem 3, E is a homomorphism-homogeneous algebra and by the condition
.c/, E 2K . Then E is the largest homomorphism-homogeneous subalgebra of D
belonging to K . Thus .2/ of Definition 5 holds and K is an Hhr-class. �

Let K be an Hhr-class. Denote by H�.K/ the subclass of K such that H�.K/

consists of all homomorphism-homogeneous algebras of K . Then H�.K/ is called
a homomorphism-homogeneous part of K . Note that H�.K/ is an Hhr-class.
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Corollary 5. Let K be an Hhr-class such that Z … K and Q.K/ ¤ ¿. Then
H�.K/ is the class of all monounary algebras A such that if B is a connected com-
ponent of A then either B 2Z1i for some i 2 P.K/ or B 2Zj for some j 2Q.K/.

Proof. The assertion follows from Theorems 3 and 4. �

Corollary 6. Let K be an Hhr-class such that Z 2K . Then H�.K/ is the class
of all monounary algebrasA such that ifB is a connected component ofA then either
B 2Zi for some i 2Q.K/ or every branch in B is infinite and B possesses no cyclic
element.

Proof. The assertion follows from Theorems 3 and 5. �

We will finish with a comparison of hr-classes and Hhr-classes as follows. All
homogeneous algebras are homomorphism-homogeneous, too. But, in general an
hr-class fails to be an Hhr-class. Assume that K is a class of monounary algebras
which is closed with respect to isomorphisms, contains ¿ and that for all A 2K , A
possesses neither cycles nor subalgebra isomorphic to Z. Then obviously, K is an
hr-class and Hhr-class, too. The following assertions are consequence of Theorems 2
and 4.

Proposition 1. Let K be an hr-class such that Zn 2K for some n 2N. Then an
hr-class K is an Hhr-class if and only if K satisfies the following conditions:

(1) K does not contain a monounary algebra possessing a regular subalgebra
of height greater than one

(2) if K contains an algebra A having a subalgebra B 2 Z1n then K contains
all algebras C such that whenever X is a connected component of C then
X 2Zn[Z1n.

Proposition 2. Let K be an Hhr-class. Then K is an hr-class if and only if K

does not contain a monounary algebra possessing a subalgebra isomorphic to Z and
jQ.K/j< 2.

5. TORSION CLASSES OF MONOUNARY ALGEBRAS CONCERNING
HOMOGENEITY

In this section we will briefly characterize classes of monounary algebras which
are torsion classes with respect to the homogeneity or homomorphism-homogeneity
of monounary algebras.

Definition 8. A non-empty class K of monounary algebras will be called a homo-
geneous torsion class (for short, ht-class) if it satisfies the following conditions:

(0) K is closed with respect to homomorphisms,
(1) whenever A 2K and B is an homogeneous subalgebra of A, then B 2K ,
(2) for each monounary algebra D there exists its largest homogeneous subal-

gebra belonging to K .
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For a class K of monounary algebras we will use the notions P.K/ and Q.K/

from the previous section. Note that from Theorem 2 it follows that if K is an hr-class
then jQ.K/j< 2.

Theorem 6. Let K be a class of monounary algebras closed with respect to ho-
momorphisms. Then K is an ht-class if and only if K is an hr-class such that either
Q.K/D¿ or Q.K/D f1g.

Proof. Suppose that K is an ht-class. Then obviously, K is an hr-class. The
theorem trivially holds in the case when jQ.K/j D 0 orQ.K/D f1g. Next, suppose
that jQ.K/j D 1 and 1 … Q.K/. The assumption that n 2 Q.K/ for some n 2
N�f1g, would imply that Z1 2K because Z1 is a homomorphic image of Zn. But
then f1;ng �Q.K/, which is a contradiction. Conversely, it is clear that K satisfies
each condition of Definition 8, i.e., K is an ht-class. �

Definition 9. A non-empty class K of monounary algebras will be called a
homomorphism-homogeneous torsion class (for short, Hht-class) if it satisfies the
following conditions:

(0) K is closed with respect to homomorphisms,
(1) whenever A 2K and B is a homomorphism-homogeneous subalgebra of A,

then B 2K ,
(2) for each monounary algebra D there exists its largest

homomorphism-homogeneous subalgebra belonging to K .

It is easy to see the following assertion. Let K be a class of monounary algebras
such that K is closed with respect to homomorphisms and ¿ 2K . Next, assume
that each A 2K possess neither cycle nor subalgebra isomorphic to Z. Then, by
definition, K is an Hht-class.

Lemma 11. Let K be an Hht-class. Then K fails to contain a monounary algebra
possessing a subalgebra which is isomorphic to Z.

Proof. By way of contradiction suppose that K contains an algebra with a subal-
gebra isomorphic to Z. Since K is an Hht-class, Z 2K . Observe that a regular mo-
nounary algebra which possesses only one infinite branch is a homomorphic image of
Z. By .0/ of Definition 9, this regular algebra belongs to K . According to Lemma 5,
K fails to be an Hhr-class which is a contradiction and completes the proof. �

Notation 2. Let for i 2N beDi Dfj 2NWj j ig. Then for a class K of monounary
algebras denote Q�.K/D

S
i2Q.K/

Di and P �.K/D
S

i2P.K/

Di .

According to Lemma 11, Z does not belong to an Hht-class. Therefore the proof
of the following characterization theorem is analogous to the proof of Theorem 4. It
suffices to replace Q.K/ by Q�.K/ and P.K/ by P �.K/.
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Theorem 7. Let K be a class of monounary algebras such that P.K/�Q.K/¤

¿. Next, let K satisfy .0/ of Definition 9. Then K is an Hht-class if and only if the
following conditions hold:

(a) ¿ 2K .
(b) For every A 2K , if B is a connected component of A then B 2Z1i for some

i 2 P �.K/ or B 2 Zj for some j 2 Q�.K/ or B possesses neither cycle
nor subalgebra isomorphic to Z.

(c) The class K includes all algebras A such that if B is a connected compo-
nent of A then either B 2 Z1i for some i 2 P �.K/ or B 2 Zj for some
j 2Q�.K/.
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