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Abstract. In this paper, we present a fixed point theorem for a new type of contractive mappings.
Our main result extends and unifies some well-known results in the literature.
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1. INTRODUCTION

Banach contraction principle play an important role in several branches of mathe-
matics. For instances, it has been used to study the existence of solutions of nonlinear
Volterra and Fredholm integral equations, nonlinear integro-differential equations in
Banach spaces and to prove the convergence of algorithms in computational mathe-
matics. Because of its importance in mathematics, Banach contraction principle has
been extended in many different directions, see [1—15] and references therein.

In [10] Khan et al. proved the following fixed point theorem.

Theorem 1 ([10]). Let (X,d) be a complete metric space, and let T : X — X be
a mapping satisfying
Y (d(Tx,Ty)) =ky(d(x,y)),
for each x,y € X and for some k € [0,1) where ¥ : [0,00) — [0, 00) is a continuous
and non-decreasing function such that Y (t) = 0 if and only if t = 0. Then T has a
unique fixed point X € X such that nll)n;o T"x =X, foreach x € X.

Another generalization of the contraction principle was suggested by Alber and
Guerre-Delabriere [ 1] in Hilbert spaces. Rhoades [15] has shown that the result that
Alber and Guerre-Delabriere proved in [1] is also valid in complete metric spaces.
We state the result of Rhoades in the following.
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Theorem 2 ([15]). Let (X,d) be a complete metric space. Let T : X — X be a
mapping which satisfies

d(Tx,Ty) =d(x,y)=p(d(x.y)),
for each x,y € X, where ¢ : [0,00) — [0,00) is a continuous and non-decreasing

function such that ¢(t) = 0 if and only if t = 0. Then T has a unique fixed point
X € X such that limy, oo T"x =X, for each x € X.

In fact, Alber and Guerre-Delabriere assumed an additional condition on 7" which
is lims— 00 @(f) = 0o. Notice that Rhoades [15] obtained the result presented in
Theorem 2 without using this particular assumption.

In 2008 Dutta et al. [6] proved the following generalization of Banach contraction
mapping principle which includes the generalizations presented in Theorems 1 and
2.

Theorem 3 ([0]). Let (X,d) be a complete metric space, and let T : X — X be a
mapping satisfying
Y (d(Tx,Ty)) =y (d(x,y))—¢(d(x.y)),
foreach x,y € X, where ¥, ¢ : [0,00) — [0,00) are continuous and non-decreasing

Sfunction such that ¥ (t) = ¢(¢t) = 0 if and only if t = 0. Then T has a unique fixed
point X € X such that limy, 0o T"x = X, for each x € X.

The purpose of this paper is to present a new generalization of the Banach contrac-
tion principle in terms of altering distances. Our theorem unifies and extends some
well-known results in the literature including the above theorems.

2. MAIN RESULTS
We are ready to state our main result.

Theorem 4. Let (X,d) be a complete metric space and let T : X — X be a map-
ping satisfying
u(d(Tx,Ty)) <v(d(x,y)), foreach x,y € X,
where u,v : [0,00) — [0,00), v(¢) <u(t) foreacht >0 and u(0) = v(0) = 0. Assume
either one of the following assumptions holds:

(a) u and v are continuous and if {u(x,)} be a non-increasing sequence then
{xn} is bounded;

(b) u is increasing, continuous, U™
right;

(¢) u is increasing, continuous, v is continuous at 0, litrgioréf(t —u (1)) >0

Uis continuous and v is continuous from the

and limsupv(s) < v(r) for each r > 0.
S—>r

Then T has a unique fixed point X € X such that lim, o, T"x =X, for each x € X.
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Proof. For any xg € X, we construct the sequence {x,} by x, = T x,—1 forn € N.
From our assumption on 7', we have

u(d(xn,xn+1)) <v(d(xp-1,xn)), foreach n € N. 2.1
Since
v(d(xp—1,%xn)) <u(d(xy—1,x,)), foreach n € N 2.2)
then from (2.1) and (2.2), we get
u(d(xn,xn+1)) < v(d(xp—1,xn)) <u(d(xp-1,xn)), foreach ne N.  (2.3)

From (2.3), we deduce that {u(d(x,,xn+1))} is a non-negative non-increasing sequ-
ence and consequently there exists ¥ > 0 such that

lim u(d(xn,Xn+1)) =r. 2.4)
n—->oo
We shall show that
lim d(x,,xp+1) =0. 2.5)
n—-oo

Assume first that (a) holds. Then {d(x;,Xn+1)} is a bounded subsequence. On the
contrary, assume that
lim d(xnk,xnk+1)=s>0, (26)

k—o00
for some subsequence {x,, } of {x,}. Since u and v are continuous then from (2.3),
(2.4) and (2.6), we have

u(s) = lim u(d(xnk,xnk-i—l)) = lim v(d(xnk,xnk-i-l)) = v(s),
k—o00 k—o00

and so s = 0, a contradiction. Thus (2.5) holds.

If (b) holds, since u is increasing and {u(d(xy,X,+1))} iS non-increasing then we
get that the sequence {d(x,,Xn+1)} is non-increasing and consequently there exists
so > 0 such that limy,— 00 d (X, Xn+1) = So. Since u is continuous from (2.4) we
deduce that

0= lim u(d(xn,xn+1)) = u(so),
n—0o0

and so so = 0. Thus (2.5) holds in any case.

We next prove that {x,} is a Cauchy sequence. If possible, let {x,} be not a Cauchy
sequence. Then there exists € > 0 for which we can find subsequences {x,()} and
{Xn@y ) of {xn} with n(k) > m(k) > k such that

d(Xm(k)» Xn(k)) > €, foreach k € N. 2.7

Further, corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) and satisfying (2.7). Then

d(Xm()s Xn(k)—1) < €. (2.8)
Then, we have

€ <d(Xmk)s Xnk)) < dXm) Xnk)—1) T d(Xn)—=1Xnk)) <€ +d(Xnk)—1-Xn(k))-
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Letting k — oo and using (2.5),
lim d(xm(k),xn(k)) = €. 2.9)
k—o00
Again,
d(Xn(kys Xm(k)) < d(Xnk)> Xnk)—1) + dXn)—1>Xmk)—1) T dXm)—1, Xmk))»
and
d(Xp)—1>Xmk)—1) = d(Xn@)—1-Xnk)) + dXnk)s Xmk)) T dXm)s Xmk)—1)-
Letting k — oo in the above two inequalities and using (2.5) and (2.9), we get
lim d(Xpk)—1,Xm(k)—1) = €. (2.10)
k—o00

Now, assume (a) holds. Let 0 < a < 1. Since u is continuous then from (2.1) and
(2.9) there exists K such that

au(e) <u(d(Xmk)> Xnk))) < v(dXmE)—1Xnk)—1))

for each k > K. Letting k — oo and using (2.9) and (2.10), we obtain cu(€) < v(e).
Since 0 < o < 1 is arbitrary, we get

u(e) < v(e),

which is a contradiction if € > 0 and so {x,} is a Cauchy sequence.
Now, assume that (b) holds. Since u is increasing then from our assumption on 7,
we get

d(Tx,Ty) <u"'(v(d(x,y))) <d(x,y), foreach x,y € X. (2.11)
From (2.11) and for each k € N, we have
d(Xm(ky: Xn(k)) = d(Xmic)s Xmk)+1) + d(XmE)+1: Xn)+1) + d(Xn)+1- Xn(k))

< 2d (xp, Xg—1) + U~ (A i) Xn (i) (2.12)
Since v is continuous from the right and u~! is continuous, then from (2.5), (2.7) and
(2.9), we get (note that v(€) < u(€))

e<u"t(v(e) <e,
a contradiction. Then {x,} is a Cauchy sequence.

Now suppose that (¢) holds. To prove that {x, } is a Cauchy sequence let us, on the
contrary, assume that limsup,, ,_, o d(Xm,Xn) > 0. By the triangle inequality and
using (2.11),

d(xm,xn) <d(Xm,Xm+1) +d(Xm+1,Xn+1) + d(Xn+1,%n)
<d(Xm.Xmy1) +u " (A (Xm. Xn))) + d(Xn41.%n),
for each m,n € N. Then for each m,n € N, we have

0=< d(xm’xn)_u_l(v(d(xm,xn))) <d(Xm.Xm+1) +d(Xp+1,Xn). (2.13)
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From (2.5), we get
lim  d(x;,x,) —u_l(v(d(xm,xn))) =0.
o0

m,n—

From (¢) we deduce that {d(x,,,x,)} has a bounded subsequence. Let us denote

klim d(Xmy . Xn, ) = r > 0. Then from (2.13) and using the continuity of u, we get
—>00

that

klim u(d(Xmy, xn,)) =ur) >v(r),

a contradiction. This shows that {x,} is a Cauchy sequence.
Since X is a complete metric space then {x,} is convergent. Let lim,— o0 X, = X.
From our assumption on 7', we have

u(d(xn, TX)) = u(d(Txp-1,TX)) < v(d(xp-1.X)).
Letting n — oo and using continuity of # and continuity of v at 0,
u(d(x,Tx)) < v(0) =0,
which implies u(d(x,Tx)) =0, thatis, TXx = X.
To prove the uniqueness of the fixed point, let us suppose that X and y are two fixed
points of T'. Then, we have
u(d(x,y)) =u(d(Tx,Ty)) <v(d(x,v)),

and so d(x,v) = 0. Thus x = y. O

Remark 1. Letu(t) =y (t) and v(t) = ¥ () — ¢ (¢) foreach t € [0, 00) where ¥, ¢ :
[0,00) — [0,00) are continuous and increasing function such that ¥ (z) = ¢(¢) =0

if and only if # = 0. Then from Theorem 4 we get immediately the above mentioned
result of Dutta and Choudhury.

Now we get the following fixed point theorem of integral type due to Branciari [2].

Corollary 1. Let (X,d) be a complete metric space and letk € [0,1), T : X — X
be a mapping such that for each x,y € X,

d(fx.fy) d(x,y)
/ p(t)dt < k/ p(t)dt,
0 0

where ¢ : [0,00) — [0,00) is a Lebesgue-integrabel mapping which is summable,
non-negative, and such that for each € > 0, fOE ¢(t)dt > 0. Then T has a unique fixed
point X € X such that limy, 0o T"x = X, for each x € X.

Proof. Letu(t) = f(f @(x)dx and v(¢) = ku(t) for each ¢ € [0, 00) and apply The-
orem 4. 0

The following result (due to Browder [3]) is another consequence of our main
result.
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Corollary 2. Let (X,d) be a complete metric spaceand let T : X — X be a map-
ping such that for each x,y € X,

d(Tx,Ty) <vy(d(x,y)),

where ¥ : [0,00) — [0, 00) is non-decreasing and continuous from the right. Then T
has a unique fixed point X € X such that limy, 0o T"x =X, for each x € X.

Corollary 3 ([7]). Let (X,d) be a complete metric space andlet T : X — X be a
mapping such that for each x,y € X,

d(Tx,Ty) < a(d(x,y))d(x,y),
where o : [0,00) — [0, 1) satisfying
a(ty) > 1 =1, —0.
Then T has a unique fixed point X € X such that lim, o T"x =X, for each x € X.

Proof. Let u(t) =t and v(¢t) = «(¢)t and apply Theorem 4 (note that u and v
satisfy (c)). O
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