

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 14 (2013), No 1, pp. 255-263 DOI: 10.18514/MMN.2013.546

Global optimal solutions for noncyclic mappings in G-metric spaces

Saeed Shabani and Abdolrahman Razani

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 14 (2013), No. 1, pp. 255–263

GLOBAL OPTIMAL SOLUTIONS FOR NONCYCLIC MAPPINGS IN G-METRIC SPACES

SAEED SHABANI AND ABDOLRAHMAN RAZANI

Received 5 June, 2012

Abstract. In this paper, the existence of solutions of some minimization problems for noncyclic mappings in G —metric spaces is studied. Our results can be considered as an extension of Abkar and Gabeleh's result [*Global Optimal Solutions of Noncyclic Mappings in Metric Spaces,* J. Optim. Theory. Appl. 153 (2011), 298–305] to the case of G –metric spaces.

2000 *Mathematics Subject Classification:* 41A65; 46B20; 47H10

Keywords: G-metric space, noncyclic mapping, minimization problem

1. INTRODUCTION

In 2011, Abkar et al. [2] studied the existence of solutions of some specific minimization problems for noncyclic mappings in metric spaces. In 2006, Mustafa et al. $[11]$ introduced the G-metric spaces as a generalization of the notion of metric spaces. Fixed point results and other results in G -metric spaces have been proved by a number of authors, see, e.g., $[1,3-5,12,14,15]$. In this paper we investigate some minimization problems for noncyclic mappings in G —metric spaces. This work extends results of Abkar et al. $[2]$ to the case of G -metric spaces.

2. PRELIMINARIES

Throughout this paper, N is the set of all natural numbers and R is the set of all real numbers. Generalizations of the notion of a metric space have been proposed by Gabler $[8, 9]$ and by Dhage $[6, 7]$. Mustafa et al. $[11]$ introduced a more appropriate notion of a generalized metric space as following.

Definition 1. Let X be a nonempty set, and $G: X \times X \times X \rightarrow R^+$ be a function satisfying the following conditions:

- (1) $G(x, y, z) = 0$ if $x = y = z$,
- (2) $0 < G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,

c 2013 Miskolc University Press

The second author was supported in part by Imam Khomeini International University, Grant No.751168-91.

- (3) $G(x, x, y) \le G(x, y, z)$ for all $x, y, z \in X$ with $y \ne z$,
- (4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$,
- (5) $G(x, y, z) \le G(x, w, w) + G(w, y, z)$ for all $x, y, z, w \in X$;

The function G is called a generalized metric, or, a G -metric on X, and the pair (X, G) is called a G -metric space.

Example 1. ([11, Example 6.3]) Let (X, d) be a metric space and define the functions G_s and G_m with

$$
G_s(x, y, z) = d(x, y) + d(y, z) + d(x, z), \quad \forall x, y, z \in X
$$

$$
G_m(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\}, \quad \forall x, y, z \in X
$$

Then (X, G_s) and (X, G_m) are G-metric space.

Now, we recall some of the basic concepts for G –metric spaces from ([11]).

Definition 2. Let (X, G) be a G -metric space, and $\{x_n\}$ be a sequence of points of X, we say that $\{x_n\}$ is G-convergent to x and write $x_n \xrightarrow{G} x$ if $\lim_{n,m \to \infty} G(x,$ x_n, x_m = 0, that is, for any $\epsilon > 0$, there exists $n_0 \in N$ such that $G(x, x_n, x_m) < \epsilon$, for all $n,m \geq n_0$.

Proposition 1. Let (X, G) be a G-metric space, then the following are equivalent.

- (1) $\{x_n\}$ *is* G-convergent to x.
- (2) $\lim_{n\to\infty} G(x, x_n, x_n) = 0.$
- (3) $\lim_{n\to\infty} G(x, x, x_n) = 0.$

Definition 3. Let (X, G) be a G-metric space, a $\{x_n\}$ is called G-Cauchy for any $\epsilon > 0$, there exists $n_0 \in N$ such that $G(x_n, x_m, x_l) < \epsilon$, for all $n, m, l \ge n_0$ that is $\lim_{n,m,l\to\infty} G(x_n, x_m, x_l) = 0$

Proposition 2. *Let* (X, G) *be a* G *-metric space, then the following are equivalent.*

- (1) $\{x_n\}$ *is* G *-Cauchy.*
- (2) *For any* $\epsilon > 0$ *, there exists* $n_0 \in N$ *such that* $G(x_n, x_m, x_m) < \epsilon$ *, for all* $n, m \geq 0$ $n₀$

Definition 4. Let (X_1, G_1) and (X_2, G_2) be G-metric spaces. A function f: $(X_1, G_1) \rightarrow (X_2, G_2)$ is G-continuous at a point $a \in X$ if for any $\epsilon > 0$, there exists $\delta > 0$ such that $x, y \in X_1$, $G_1(a, x, y) < \delta$ implies $G_2(f(a), f(x), f(y)) < \epsilon$. A function f is G-continuous on X if and only if it is G-continuous at all $a \in X$.

Proposition 3. Let (X_1, G_1) and (X_2, G_2) be G-metric spaces. A function f : $(X_1, G_1) \rightarrow (X_2, G_2)$ is G-continuous at a point $x \in X$ if and only if whenever $\{x_n\}$ *is* G -convergent to x , $\{f(x_n)\}\$ is G -convergent to $f(x)$.

Definition 5. A G-metric space (X, G) is said to be G-complete if every G-Cauchy sequence in (X, G) is G -convergent in (X, G) .

Definition 6. Let (X, G) be a G-metric space. A G-Ball with center x_0 and radius r is

$$
B_G(x_0,r) = \{x \in X : G(x_0,y,y) < r\}.
$$

Definition 7. Let (X, G) be a G-metric space and $\epsilon > 0$ be given, then a set $A \subset X$ is called ϵ -net of (X, G) if given any x there is at last one point $a \in A$ such that $x \in B_G(a, \epsilon)$. If the A is finite then A is called a finite ϵ -net of (X, G) . Note that if A is an ϵ -net then $X = \bigcup_{a \in A} B_G(a, \epsilon)$.

Definition 8. A G-metric space (X, G) is called G-totally bounded if for every $\epsilon > 0$ there exists a finite ϵ -net.

Definition 9. A G-metric space (X, G) is called G-compact space if it is G –complete and G –totally bounded.

Proposition 4. *Let* (X, G) *be a* G *-metric space, then the following are equivalent.*

- (1) (X, G) *is a* G *-compact space.*
- (2) (X, G) *is* G-sequentially compact, that is, if the sequence $\{x_n\} \subset X$ *is such that* $\sup\{G(x_n, x_m, x_l) : n, m, l \in N\} < \infty$, then $\{x_n\}$ has a G -convergent *subsequence.*

Theorem 1 ([12], Theorem 2.1). Let (X, G) be a G-metric space and $T: X \rightarrow X$ *be a mapping which satisfies the following condition, for all* $x, y, z \in X$,

 $G(T(x), T(y), T(z)) \leq k \max\{G(x, y, z), G(x, T(x), T(x)), G(y, T(y), T(y)),$ $G(z, T(z), T(z)), G(x, T(y), T(y)),$ $G(y, T(z), T(z)), G(z, T(x), T(x))$; (2.1)

where $k \in [0, 1/2)$ *. Then* T *has a unique fixed point (say u) and* T *is* G-continuous *at* u*.*

Definition 10. Let A, B, C be subsets of a G -metric space (X, G) . A mapping $T : A \cup B \cup C \rightarrow A \cup B \cup C$ is called relatively G-nonexpansive if

$$
G(T(x), T(y), T(z)) \le G(x, y, z), \quad \forall (x, y, z) \in A \times B \times C.
$$

Definition 11. Let (X, G) be a G-metric space and $A, B, C \subset X$, then

 $dist(A, B, C) = inf{G(a, b, c) : a \in A, b \in B, c \in C}.$

Example 2. Let R be equipped with the usual metric, and $A = [-1, 0]$ and $B =$ N_o and $C = N_e$ where N_o and N_e are the set of odd natural numbers and even natural numbers, respectively. Let $G_m(x, y, z) = \max\{|x - y|, |x - z|, |y - z|\}$, then $dist(A, B, C) = 2.$

Definition 12. Let (X, G) be a G-metric space and $A, B, C \subset X, T : A \cup B \cup$ $C \rightarrow A \cup B \cup C$ is said noncyclic mapping, if

$$
T(A) \subset A, \quad T(B) \subset B, \quad T(C) \subset C.
$$

We consider the following minimization problem: Find

$$
\min_{a \in A} \{ G(a, T(a), T(a)) \}, \qquad \min_{b \in B} \{ G(b, T(b), T(b)) \},
$$
\n
$$
\min_{b \in B} \{ G(c, T(c), T(c)) \}, \qquad \min_{(a, b, c) \in A \times B \times C} \{ G(a, b, c) \}
$$
\n(2.2)

We say that $(x^*, y^*, z^*) \in A \times B \times C$ is a solution of above problem, if

$$
Tx^* = x^*, \quad Ty^* = y^*, \quad Tz^* = z^*,
$$

and

$$
G(x^{\star}, y^{\star}, z^{\star}) = dist(A, B, C).
$$

Definition 13. Let (X, G) be a G-metric space and $A, B, C \subset X$, we set

$$
A_0 = \{a \in A : G(a, b, c) = dist(A, B, C), \text{ for some } b \in B, c \in C\}
$$

$$
B_0 = \{b \in B : G(a, b, c) = dist(A, B, C), \text{ for some } a \in A, c \in C\}
$$

$$
C_0 = \{c \in C : G(a, b, c) = dist(A, B, C), \text{ for some } a \in A, b \in B\}
$$

Definition 14. Let (X, G) be a G -metric space and A, B, C be nonempty subsets of X, with $A_0 \neq \emptyset$. We say that A, B, C have P-property iff

$$
\begin{cases}\nG(x_1, y_1, z_1) = dist(A, B, C) \\
G(x_2, y_2, z_2) = dist(A, B, C) \\
G(x_3, y_3, z_3) = dist(A, B, C)\n\end{cases}
$$

then

$$
G(x_1, x_2, x_3) = G(y_1, y_2, y_3) = G(z_1, z_2, z_3),
$$

where $x_1, x_2, x_3 \in A_0$ and $y_1, y_2, y_3 \in B_0$ and $z_1, z_2, z_3 \in C_0$.

The above definition were found in the case of metric space in $([13])$.

Example 3. Let A, B, C be nonempty subsets of a G -metric space (X, G) such that $A_0 \neq \emptyset$ and $dist(A, B, C) = 0$, then A, B, C have P-property.

Definition 15. Let (X, G) be a G -metric space and $T : X \rightarrow X$ be a mapping. T is called expansive if for all $x, y, z \in X$;

$$
G(T(x), T(y), T(z)) \ge G(x, y, z).
$$

Definition 16. Let (X, G) be a G -metric space and $T : X \rightarrow X$ be a mapping. T is said to be asymptotically regular iff $\lim_{n\to\infty} G(T^n x, T^{n+1} x, T^{n+1} x) = 0$, for all $x \in X.$

3. MAIN RESULTS

We start this section with the following theorem.

Theorem 2. Let A, B, C be nonempty and closed subsets of a G-complete space (X, G) *such that* $A_0 \neq \emptyset$ *and* A, B, C *satisfies the* P-property. Let $T : A \cup B \cup C \rightarrow$ $A \cup B \cup C$ *be a noncyclic mapping. Suppose that*

- (1) $T|_A$ *be a mapping which satisfies in (2.1).*
- (2) T is relatively G-nonexpansive.

Then the minimization problem (2.2) has a solution.

Proof. If $x \in A_0$, then there exist $y \in B$ and $z \in C$ such that $G(x, y, z)$ $= dist(A, B, C)$. Since T is relatively G-nonexpansive then

$$
G(T(x), T(y), T(z)) \le G(x, y, z) = dist(A, B, C)
$$

Hence $Tx \in A_0$.

Let $x_0 \in A_0$ by Theorem 1 if $x_n = T^n(x_0)$ then $x_n \xrightarrow{G} x^*$ where x^* is unique fixed point of T in A. Since $x_0 \in A_0$ there exist $y_0 \in B$ and $z_0 \in C$ such that $G(x_0, y_0, z_0) = dist(A, B, C)$. Since $x_1 = Tx_0 \in A_0$, there exist $y_1 \in B$ and $z_1 \in C$ such that $G(x_1, y_1, z_1) = dist(A, B, C)$. Using this process, we have a sequence ${y_n}$ in B and ${z_n}$ in C such that

$$
G(x_n, y_n, z_n) = dist(A, B, C) \quad \forall n \in N \cup \{0\}.
$$

Since A, B, C have the P-property, we have for all $m, n, l \in N \cup \{0\}$

$$
G(x_n, x_m, x_l) = G(y_n, y_m, y_l) = G(z_n, z_m, z_l).
$$

This implies that $\{y_n\}$ and $\{z_n\}$ are G -Cauchy sequences, and there exist $y^* \in B$ and $z^* \in C$ such that $y_n \xrightarrow{G} y^*$ and $z_n \xrightarrow{G} z^*$ Thus

$$
G(x^{\star}, y^{\star}, z^{\star}) = \lim_{n \to \infty} G(x_n, y_n, z_n) = dist(A, B, C)
$$

Since

$$
G(T(x^{\star}), T(y^{\star}), T(z^{\star})) \le G(x^{\star}, y^{\star}, z^{\star}) = dist(A, B, C)
$$

Therefore by the P -property, we have

$$
G(x^{\star}, T(x^{\star}), T(x^{\star})) = G(y^{\star}, T(y^{\star}), T(y^{\star})) = G(z^{\star}, T(z^{\star}), T(z^{\star}))
$$

Thus $(x^*, y^*, z^*) \in A \cup B \cup C$ is a solution of the minimization problem (2.2). \square

Example 4. Let R be equipped with the usual metric, and $G_m(x, y, z) = \max\{|x - y^2|\}$ $|y|, |x - z|, |y - z|$. Let $A = [-2, 0]$ and $B = \{1\}$ and $C = [2, 3]$. It is obvious that

$$
A_0 = \{0\}, B_0 = \{1\}, C_0 = \{2\}. \text{ Define } T : A \cup B \cup C \rightarrow A \cup B \cup C \text{ with}
$$
\n
$$
T(x) = \begin{cases} \frac{x}{4} & x \in A \\ 1 & x \in B \\ \frac{x+2}{2} & x \in C \end{cases}
$$

It is easy to check that all the conditions of Theorem 2 hold. Therefore, the minimization problem (2.2) has a solution $(x^*, y^*, z^*) = (0, 1, 2)$.

Theorem 3. Let A, B, C be nonempty subsets of a G -complete space (X, G) such *that* A *is* G-compact and B and C are G-closed. Let $A_0 \neq \emptyset$ and A, B, C *satisfy the* P-property. Let $T : A \cup B \cup C \rightarrow A \cup B \cup C$ *be a noncyclic mapping. Then the minimization problem (2.2) has a solution provided that the following conditions are satisfied:*

(1) T *is relatively* G*nonexpansive.*

(2) $T|_A$ *is a G-expansive.*

(3) $T|_B$ *and* $T|_C$ *be mappings which satisfy in (2.1).*

Proof. If $x \in A_0$, and $x_{n+1} = Tx_n$, $(n \in N \cup \{0\})$. By argument similar in the proof of Theorem 2 we obtain that $T(A_0) \subset A_0$ and there exist y_n in B and z_n in C such that

$$
G(x_n, y_n, z_n) = dist(A, B, C) \quad \forall n \in N \cup \{0\}.
$$

Since A is G-compact, by Proposition 4 there exist a subsequence $\{x_{n_k}\}$ of the $\{x_n\}$ such that $x_{n_k} \xrightarrow{G} x^* \in A$. Since A, B, C satisfy the P-property,

$$
G(x_{n_k}, x_{n_s}, x_{n_l}) = G(y_{n_k}, y_{n_s}, y_{n_l}) = G(z_{n_k}, z_{n_s}, z_{n_l}), \quad (k, s, l \in N).
$$

This implies that $\{y_n\}$ and $\{z_n\}$ are G – Cauchy sequences and there exist $y^* \in B$ and $z^{\star} \in C$ such that $y_{n_k} \xrightarrow{G} y^{\star}$ and $z_{n_k} \xrightarrow{G} z^{\star}$. Thus

$$
G(x^{\star}, y^{\star}, z^{\star}) = \lim_{n \to \infty} G(x_{n_k}, y_{n_k}, z_{n_k}) = dist(A, B, C)
$$

Now we prove that x^{\star} , y^{\star} , $z^{\star} \in F(T)$. Since T is relatively G-nonexpansive,

$$
G(T^{2}(x^{\star}), T^{2}(y^{\star}), T^{2}(z^{\star})) = G(T(x^{\star}), T(y^{\star}), T(z^{\star})) = dist(A, B, C).
$$

Since A, B, C satisfy the P -property, we have

$$
G(x^{\star}, T(x^{\star}), T(x^{\star})) = G(y^{\star}, T(y^{\star}), T(y^{\star})) = G(z^{\star}, T(z^{\star}), T(z^{\star})),
$$

and

$$
G(T(x^{\star}), T^{2}(x^{\star}), T^{2}(x^{\star})) = G(T(y^{\star}), T^{2}(y^{\star}), T^{2}(y^{\star}))
$$

=
$$
G(T(z^{\star}), T^{2}(z^{\star}), T^{2}(z^{\star})).
$$

Now let $Ty^* \neq T^2y^*$, since $T|_B$ satisfies in (2.1),

$$
G(T(y^{\star}), T(T(y^{\star})), T(T(y^{\star}))) \leq k G(y^{\star}, T(y^{\star}), T(y^{\star}))
$$

Thus since $T|_A$ is a G-expansive, we have

$$
G(T(y^{\star}), T^{2}(y^{\star}), T^{2}(y^{\star})) = G(T(y^{\star}), T(T(y^{\star})), T(T(y^{\star})))
$$

\n
$$
\leq kG(y^{\star}, T(y^{\star}), T(y^{\star}))
$$

\n
$$
= kG(x^{\star}, T(x^{\star}), T(x^{\star}))
$$

\n
$$
\leq kG(T(x^{\star}), T^{2}(x^{\star}), T^{2}(x^{\star}))
$$

\n
$$
= kG(T(y^{\star}), T^{2}(y^{\star}), T^{2}(y^{\star})),
$$

which is a contraction. Therefore $Ty^* = T^2y^*$. A similar argument implies that $Tz^* = T^2z^*$. Thus $x^* = T(x^*)$ and $y^* = T(y^*)$ and $z^* = T(z^*)$ \Box

Example 5. Let $X = R^3$ and

$$
G((x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)) = \max\{G_m(x_1, x_2, x_3), G_m(x_1, z_2, z_3)\},\
$$

where $G_m(x, y, z) = \max\{|x - y|, |x - z|, |y - z|\}.$ Let $A = \{(x, 0, 0) : -1 \le x \le y\}$ 0} and $B = \{(0, y, 0) : 0 \le x \le 1\}$ and $C = \{(0, 0, z) : -1 \le z \le 1\}$. It is obvious that $A_0 = B_0 = C_0 = \{(0,0,0)\}\$ and $dist(A, B, C) = 0$, therefore A, B, C have the P-property. Define $T : A \cup B \cup C \rightarrow A \cup B \cup C$ with

$$
T(x,0,0) = (-x,0,0), \ T(0,y,0) = (0,\frac{y}{4},0) \ and \ T(0,0,z) = (0,0,\frac{z}{4}).
$$

It is easy to check that all the conditions of Theorm 3 hold. Therefore the minimization problem (2.2) has a solution $x^* = y^* = z^* = (0, 0, 0)$.

Theorem 4. Let A, B, C be nonempty subsets of a G -complete space (X, G) such *that* A *is* G – *compact and* B *and* C *are* G – *closed*. Let $A_0 \neq \emptyset$ *and* A, B, C *satisfy the* P-property. Let $T : A \cup B \cup C \rightarrow A \cup B \cup C$ be a noncyclic mapping. Then the *minimization problem (2.2) has a solution provided that the following conditions are satisfied:*

(1) T *is relatively* G *-nonexpansive.*

(2) $T|_A$ *is* G -continuous and asymptotically regular.

Proof. Let $\{x_n\}$, $\{y_n\}$, $\{z_n\}$, $\{x_{n_k}\}$, $\{y_{n_k}\}$, $\{z_{n_k}\}$, x^* , y^* and z^* be as in Theorem 3. We have $x_{n_k} \xrightarrow{\sigma} x^* \in A$, $y_{n_k} \xrightarrow{\sigma} y^* \in B$, $z_{n_k} \xrightarrow{\sigma} z^* \in C$ and $G(x^*, y^*, z^*) =$ $dist(A, B, C)$. From Proposition 3, since $T|_A$ is G –continuous, we have

$$
x_{n_k+1} = T(x_{n_k}) \xrightarrow{G} T(x^{\star}).
$$

Also by the asymptotic regularly of $T|_A$, we obtain

$$
G(x^*, T(x^*), T(x^*)) = \lim_{k \to \infty} G(x_{n_k}, T(x_{n_k}), T(x_{n_k}))
$$

=
$$
\lim_{k \to \infty} G(T^{n_k}(x_0), T^{n_k+1}(x_0), T^{n_k+1}(x_0))
$$

= 0.

This implies that $T(x^*) = x^*$. Since T is relatively G-nonexpansive, we have

$$
G(T(x^{\star}), T(y^{\star}), T(z^{\star})) \le G(x^{\star}, y^{\star}, z^{\star}) = dist(A, B, C)
$$

Therefore by the P -property, we have

$$
G(x^{\star}, T(x^{\star}), T(x^{\star})) = G(y^{\star}, T(y^{\star}), T(y^{\star})) = G(z^{\star}, T(z^{\star}), T(z^{\star}))
$$

Hence $T(y^{\star}) = y^{\star}$ and $T(z^{\star}) = z^{\star}$.

QUESTION: In 2011, Karapinar [10] obtain some common fixed point results in partial metric spaces. Can one study the minimization problem (2.2) for two mappings in partial metric spaces?

REFERENCES

- [1] M. Abbas and B. E. Rhoades, "Common fixed point results for noncommuting mappings without continuity in generalized metric spaces," *Appl. Math. Comput.*, vol. 215, no. 1, pp. 262–269, 2009.
- [2] A. Abkar and M. Gabeleh, "Global optimal solutions of noncyclic mappings in metric spaces," *J. Optim. Theory Appl.*, vol. 153, no. 2, pp. 298–305, 2012.
- [3] H. Aydi, E. Karapinar, and Z. Mustafa, "On common fixed points in G-metric spaces using (E.A) property," *Comput. Math. Appl.*, vol. 2012, 2012.
- [4] H. Aydi, E. Karapinar, and W. Shatanawi, "Tripled common fixed point results for generalized contractions in ordered generalized metric spaces," *Fixed Point Theory Appl.*, vol. 2012, 2012.
- [5] H. Aydi, E. Karapınar, and W. Shatanawi, "Tripled fixed point results in generalized metric spaces," *J. Appl. Math.*, vol. 2012, p. 10, 2012.
- [6] B. C. Dhage, "Generalised metric spaces and mappings with fixed point," *Bull. Calcutta Math. Soc.*, vol. 84, no. 4, pp. 329–336, 1992.
- [7] B. C. Dhage, "Generalized metric spaces and topological structure I." *An. Stiint, Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat., vol. 46, no. 1, pp. 3-24, 2000.*
- [8] S. Gähler, "2-metrische räume und ihre topologische struktur," *Math. Nachr.*, vol. 26, pp. 115–148, 1963.
- [9] S. Gähler, "Zur geometrie 2-metrischer räume," Rev. Roum. Math. Pures Appl., vol. 11, pp. 665– 667, 1966.
- [10] E. Karapinar, "A note on common fixed point theorems in partial metric spaces," *Math. Notes, Miskolc*, vol. 12, no. 2, pp. 185–191, 2011.
- [11] Z. Mustafa and B. Sims, "A new approach to generalized metric spaces," *J. Nonlinear Convex Anal.*, vol. 7, no. 2, pp. 286–297, 2006.
- [12] Z. Mustafa and B. Sims, "Fixed point theorems for contractive mappings in complete G-metric spaces," *Fixed Point Theory Appl.*, vol. 2009, p. 10, 2009.
- [13] V. S. Raj, "A best proximity point theorem for weakly contractive non-self-mappings," *Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods*, vol. 74, no. 14, pp. 4804–4808, 2011.
- [14] R. Saadati, S. M. Vaezpour, P. Vetro, and B. E. Rhoades, "Fixed point theorems in generalized partially ordered G-metric spaces," *Math. Comput. Modelling*, vol. 52, no. 5-6, pp. 797–801, 2010.
- [15] N. Tahat, H. Aydi, E. Karapinar, and W. Shatanawi, "Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces," *Fixed Point Theory Appl.*, vol. 2012, 2012.

Authors' addresses

Saeed Shabani

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran. *E-mail address:* s.shabani@srbiau.ac.ir, shabani60@gmail.com

Abdolrahman Razani

Department of Mathematics, Faculty of Science, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.

E-mail address: razani@ikiu.ac.ir