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1. INTRODUCTION

Let A the class of functions f which are analytic in the open unit disk UD

f´ 2C W j´j< 1g with f .0/D f 0.0/�1D 0: We denote by Ur the open disk
f´ 2C W j´j< rg ; where 0 < r � 1, by UDU1 the open unit disk of the complex
plane and by I the interval Œ0;1/.

Let k be constant in Œ0;1/: Then a homeomorphism f of G � C is said to be
k�quasiconformal, if @´f and @´f in the distributional sense are locally integrable
on G and fulfill the inequality j@´f j � k j@´f j almost everywhere in G: If we do not
need to specify k; we will simply call f quasiconformal.

Three of the most important and known univalence criteria for analytic functions
defined in the open unit disk were obtained by Nehari [14], Ozaki-Nunokawa [17]
and Becker [3]. Some extensions of these three criteria were given by [15,16,21–25].
Furthermore a lot of univalence criteria have been obtained by different authors (see
also [7–9]).

In the present investigation, we will obtain a number of new criteria for the func-
tions defined by the integral operator Fˇ .´/: Also, we obtain a refinement to a qua-
siconformal extension criterion of the main result.

2. PRELIMINARIES

Before proving our main theorem we present a brief summary of the method of
Loewner chains and quasiconformal extension criterion.
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A function L.´; t/ WU� Œ0;1/!C is said to be subordination chain (or Loewner
chain) if:

(i) L.´; t/ is analytic and univalent in U for all t � 0.
(ii) L.´; t/ � L.´;s/ for all 0 � t � s <1, where the symbol ” � ” stands for

subordination.
To prove our results, we will need the following theorem due to Ch. Pommerenke

[20].

Theorem 1. Let L.´; t/ D a1.t/´Ca2.t/´
2C :::; a1.t/ ¤ 0 be analytic in Ur

for all t 2 I; locally absolutely continuous in I; and locally uniform with respect to
Ur : For almost all t 2 I; suppose that

´
@L.´; t/

@´
D p.´; t/

@L.´; t/

@t
; 8´ 2Ur (2.1)

where p.´; t/ is analytic in U and satisfies the condition <p.´; t/ > 0 for all ´ 2
U; t 2 I: If ja1.t/j !1 for t !1 and fL.´; t/�a1.t/g forms a normal family in
Ur ; then for each t 2 I; the function L.´; t/ has an analytic and univalent extension
to the whole disk U:

The method of constructing quasiconformal extension criteria is based on the fol-
lowing result of Becker (see [3], [4] and also [5]).

Theorem 2. Suppose that L.´; t/ is a Loewner chain for which the function p.´; t/
given in (2.1) satisfies the condition

p.´; t/ 2U.k/ WD

�
w 2C W

ˇ̌̌̌
w�1

wC1

ˇ̌̌̌
� k

�
D

�
w 2C W

ˇ̌̌̌
w�

1Ck2

1�k2

ˇ̌̌̌
�

2k

1�k2

�
; .0� k < 1/

for all ´ 2U and t � 0: Then L.´; t/ admits a continuous extension to U for each
t � 0 and the function F.´;´/ defined by

F.´;´/D

�
L.´;0/; if j´j< 1

L. ´
j´j
; log j´j/; if j´j � 1

is a k�quasiconformal extension of L.´;0/ to C:

Examples of quasiconformal extension criteria can be found in [1], [2], [6], [13],
[19] and more recently in [10–12].

3. MAIN RESULTS

In this section, using Theorem 1, we obtain certain sufficient conditions for the
univalence of an integral operator.
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Theorem 3. Let m be a positive real number and let ˛; ˇ be complex numbers
such that <˛ < 1=2; <ˇ > 0 and f 2A: Let g and h be two analytic functions in
U; g.´/D 1Cb1´C :::; h.´/D c0C c1´C :::. If the following inequalitiesˇ̌̌̌

f 0.´/

g.´/�˛
�
m�1

2

ˇ̌̌̌
<
mC1

2
; (3.1)

and ˇ̌̌̌�
f 0.´/

g.´/�˛
�1

�
j´jˇ.mC1/

C

�
1�j´jˇ.mC1/

��
2´ˇ

f 0.´/h.´/

g.´/�˛
C
1

ˇ

´g0.´/

g.´/�˛

�

C

´ˇC1
�
1�j´jˇ.mC1/

�2
j´jˇ.mC1/

"
´ˇ�1f 0.´/h2.´/

g.´/�˛
C
1

ˇ

�
g0.´/h.´/

g.´/�˛
�h0.´/

�#
�
m�1

2

ˇ̌̌̌
ˇ̌̌

�
mC1

2
(3.2)

are true for all ´ 2U; then the function Fˇ .´/ defined by

Fˇ .´/D

24ˇ ´Z
0

uˇ�1f 0.u/du

351=ˇ (3.3)

is analytic and univalent in U; where the principal branch is intended.

Proof. We shall prove that there exists a real number r; r 2 .0;1� such that the
function L WUr �I !C; defined formally by

L.´; t/D

264ˇ e�t´Z
0

uˇ�1f 0.u/duC

�
eˇmt � e�ˇt

�
´ˇ
�
g
�
e�t´

�
�˛

�
1C

�
eˇmt � e�ˇt

�
´ˇh.e�t´/

375
1=ˇ

(3.4)

is analytic in Ur for all t 2 I:
Because f 2A we have

f .´/D ´Ca2´
2
C :::Can´

n
C :::; 8´ 2U:

Let us denote by

'1.´; t/D ˇ

e�t´Z
0

uˇ�1f 0.u/du: (3.5)

We obtain '1.´; t/D
�
e�t´

�ˇ
C
2ˇa2

ˇC1

�
e�t´

�ˇC1
C ::: and we observe that

'1.´; t/D ´
ˇ'2.´; t/ (3.6)
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where

'2.´; t/D e
�ˇt
C

1X
nD2

nˇ

nCˇ�1
ane
�.nCˇ�1/t´n�1: (3.7)

The function '2 is analytic in U for all t 2 I; since

lim
n!1

n

sˇ̌̌̌
nˇ

nCˇ�1
ane�.nCˇ�1/t

ˇ̌̌̌
D e�t lim

n!1

n
p
janj:

It is clear that if ´ 2U; then e�t´ 2U for all t 2 I and because f 0.0/ D 1; there
exists a disk Ur1

; 0 < r1 � 1 in which f 0.e�t´/¤ 0 for all t � 0:
From the analyticity of f it follows that the function '3 is also analytic in Ur1

;

where
'3.´; t/D 1C

�
eˇmt � e�ˇt

�
´ˇh

�
e�t´

�
: (3.8)

We have '3.0; t/D 1 and then there exists a disk Ur2
; 0 < r2� r1 in which '3.´; t/¤

0 for all t � 0:
Then the function

'4.´; t/D '2.´; t/C
�
eˇmt � e�ˇt

� �g �e�t´��˛�
'3.´; t/

(3.9)

is also analytic in Ur2
and '4.0; t/D .1�˛/eˇmtC˛e�ˇt : From<˛ < 1=2;<ˇ > 0

we deduce that '4.0; t/ ¤ 0 for all t 2 I: Therefore, there exists a disk Ur ; 0 <

r � r2 in which '4.0; t/ ¤ 0 for all t 2 I and we can choose an analytic branch of
Œ'4.´; t/�

1=ˇ ; denoted by '5.´; t/: We choose the uniform branch which is equal to

a1.t/D
h
.1�˛/eˇmt C˛e�ˇt

i1=ˇ
at the origin, and for a1.t/we get lim

t!1
ja1.t/j D

1: Moreover, we have a1.t/¤ 0 for all t � 0:
From (3.4)-(3.9) it follows that the relation (3.4) can be written as

L.´; t/D ´'5.´; t/ (3.10)

and hence we obtain that the function L.´; t/ is analytic in Ur ;

L.´; t/D a1.t/´C :::; 8´ 2Ur ; 8t 2 I:

L.´; t/ is an analytic function in Ur for all t 2 I and then it follows that there is a
number r3; 0 < r3 < r and a positive constant K DK.r3/ such thatˇ̌̌̌

L.´; t/

a1.t/

ˇ̌̌̌
<K; 8´ 2Ur3

; t � 0:

Then, by Montel’s theorem, it follows that
n

L.´;t/
a1.t/

o
t�0

is a normal family in Ur3
:

From (3.10) we have
@L.´; t/

@t
D ´

@'5.´; t/

@t
: (3.11)
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It is clear that @'5.´;t/
@t

is an analytic function in Ur3
and then @L.´;t/

@t
is also an

analytic function in Ur3
. Then, for all fixed numbers T > 0 and r4; 0 < r4 < r3;

there exists a constant K1 > 0 (which depends on T and r4) such thatˇ̌̌̌
@L.´; t/

@t

ˇ̌̌̌
<K1; 8´ 2Ur4

and t 2 Œ0;T �:

Therefore, the function L.´; t/ is locally absolutely continuous in Œ0;1/ and is lo-
cally uniform with respect to Ur4

:

Since @L.´;t/
@t

is analytic in Ur4
; from (3.11) it follows that there is a number r0;

0 < r0 < r4; such that 1
´
@L.´;t/
@t
¤ 0; 8´ 2Ur0

; so the function

p.´; t/D ´
@L.´; t/

@´
�
@L.´; t/

@t

is analytic in Ur0
for all t � 0:

In order to prove that the function p.´; t/ has an analytic extension with positive
real part in U for all t � 0; it is sufficient to prove that the function w.´; t/ defined in
Ur0

by

w.´; t/D
p.´; t/�1

p.´; t/C1

can be extended analytically in U; jw.´; t/j< 1 for all ´ 2U and t � 0:
After some calculations we obtain:

w.´; t/D
2

mC1
G .´; t/�

m�1

mC1
; (3.12)

where

G .´; t/D e�ˇ.mC1/t
�
f 0.e�t´/

g.e�t´/�˛
�1

�
C

�
1� e�ˇ.mC1/t

��
2e�ˇt´ˇ

f 0.e�t´/h.e�t´/

g.e�t´/�˛
C
e�t´

ˇ

g0.e�t´/

g.e�t´/�˛

�

C

e�ˇt´ˇ
�
1� e�ˇ.mC1/t

�2
e�ˇ.mC1/t

�

�
e�ˇt´ˇ

f 0.e�t´/h2.e�t´/

g.e�t´/�˛

C
e�t´

ˇ

�
h.e�t´/g0.e�t´/

g.e�t´/�˛
�h0.e�t´/

��
: (3.13)

for ´ 2U and t � 0:
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The inequality jw.´; t/j < 1 for all ´ 2 U and t � 0; where w.´; t/ defined by
(3.12), is equivalent toˇ̌̌̌

G .´; t/�
m�1

2

ˇ̌̌̌
<
mC1

2
; 8´ 2U and t � 0: (3.14)

Define

H .´; t/D G .´; t/�
m�1

2
; 8´ 2U and t � 0: (3.15)

In view of (3.1) and (3.2), from (3.13) and (3.15) we have

jH .´;0/j D

ˇ̌̌̌�
f 0.´/

g.´/�˛
�1

�
�
m�1

2

ˇ̌̌̌
<
mC1

2
: (3.16)

Let t > 0; ´ 2 U�f0g: In this case the function H .´; t/ is analytic in U becauseˇ̌
e�t´

ˇ̌
� e�t < 1; for all ´ 2U: Using the maximum principle for ´ 2U and t > 0

we have
jH .´; t/j< max

j�jD1
jH .�; t/j D

ˇ̌̌
H .ei� ; t /

ˇ̌̌
;

where � D �.t/ is a real number.
Let uD e�tei� : We have juj D e�t and e�ˇ.mC1/t D

�
e�t

�ˇ.mC1/
D jujˇ.mC1/ :

From (3.13), we haveˇ̌̌
G .ei� ; t /

ˇ̌̌
D

ˇ̌̌̌
jujˇ.mC1/

�
f 0.u/

g.u/�˛
�1

�
C

�
1�jujˇ.mC1/

�"2uˇf 0.u/h.u/
g.u/�˛

C
u

ˇ

g0.u/

g.u/�˛

#

C

uˇ
�
1�jujˇ.mC1/

�2
jujˇ.mC1/

�

"
uˇf 0.u/h2.u/

g.u/�˛
C
u

ˇ

�
h.u/g0.u/

g.u/�˛
�h0.u/

�#
�
m�1

2

ˇ̌̌̌
ˇ :

Since u 2U, the inequality (3.2) implies thatˇ̌̌
H .ei� ; t /

ˇ̌̌
�
mC1

2
; (3.17)

and from (3.16) and (3.17) it follows that the inequality (3.14)

jH .´; t/j D

ˇ̌̌̌
G .´; t/�

m�1

2

ˇ̌̌̌
<
mC1

2

is satisfied for all ´ 2U and t 2 I: Therefore jw.´; t/j< 1; for all ´ 2U and t � 0:
Since all the conditions of Theorem 1 are satisfied, we obtain that the function

L.´; t/ has an analytic and univalent extension to the whole unit disk U; for all t 2 I:
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For t D 0 we have L.´;0/D Fˇ .´/; for ´ 2U and therefore, the function Fˇ .´/ is
analytic and univalent in U: �

For g D f 0 in Theorem 3, we obtain another univalence criterion as follows.

Corollary 1. Let m be a positive real number and let ˛; ˇ be complex numbers
such that<˛ < 1=2;<ˇ > 0 and f 2A: Let h be an analytic functions in U; h.´/D

c0C c1´C :::. If the following inequalitiesˇ̌̌̌
f 0.´/

f 0.´/�˛
�
mC1

2

ˇ̌̌̌
<
mC1

2
; (3.18)

and ˇ̌̌̌�
f 0.´/

f 0.´/�˛
�1

�
j´jˇ.mC1/

C

�
1�j´jˇ.mC1/

��
2´ˇ

f 0.´/h.´/

f 0.´/�˛
C
1

ˇ

´f 00.´/

f 0.´/�˛

�

C

´ˇC1
�
1�j´jˇ.mC1/

�2
j´jˇ.mC1/

"
´ˇ�1f 0.´/h2.´/

f 0.´/�˛
C
1

ˇ

�
f 00.´/h.´/

f 0.´/�˛
�h0.´/

�#
(3.19)

�
m�1

2

ˇ̌̌̌
�
mC1

2
(3.20)

are true for all ´ 2U; then the function Fˇ .´/ defined by (3.3) is analytic and uni-
valent in U; where the principal branch is intended.

If we choose hD f 00 in Corollary 1, we have another univalence criterion as fol-
lows.

Corollary 2. Let m be a positive real number and let ˛; ˇ be complex numbers
such that<˛ < 1=2;<ˇ > 0 and f 2A: Let h be an analytic functions in U; h.´/D

c0C c1´C :::. If the following inequalitiesˇ̌̌̌
f 0.´/

f 0.´/�˛
�
mC1

2

ˇ̌̌̌
<
mC1

2
; (3.21)

and ˇ̌̌̌�
f 0.´/

f 0.´/�˛
�1

�
j´jˇ.mC1/

C

�
1�j´jˇ.mC1/

��
2´ˇ

f 0.´/h.´/

f 0.´/�˛
C
1

ˇ

´f 00.´/

f 0.´/�˛

�
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C

´ˇC1
�
1�j´jˇ.mC1/

�2
j´jˇ.mC1/

"
´ˇ�1f 0.´/h2.´/

f 0.´/�˛
C
1

ˇ

�
f 00.´/h.´/

f 0.´/�˛
�h0.´/

�#
(3.22)

�
m�1

2

ˇ̌̌̌
�
mC1

2
(3.23)

are true for all ´ 2 U; then the function Fˇ .´/ defined by (3.3) is analytic and
univalent in U; where the principal branch is intended.

Corollary 3. Let m be a positive real number and let ˛; ˇ be complex numbers
such that <˛ < 1=2; <ˇ > 0 and f 2A: If the following inequalitiesˇ̌̌̌

f 0.´/

f 0.´/�˛
�
mC1

2

ˇ̌̌̌
<
mC1

2
; (3.24)

and ˇ̌̌̌�
f 0.´/

f 0.´/�˛
�1

�
j´jˇ.mC1/C

�
1�j´jˇ.mC1/

�� 1
ˇ

´f 00.´/

f 0.´/�˛

�
�
m�1

2

ˇ̌̌̌
�
mC1

2
(3.25)

are true for all ´ 2U; then the function Fˇ .´/ defined by (3.3) is analytic and uni-
valent in U; where the principal branch is intended.

Proof. It results from Corollary 1 with g D f 0 and hD 0. �

If we consider g.´/D f 0; h.´/D�1
2
f 00

f 0
; ˛ D 0; ˇ D 1 in Theorem 3, we obtain

another univalence criterion as follows.

Corollary 4. Let m be a positive real number and f 2A: If the following inequ-
ality ˇ̌̌̌

ˇ̌̌´2
�
1�j´jmC1

�2
j´jmC1

�
1

2
ff I´g

�
�
m�1

2

ˇ̌̌̌
ˇ̌̌� mC1

2
(3.26)

where

ff I´g D

�
f 00.´/

f 0.´/

�0
�
1

2

�
f 00.´/

f 0.´/

�2
is true for all ´ 2U; then the function f .´/ is analytic and univalent in U; where the
principal branch is intended.

Setting ˛ D 0 in Corollary 3 we have another univalence criterion as follows.
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Corollary 5. Let m be a positive real number and let ˇ be complex number such
that <ˇ > 0 and f 2A: If the following inequalityˇ̌̌̌

ˇ̌
�
1�j´jˇ.mC1/

�
ˇ

�
´f 00.´/

f 0.´/

�
�
m�1

2

ˇ̌̌̌
ˇ̌� mC12 (3.27)

is true for all ´2U; then the function Fˇ .´/ defined by (3.3) is analytic and univalent
in U; where the principal branch is intended.

Corollary 6. Let m be a positive real number and let ˇ be complex number with
<ˇ > 0 and f 2A: If the following inequalityˇ̌̌̌

ˇ̌
�
1�j´j.mC1/<ˇ

�
<ˇ

�
´f 00.´/

f 0.´/

�ˇ̌̌̌ˇ̌� 1 (3.28)

is true for all ´2U; then the function Fˇ .´/ defined by (3.3) is analytic and univalent
in U; where the principal branch is intended.

Proof. It can be proved (see [18]) that for ´ 2Unf0g ; <ˇ > 0 and m 2 RCˇ̌̌̌
ˇ1�j´j.mC1/ˇˇ

ˇ̌̌̌
ˇ� 1�j´j.mC1/<ˇ<ˇ

:

For m� 1, we have ˇ̌̌̌
ˇ1�j´j.mC1/ˇˇ

�
´f 00.´/

f 0.´/

�
�
m�1

2

ˇ̌̌̌
ˇ

�

ˇ̌̌̌
ˇ1�j´j.mC1/ˇˇ

�
´f 00.´/

f 0.´/

�ˇ̌̌̌
ˇC m�12

�
1�j´j.mC1/<ˇ

<ˇ

ˇ̌̌̌
´f 00.´/

f 0.´/

ˇ̌̌̌
C
m�1

2

� 1C
m�1

2
D
mC1

2
:

Since inequalities (3.1) and (3.2) are satisfied, making use of Theorem 3, we can
conclude that the function Fˇ is analytic and univalent in U. �

Putting g.´/ D
�
f .´/
´

�2
; h.´/ D 0; ˛ D 0; in Theorem 3, we get the univalence

criterion as follows.

Corollary 7. Let m be a positive real number and let ˇ be complex number such
that <ˇ > 0 and f 2A: If the following inequalitiesˇ̌̌̌

´2f 0.´/

f 2.´/
�
mC1

2

ˇ̌̌̌
<
mC1

2
; (3.29)
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and ˇ̌̌̌
ˇ̌�´2f 0.´/f 2.´/

�1

�
j´jˇ.mC1/C

2
�
1�j´jˇ.mC1/

�
ˇ

�
´f 0.´/

f .´/
�1

�
�
m�1

2

ˇ̌̌̌
ˇ̌

�
mC1

2
(3.30)

are true for all ´ 2U; then the function Fˇ .´/ defined by (3.3) is analytic and uni-
valent in U; where the principal branch is intended.

Corollary 8. Let m be a positive real number and f 2A: If the following inequ-
ality ˇ̌̌̌

´
�
1�j´jmC1

��
2f 00.´/C

f 00.´/

f 0.´/

�

C

´2
�
1�j´jmC1

�2
j´jmC1

 
.f 00.´//

2

f 0.´/
C
�
f 00.´/

�2
�f 000.´/

!
�
m�1

2

ˇ̌̌̌
ˇ̌̌

�
mC1

2
(3.31)

is true for all ´ 2U; then the function f .´/ is analytic and univalent in U; where the
principal branch is intended.

Proof. It results from Corollary 2 with ˛ D 0; ˇ D 1: �

Remark 1. (1) Putting g.´/D f 0.´/; h.´/D 0; ˛ D 0; ˇ DmD 1 in Theorem 3,
we have Becker’s criterion [3].

(2) If we consider g.´/D f 0.´/; h.´/D�1
2
f 00.´/
f 0.´/

; ˛D 0; ˇDmD 1 in Theorem
3, we obtain the univalence criterion due to Nehari [14].

(3) Setting g.´/D
�
f .´/
´

�2
; h.´/D 1

´
�
f .´/

´2 ; ˛ D 0; ˇ D mD 1 in Theorem 3,
we get the univalence criterion due to Ozaki-Nunokawa [17].

(4) For g.´/D f 0.´/; h.´/D 1
´
�
f .´/
f .´/

; ˛D 0; ˇDmD 1 in Theorem 3, we arrive
at Goluzin’s criterion for univalence [9].

(5) FormD 1 in Corollary 6, we obtain the univalence criterion due to Pascu [18].
(6) If we consider g.´/D f 0.´/; h.´/D 0; ˇ D 1 in Theorem 3, we have results

of Raducanu et al. [23].
(7) Putting ˛ D 0; ˇ D mD 1 in Theorem 3, we get the univalence criterion due

to Ovesea-Tudor and Owa [16].

Example 1. Let the function

f .´/D
´

1� ´
2

2

: (3.32)
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Then f is univalent in U and the function

F2.´/D

0@2 ´Z
0

uf 0.u/du

1A 1
2

(3.33)

is analytic and univalent in U.
Infact, from equality (3.29) for mD 1; we have

´2f 0.´/

f 2.´/
�1D

´2

2
: (3.34)

It is clear that the condition (3.29) of the Corollary 7 is satisfied for m D 1; and
then the function f is univalent in U:

Taking into account (3.34), the condition (3.30) of Corollary 7 becomes for ˇD 2;
mD 1; ˇ̌̌̌

´2

2
j´j4C

�
1�j´j4

� 2´2

2�´2

ˇ̌̌̌
�
j´j6

2
C2

�
1�j´j4

�
j´j2

D
1

2

�
4 j´j2�3 j´j6

�
< 1

because the greatest value of the function g.x/ D 4x2� 3x6; for x 2 Œ0;1� is taken

for x D
q
2
3

and g.
q
2
3
/ D 24

27
: Therefore the function F2.´/ defined by (3.33) is

analytic and univalent in U.

FIGURE 1. f .´/D ´

1�´2

2
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FIGURE 2. F2.´/D

�
4
R ´
0

2Cu2

.2�u2/
2du

� 1
2

4. QUASICONFORMAL EXTENSION CRITERION

In this section we will generalize the univalence condition given in Theorem 3 to
a quasiconformal extension criterion.

Theorem 4. Letm be a positive real number and let ˛; ˇ be complex numbers such
that <˛ < 1=2; <ˇ > 0, f 2A and k 2 Œ0;1/: Let g and h be two analytic functions
in U; g.´/D 1Cb1´C :::; h.´/D c0C c1´C :::. If the following inequalitiesˇ̌̌̌

f 0.´/

g.´/�˛
�
mC1

2

ˇ̌̌̌
< k

mC1

2
; (4.1)

and ˇ̌̌̌�
f 0.´/

g.´/�˛
�1

�
j´jˇ.mC1/

C

�
1�j´jˇ.mC1/

��
2´ˇ

f 0.´/h.´/

g.´/�˛
C
1

ˇ

´g0.´/

g.´/�˛

�

C

´ˇC1
�
1�j´jˇ.mC1/

�2
j´jˇ.mC1/

"
´ˇ�1f 0.´/h2.´/

g.´/�˛
C
1

ˇ

�
g0.´/h.´/

g.´/�˛
�h0.´/

�#
�
m�1

2

ˇ̌̌̌
ˇ̌̌

� k
mC1

2
(4.2)

is true for all ´ 2U; then the function Fˇ .´/ given by (3.3) has a
k�quasiconformal extension to C:
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Proof. Set

L.´; t/D

264ˇ e�t´Z
0

uˇ�1f 0.u/duC

�
eˇmt � e�ˇt

�
´ˇ
�
g
�
e�t´

�
�˛

�
1C

�
eˇmt � e�ˇt

�
´ˇh.e�t´/

375
1=ˇ

(4.3)

In the proof of Theorem 3 has been shown that the function L.´; t/ given by (4.3) is
a subordination chain in U: Then we haveˇ̌̌̌

p.´; t/�1

p.´; t/C1

ˇ̌̌̌
D

ˇ̌̌̌
2

mC1

�
e�ˇ.mC1/t

�
f 0.e�t´/

g.e�t´/�˛
�1

�
C

�
1� e�ˇ.mC1/t

��
2e�ˇt´ˇ

f 0.e�t´/h.e�t´/

g.e�t´/�˛
C
e�t´

ˇ

g0.e�t´/

g.e�t´/�˛

�

C

e�ˇt´ˇ
�
1� e�ˇ.mC1/t

�2
e�ˇ.mC1/t

�

�
e�ˇt´ˇ

f 0.e�t´/h2.e�t´/

g.e�t´/�˛
C
e�t´

ˇ

�
h.e�t´/g0.e�t´/

g.e�t´/�˛
�h0.e�t´/

���
�
m�1

mC1

ˇ̌̌̌
� k: (4.4)

The right hand of (4.4) always less than or equal to k from (4.2) and therefore Fˇ can
be extended to k quasiconformal mapping to C by Theorem 1 and Theorem 2. �
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[3] J. Becker, “Löwnersche differentialgleichung und quasikonform fortsetzbare schlichte funkti-
onen,” J. Reine Angew. Math., vol. 255, pp. 23–43, 1972.
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[24] D. Răducanu, I. Radomir, M. E. Gageonea, and N. R. Pascu, “A generalization of Ozaki-

Nunokawa’s univalence criterion,” JIPAM, J. Inequal. Pure Appl. Math., vol. 5, no. 4, p. 4, 2004.
[25] H. Tudor, “New univalence criteria,” Stud. Univ. Babeş-Bolyai, Math., vol. 52, no. 2, pp. 127–132,

2007.

Authors’ addresses

Murat Çağlar
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