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Abstract. We study the universal blow-up of sixth-order parabolic thin film equation with the
initial boundary conditions. We prove that the problem in finite time blow-up will happen, if the
initial datum u0 2 C

6C˛.˝/ with �
R
˝

�
H.u0/C

1
2 j�u0j

2
�
dx � 0. And then, we get some

nondegeneracy results on blow-up for this problem.
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1. INTRODUCTION

In this paper, we consider the following initial boundary problem of sixth-order
equation 8̂<̂

:
ut ��.�

2u�jujp�1u/D 0; in˝ � .0;T /;

uD�uD�2uD 0; on @˝ � Œ0;T /;

uD u0; in˝ �f0g;

(1.1)

where ˝ �RN is a bounded smooth domain, p > 1.
During the past years, only a few works have been devoted to the sixth-order para-

bolic equation [1, 4, 5, 7].
Recently, Evans, Galaktionov and King [4, 5] considered the sixth-order thin film

equation containing an unstable (backward parabolic) second-order term
@u

@t
D div

�
jujnr�2u

�
��.jujp�1u/;n > 0;p > 1:

By a formal matched expansion technique, they show that, for the first critical ex-
ponent p D p0 D nC 1C 4

N
for n 2 .0; 5

4
/, where N is the space dimension, the

free-boundary problem with zero-height, zero-contact-angle, zero-moment, and zero-
flux conditions at the interface admits a countable set of continuous branches of
radially symmetric self-similar blow-up solutions uk.x; t/ D .T � t /

� N
nNC6fk.y/,

y D x

.T�t/
1

nNC6

, where T > 0 is the blow-up time.
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In fact, when n D 0, the equation (1.1) is obtained. In this paper we study the
universal blow-up and some nondegeneracy results on blow-up of the equation (1.1).
Our method about universal finite time blow-up is similar to that of Elliott and Zheng
[3] which treats the blow-up problem for Cahn-Hilliard equation. We can show that
if the initial datum u0 2 C

6C˛.˝/ with �
R
˝

�
H.u0/C

1
2
j�u0j

2
�
dx � 0, then the

solution to the above problem (1.1) should blow up in finite time.
We also establish some nondegeneracy results on the blow-up of the problem. We

mainly follow the purpose of Giga and Kohn [6] and Cheng and Zheng [2]. More
accurately, there is a constant " > 0, depending on n, p and the constant in the estim-
ates of the fundamental solution to ut ��3uD 0 (see (3.1) below), such that if u is
a solution of the equation

ut ��.�
2u�jujp�1u/D 0; on Qr D Br.a/� Œt1� r

6; t1/;

where 1 < p < 3;a 2 Rn; t1 2 R and 0 < r � 1, and if

ju.x; t/j � ".t1� t /
� 2

3.p�1/ for all .x; t/ 2Qr ; (1.2)

then u does not blow up at .a; t1/.
The following sections include our main results. In Section 2, we establish uni-

versal finite time blow-up. Section 3 is devoted to the nondegeneracy results on the
blow-up.

2. UNIVERSAL FINITE TIME BLOW-UP

Theorem 1. Assume u0 2C 6C˛.˝/ with�
R
˝

�
H.u0/C

1
2
j�u0j

2
�
dx � 0. Then

the solution of the problem (1.1) must blow up at a finite time, namely, for some T > 0

lim
t!T
ku.t/k DC1;

where H.u/D� juj
pC1

pC1
.

Proof. Let

F.t/D

Z
˝

�
H.u/C

1

2
j�uj2

�
dx;

then
dF.t/

dt
D

Z
˝

�
�jujp�1u'.u/ut C

1

2
�u�ut

�
dx

D

Z
˝

�
�jujp�1uC

1

2
�2u

�
utdx

D�

Z
˝

jr

�
�jujp�1uC

1

2
�2u

�
j
2dx � 0:

So
2

Z
˝

H.u/dx�2F.0/� �k�uk2; (2.1)
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where

F.0/D

Z
˝

�
H.u0/C

1

2
j�u0j

2

�
dx:

Let � be the unique solution to �
�� D u; in˝;

r� D 0; on @˝:
It is easy to get that

kr�k2 � Ck��k22 � Ckuk
2: (2.2)

Now multiplying (1.1) by � and integrating with respect x, we obtain
d

dt
kr�k2 D�2

Z
˝

'.u/udx�2k�uk2dx

� 4

Z
˝

H.u/dx�4F.0/�2

Z
˝

'.u/udx

D

Z
˝

.2�
4

pC1
/jujpC1dx�4F.0/

�
2.p�1/

pC1

�Z
˝

u2dx

�pC1
2

�4F.0/: (2.3)

Combining (2.2), (2.3) and �F.0/� 0, we have
d

dt
kr�k2 �

2C.p�1/

pC1
kr�kpC1: (2.4)

Let y.t/D kr�k22 with t 2 Œ0;T /, then

y0.t/�  .y.t//
pC1

2 ; (2.5)

where  D 2C.p�1/
pC1

. A direct integration of (2.5) then yields

y
p�1

2 .t/�
1

y
1�p

2 .0/� p�1
2
 t
:

It turns out that the solution of the problem (1.1) will blow up in finite time. The
proof of this theorem is completed. �

3. NONDEGENERACY RESULTS ON THE BLOW-UP

Let � .x; t/ be the fundamental solution to ut ��3u D 0. According to [8], we
have the follow inequalities:

jD
�
t D

�
x� .x; t/j � Ct

� 1
6
.nC6�C�/exp

(
�!
jxj

6
5

t
1
5

)
; t > 0; (3.1)

where C > 0, ! > 0 are constants, and �, � are nonnegative integers.
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Our purpose in this section is to have some nondegeneracy results on the blow-up.
We state that the solution u.x; t/ to blows up at .a; t1/ if it is not locally bounded
nearby, i.e., if there is a sequence f.xk; �k/g �˝ � Œ0; t1/ with .xk; �k/! .a; t1/ as
k!1 such that ju.xk; �k/j !1.

Theorem 2. There is a constant " > 0, depending on n, p and the constant in
(3.1), such that if u is a solution of the equation

ut ��.�
2u�jujp�1u/D 0; on Qr D Br.a/� Œt1� r

6; t1/;

where 1 < p < 3;a 2 Rn; t1 2 R and 0 < r � 1, and if

ju.x; t/j � ".t1� t /
� 2

3.p�1/ for all .x; t/ 2Qr ; (3.2)

then u does not blow up at .a; t1/.

Next, we introduce the two lemma which will be used in the article and whose
proofs can be found in [2] and [6].

Lemma 1. For 0 < a < 1, � > 0, and 0 < h < 1, the integral

I.h/D

Z 1

h

.s�h/�as��ds;

satisfies

.1/ I.h/�

�
1

1�a
C

1

aC� �1

�
if aC� > 1;

.2/ I.h/�
1

1�a
Cj loghj if aC� D 1;

.3/ I.h/�
1

1�a��
if aC� < 1:

Lemma 2. If y.t/, r.t/ and q.t/ are continuous functions defined on Œt0; t1�, such
that y.t/ � y0C

R t
t0
y.s/r.s/dsC

R t
t0
q.s/ds, t0 � t � t1, and r.t/ � 0 on Œt0; t1�,

then

y.t/� exp
�Z t

t0

r.�/d�

��
y0C

Z t

t0

q.�/exp

�
�

Z t

t0

r.�/d�

�
d�

�
:

Then, we began to prove the main Theorem 2.

Proof. Without loss of generality, we may assume a D 0 and t1 D 0. By scaling,
it is sufficient to consider the case r D 1. In the fact, if u satisfies the assumptions
of the theorem with r < 1, then ur.x; t/D r

4
p�1u.rx;r6t / satisfies them with r D 1

(using the same "), and clearly ur blow up at .0;0/ if u does.
Let � be a smooth function supported on B1.0/ such that � � 1 on B 1

2
.0/ and

0� � � 1. Consider ! D �u; then !t ��3! DD g where
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g D�2r�2ur���2u��

��.u�2�C4r�ur�C6�u��C4rur��/���.jujp�1u/

The semigroup representation formula for ! gives that

!.t/D e.tC1/�
3

!.�1/C

Z t

�1

e.t�s/�
3

g.s/ds for �1� t < 0; (3.3)

where et�
3

is the semigroup associated with the equation ut ��3uD 0 in Rn, i.e.,

.et�
3

h/.x/D

Z
Rn

� .x�y; t/h.y/dy:

Notice that
R

Rn � .x�y; t/dy D 1. It follows that

ket�
3

hk � khk1: (3.4)

The (3.1) implies that

j.et�
3

Dih/.x/j D j

Z
Rn

� .x�y; t/Dih.y/dyj

D j

Z
Rn

@

@xi
� .x�y; t/h.y/dyj � Ct�

1
6 khk1; 8i D 1;2; : : : ;n;

So, we get that

ket�
3

Dihk1 � Ct
� 1

6 khk1; ke
t�3

Dijhk1 � Ct
� 1

3 khk1;

ket�
3

Dijkhk1 � Ct
� 1

2 khk1; ke
t�3

Dijkmhk1 � Ct
� 2

3 khk1;

ket�
3

Dijkmqhk1 � Ct
� 5

6 khk1; (3.5)

where i;j;k;m;q 2 f1;2; � � � ;ng.
Now let g D g1Cg2, where g2 D���.jujp�1u/. As above, we estimateˇ̌̌̌Z t

�1

e.t�s/�
3

g2.s/ds

ˇ̌̌̌
�

Z t

�1

ˇ̌̌̌Z
Rn

�.�� .x�y; t � s//.jujp�1u/.y;s/dy

ˇ̌̌̌
ds

�

Z t

�1

ˇ̌̌̌Z
Rn

�� .x�y; t � s/�jujp�1u.y/dy

ˇ̌̌̌
ds

C

Z t

�1

ˇ̌̌̌Z
Rn

.� .x�y; t � s/��C2r� .x�y; t � s/ �r�/jujp�1u.y/dy

ˇ̌̌̌
ds

� C

Z t

�1

.t � s/�
1
3 k�upk1.s/dsCC

Z t

�1

k��upk1.s/ds
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CC

Z t

�1

.t � s/�
1
6 kr�upk1.s/ds

� C

Z t

�1

.t � s/�
1
3 kukp�11 k!k1.s/dsCC

Z t

�1

kupk1.s/ds

CC

Z t

�1

.t � s/�
1
6 kukp1.s/ds

� C"p�1
Z t

�1

.t � s/�
1
3 .�s/�

2
3 k!k1.s/dsCC"

p

Z t

�1

.�s/�
2p

3.p�1/ds

CC"p
Z t

�1

.t � s/�
1
6 .�s/�

2p
3.p�1/ds; (3.6)

due to our assumption.
On the other hand, it is found similarly thatˇ̌̌̌Z t

�1

e.t�s/�
3

g1.s/ds

ˇ̌̌̌
D

ˇ̌̌̌Z t

�1

Z
Rn

� .x�y; t � s/.�2r�2ur���2u��

��.u�2�C4r�ur�C6�u��C4rur��//dyds
ˇ̌

� C

Z t

�1

.t � s/�
5
6 kuk1.s/ds � C"

Z t

�1

.t � s/�
5
6 .�s/�

2
3.p�1/ds: (3.7)

By (3.2)-(3.4), (3.6) and (3.7), we get that for �1� t < 0,

k!.t/k1 � "C "
p�1

Z t

�1

.t � s/�
1
3 .�s/�

2
3 k!k1.s/ds

CC"p
Z t

�1

.t � s/�
1
6 .�s/�

2p
3.p�1/dsCC"

Z t

�1

.t � s/�
5
6 .�s/�

2
3.p�1/ds

� "CC"p�1
Z t

�1

.t � s/�
1
3 .�s/�

2
3 k!k1.s/dsCC".�t /

1
6
� 2

3.p�1/ ;

(3.8)

due to 1 < p < 3 and Lemma (1).
Let y.t/D k!.t/k1; therefore

y.t/� "CC".�t /
1
6
� 2

3.p�1/ CC"p�1
Z t

�1

.t � s/�
1
3 .�s/�

2
3y.s/ds: (3.9)

Define f .t/ D �Œ�1;0�.t/y.t/, 8t < 0. We introduce a special maximal function
on .�1;0/:

.Mf /.t/D sup
r>0

1

r

Z t

t�r

jf .s/jds; 8t 2 .�1;0/:
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Now 8r > 0,Z t

�1

.t � s/�
1
3 .�s/�

2
3y.s/ds D

Z t

�1

.t � s/�
1
3 .�s/�

2
3f .s/ds

D

Z t

t�r

.t � s/�
1
3 .�s/�

2
3f .s/dsC

Z t�r

�1

.t � s/�
1
3 .�s/�

2
3f .s/ds

D I1CI2:

We compute these two integrals, respectively.

I1 � .�t /
� 2

3

Z t

t�r

.t � s/�
1
3f .s/ds

D .�t /�
2
3

1X
kD0

Z t� r

2kC1

t� r

2k

.t � s/�
1
3f .s/ds

� .�t /�
2
3

1X
kD0

�
r

2kC1

�� 1
3
Z t� r

2kC1

t� r

2k

f .s/ds

� .�t /�
2
3

1X
kD0

�
1

2kC1

� 2
3

r
2
3 .Mf /.t/

D Cr
2
3 .�t /�

2
3 .Mf /.t/;

and

I2� r
� 1

3

Z t�r

�1

.�s/�
2
3f .s/ds� r�

1
3

Z t

�1

.�s/�
2
3f .s/dsD r�

1
3

Z t

�1

.�s/�
2
3f .s/ds:

Then,

f .t/� "CC".�t /
1
6
� 2

3.p�1/CC"p�1
�
r

2
3 .�t /�

2
3 .Mf /.t/C r�

1
3

Z t

�1

.�s/�
2
3f .s/ds

�
;

for all r > 0 and t 2 .�1;0/.
Let

r D

R t
�1.�s/

� 2
3f .s/ds

.�t /�
2
3 .Mf /.t/

;

so we have

f .t/� "CC".�t /
1
6
� 2

3.p�1/ CC"p�1
�
.�t /�

1
3

Z t

�1

.�s/�
2
3f .s/ds

� 2
3

..Mf /.t//
1
3

� "CC".�t /
1
6
� 2

3.p�1/ CC"p�1.�t /�
1
3

Z t

�1

.�s/�
2
3f .s/ds

CC"p�1.Mf /.t/: (3.10)
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If we define

g.t/D .�t /�
1
3

Z t

�1

.�s/�
2
3f .s/ds;

then

g0.t/D .�t /�1
�
1

3
.�t /�

1
3

Z t

�1

.�s/�
2
3f .s/Cf .t/

�
� 0:

Hence g.t/ is increasing in .�1;0/.
Then we get

max
�1���t

f .�/�"CC".�t /
1
6
� 2

3.p�1/

CC"p�1g.t/CC"p�1 max
�1���t

.Mf /.�/; 8t 2 Œ�1;0/; (3.11)

where we have used 1
6
�

2
3.p�1/

< 0 since 1 < p < 3.
Clearly, max�1���t .Mf /.�/�max�1���t f .�/ by our definition of the maximal

function. Therefore (3.11) implies that for any �1� t < 0,

max
�1���t

f .�/�

1

1�C"p�1

�
"CC".�t /

1
6
� 2

3.p�1/ CC"p�1.�t /�
1
3

Z t

�1

.�s/�
2
3f .s/ds

�
;

provided that C"p�1 < 1. Especially,

f .t/�
1

1�C"p�1

�
"CC".�t /

1
6
� 2

3.p�1/ CC"p�1.�t /�
1
3

Z t

�1

.�s/�
2
3f .s/ds

�
8t 2 Œ�1;0/:

Then for " > 0 small enough, we obtain

.�t /
1
3f .t/� 2

�
"CC".�t /

1
2
� 2

3.p�1/ CC"p�1
Z t

�1

.�s/�1.�s/
1
3f .s/ds

�
8t 2 Œ�1;0/:

Define h.t/D .�t /
1
3f .t/; then

h.t/� 2"C2C".�t /
1
2
� 2

3.p�1/ C2C"p�1
Z t

�1

.�s/�1h.s/ds; (3.12)

Applying Lemma(2), we have

h.t/� .�t /�2C"
p�1

h
2"CC.p;"/".�t /

1
2
� 2

3.p�1/
C2C"p�1

i
� 2".�t /�2C"

p�1

CC.p;"/".�t /
1
2
� 2

3.p�1/ ; 8t 2 Œ�1;0/:

Then f .t/� 2".�t /�
1
3
�2C"p�1

CC.p;"/".�t /
1
6
� 2

3.p�1/ , 8t 2 Œ�1;0/, or

y.t/� 2".�t /�
1
3
�2C"p�1

CC.p;"/".�t /
1
6
� 2

3.p�1/ ; 8t 2 Œ�1;0/: (3.13)
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Choose " > 0 small enough that 1
3
C 2C"p�1 < 2

3.p�1/
which is possible since

1 < p < 3. Define ˛ D maxf1
3
C 2C"p�1; 2

3.p�1/
�
1
6
g �

2
3.p�1/

, it is easy to find
that ˛ > 1

3
; then (3.13) implies y.t/� C.p;"/".�t /�˛, 8t 2 Œ�1;0/. Hence

ju.x; t/j � C.p;"/".�t /�˛; 8.x; t/ 2 B 1
2
.0/� Œ�1;0/: (3.14)

Now let Q� be a function supported on B 1
2
.o/ with Q� � 1 on B 1

4
.0/ and 0� Q� � 1,

and define Q! D Q�u; then we go back to (3.6)-(3.8) and we have that

k Q!.t/k1 � "CC

Z t

�1

.t � s/�
1
3 kukp�11 k Q!k1dsCC

Z t

�1

kukp1ds

CC

Z t

�1

.t � s/�
1
6 kukp1dsCC"

Z t

�1

.t � s/�
5
6 kuk1ds

� "CC"p�1
Z t

�1

.t � s/�
1
3 .�s/�˛.p�1/.�s/�˛dsCC"p

Z t

�1

.�s/�˛pds

CC"p
Z t

�1

.t � s/�
1
6 .�s/�˛pdsCC"

Z t

�1

.t � s/�
5
6 .�s/�˛ds

� "CC"p�1
Z t

�1

.t � s/�
1
3 .�s/�˛pdsCC"p

Z t

�1

.�s/�˛pds

CC"p
Z t

�1

.t � s/�
1
6 .�s/�˛pdsCC"

Z t

�1

.t � s/�
5
6 .�s/�˛ds (3.15)

due to (3.14).
Since 1

3
< ˛ < 2

3.p�1/
, we get

5

6
�˛p >

2

3
�˛p >

1

6
�˛:

Hence by Lemma(1), we obtain

k Q!.t/k1 � "CC"
p�1
CC"p�1.�t /

1
6
�˛
� .2CC"p�1/.�t /

1
6
�˛; 8t 2 Œ�1;0/;

Which means, for small " > 0,

ju.x; t/j � .2CC"p�1/.�t /
1
6
�˛; 8.x; t/ 2 Br.0/� Œ�1;0/: (3.16)

Iterating the argument finitely many times we can get that there is a number 0 <
r0 <

1
4

such that

ju.x; t/j �K.�t /�
1

6p ; 8.x; t/ 2 Br0
.0/� Œ�1;0/; (3.17)

where K is constant.
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Next, we choose another cut-off function O� supported on Br0
such that O� � 1 on

B r0
2

and define O! D O�u. Going back to (3.15) and applying Lemma(1), we have

k O!.t/k1 � "CC

Z t

�1

.t � s/�
1
3 kukp�11 k O!k1dsCC

Z t

�1

kukp1ds

CC

Z t

�1

.t � s/�
1
6 kukp1dsCC"

Z t

�1

.t � s/�
5
6 kuk1ds

� "CCKp�1
Z t

�1

.t � s/�
1
3 .�s/�

1
6dsCCKp

Z t

�1

.�s/�
1
6ds

CCKp
Z t

�1

.t � s/�
1
6 .�s/�

1
6p dsCCK

Z t

�1

.t � s/�
5
6 .�s/�

1
6p ds

� "CCKp�1; (3.18)

which means that ju.x; t/j � C in B r0
2
� Œ�1;0/. This completes the proof of the

theorem.
�

Using the same argument, we can easily draw the following conclusion.

Theorem 3. Suppose p � 3, then for any ı 2 .0; 2
3.p�1/

/, there is a constant " > 0,
depending on n, p and the constant in (3.1), such that if u is a solution of the equation

ut ��.�
2u�jujp�1u/D 0; on Qr D Br.a/� Œt1� r

6; t1/

where a 2 Rn; t1 2 R and 0 < r � 1, and if

ju.x; t/j � ".t1� t /
� 2

3.p�1/ for all .x; t/ 2Qr ;

then u does not blow up at .a; t1/.
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