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Abstract. In this paper, the perturbation method and Padé transformation are used to provide an
approximate solution of elliptic integrals of the second kind and of complete integrals of the first
kind. Besides, we used the obtained results to calculate an analytic expression for the period
of a simple pendulum. The method has an acceptable accuracy for high values of the initial
amplitude, compared to the relative error < 1.7% for initial angles 6 < 70°.
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1. INTRODUCTION

Among others, the perturbation method is one of the pioneering techniques of
approaching various kinds of nonlinear problems. This procedure was introduced
by S. D. Poisson and extended by J. H. Poincare. Although the method appeared in
the early 19th century, the application of a perturbation procedure to solve nonlinear
differential equations was used only a bit later. The most significant efforts were
focused on celestial mechanics, fluid mechanics, and aerodynamics [7, 19].

In general, it is assumed that the differential equation can be expressed as the sum
of two parts: a linear part and a nonlinear one. The nonlinear part is considered as
a small perturbation through a small parameter (the perturbation parameter). The
assumption that the nonlinear part is small compared to the linear is considered as
a disadvantage of the method. There are other modern alternatives to find approxi-
mate solutions of the differential equations that describe some nonlinear problems
such as those based on variational approaches [3, 1 7], Tanh method [9], Exp-function
[24], Adomian’s decomposition method [ 1, 4], parameter expansion [25], homotopy
perturbation method [6,8, 10,11, 13-16,18,22,23], homotopy perturbation transform
Padé method (HPTPM) [12], homotopy perturbation transform method (HPTM) [20],
among others.

(© 2013 Miskolc University Press
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This paper applies the PM method to find an approximation of the value of se-
cond kind elliptic integrals; this is done by solving a first order nonlinear differential
equation, which depends on one perturbation parameter. We will see that our app-
roximation has good accuracy, even for large values of the perturbation parameter.
Finally, we will couple the PM and Padé methods to obtain an approximation of the
oscillation period for a nonlinear pendulum.

This paper is organized as follows. In Section 2, a short introduction about the
basic elements of elliptic integrals is provided. In Section 3, we introduce the basic
idea of the PM method. Section 4 will provide a brief introduction to the Padé app-
roximation. In Section 5, we provide an application of the PM method. Section 6
presents an approximate solution of the complete elliptic integral of the first kind by
using Laplace—Padé approximation. In Section 7, we obtain the period for a pendu-
lum in an approximate way. In Section 8, we summarize our findings. Finally, a brief
conclusion is given in Section 9.

2. ELLIPTIC INTEGRALS AND THE PERIOD FOR A SIMPLE PENDULUM

Elliptic integrals are integrals without closed solution, they have been used exten-
sively for evaluating integrals. For instance, integrals of the form

t
1 =/ R(x,\/ax4+bx3+cx2+dx+e)dx,
0

where R is a rational function of x and the radical; a, b, ¢, d, and e are constants,
may be expressed in terms of elliptic integrals [2]. Furthermore, elliptic integrals are
important because they are useful to solve physical problems, like the case of the
magnetic vector potential for a circular current loop [2] and the orbital equation for a
particle subject to certain central potentials [7].

Elliptic integrals are divided in three cases:

(1) Incomplete elliptic integral of the first kind. Which is defined as

0<e<l, @2.1)

¢ do
K(e.¢) = T
0 v 1—e€2sin“6
where ¢ is the amplitude of K(¢,¢), and € is their modulus. For ¢p = %, we
have the complete elliptic integral of the first kind,

/2 40
0 \/l—ezsinze’

(2) Incomplete elliptic integral of the second kind. It is defined as

¢
E(e,¢):/ vV 1—e2sin? 046, 0<e<l. (2.3)
0

K(e) = 0<e<l. 2.2)
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For ¢ = 7, we have the complete elliptic integral of the second kind
/2

E(e) = V1—€2sin?0dh, 0<e<l. (2.4)
0

(3) Incomplete elliptic integral of the third kind. It is defined as

¢ de
H(e,n,¢)=/ ,
0 (1+nsin?0)v1—e2sin%0

where 7 is a constant n # 0,that is, if n = 0 (2.5) would be identical to (2.1).
Again, for the case ¢ = 7, the complete elliptic integral of the third kind
is obtained

0<e<l, (2.5)

/2
H(e,n):/ db 0<e<l. (2.6)
0

(1+nsin29)v1—e2sin29,

3. BASIC IDEA OF THE PERTURBATION METHOD

Let the differential equation of one-dimensional nonlinear system be in the form

L(x)+€eN(x) =0, 3.1
where we assume that x is a function of one variable x = x(¢), L(x) is a linear
operator which, in general, contains derivatives in terms of . N(x) is a nonlinear
operator, and € is a small parameter.

By considering the nonlinear term in (3.1) as a perturbation, we assume that solu-
tion (3.1) can be written as a power series in the small parameter €

x(t) = xo(t) +€x1(t) +€2x2(t) + €3 x3(t) +--- . (3.2)

By substituting (3.2) into (3.1) and equating terms having identical powers of €,

we obtain a number of differential equations that can be integrated, recursively, to
find the values for the functions x¢(¢), x1(¢), x2(¢),...

4. PADE APPROXIMANT

A rational approximation to f(x) on [a,b] is the quotient of two polynomials
Py (x) and Qps(x) of degrees N and M, respectively. We use the notation Ry s (x)
to denote this quotient. The Ry, as(x) Padé approximations of a function f(x) are
given by [5,12,21]

Py (x)

Om(x)

The method of Padé requires that f(x) and its derivative be continuous at x = 0. The
polynomials used in (4.1) are

PN (x) = po+ p1x + pax? +-+ pn(x), 4.2)

RN,M= fora <x <b. “4.1)
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Om(X) = qo+q1x +qax?+-+qu(x). 4.3)

The polynomials in (4.2) and (4.3) are constructed so that f(x) and Ry s (x) agree
at x = 0 and their derivatives up to degree N + M agree at x = 0. In the case
Qo(x) = 1, the approximation is just the Maclaurin expansion for f(x). For a fixed
value of N 4+ M the error is the smallest when Py (x) and Qs (x) have the same
degree or when Py (x) has degree one higher than Q s (x).

Note that the constant coefficient of Qs is g9 — 1. This is permissible, because
it can be noted that 0 and Ry, s (x) do not change when both Py (x) and Qps(x)
are divided by the same constant. Hence, the rational function Ry, as(x) has N +
M + 1 unknown coefficients. Assume that f(x) is analytic and it has the Maclaurin
expansion

f(x)=ao+a1x+a2x2+~--+akxk_|_..._ 4.4)
From the difference f(x) Qnm (x) — Py (x) = Z(x), we obtain

{gaﬂ"”éqmi-‘—{émﬂ—‘:{ i cixi-‘. (.5)

i=N+M+1

The lower index j = N + M + 1 in the summation on the right side of (4.5) is chosen
because the first N + M derivatives of f(X) and Ry, (x) should converge at x = 0.

When the left side of (4.5) is multiplied and coefficients with powers of x’ are set
equal to zero fork =0,1,2,..., N + M, the results are a system of N + M + 1 linear
equations

ap—po =0,
q1ao+a1—p1 =0,
qra0 +q1a1 +az—p2 =0, (4.6)

q3ao +qza1 +qiaz +asz— p3 =0,
qMAN-M | qM—1aN—-M—1 | aN — pN =0,
and
dqMAN-M+1 +4dM—1AN-M+2 + - +qray +an+2 =0,
dMAN-M+2 +qM-1aN-M+3 + -+ q1an+1 +an+3 =0,
4.7
dqMAanN +qman+1+--+qran+m+1tan+m = 0.

Notice that, for each equation, the sum of the subscripts on the factors of each product
is the same. This sum increases consecutively from O to N 4+ M. The M equations in
(4.7) involve only the unknowns ¢1,¢2,...,qy and they must be solved first. Then
the equations in (4.6) are used successively to find py, p2,...,py [12,21].
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5. APPLICATION OF PM METHOD TO SOLVE THE COMPLETE ELLIPTIC
INTEGRALS OF THE SECOND KIND AND ELLIPTIC INTEGRAL OF THE FIRST
KIND

This section deals with the solution of (2.2), (2.3), and (2.4) by following a proce-
dure used in [22], where (2.3) is represented as follows

¢
y(¢)=/ V1—e€2sin?0do, 0<¢=<m/2. 5.1
0

This integral can be reformulated as a nonlinear differential equation
V() —1+€2sin®¢ = 0. (5.2)

By evaluating the integral (5.1) at ¢ = 0, the result will be zero. Therefore, the initial
condition for the differential equation (5.2) should be y(0) = 0.

It is possible to find a handy solution for (5.2) by applying the PM method. To
apply the method, first, we identify terms

L(p) =y () -1, (5.3)
N(¢) = sin? ¢, (see (4.1)), (5.4)

and € with the PM parameter. Notice that, for this case, N is truly linear, showing
the flexibility of the method.
By assuming a solution for (5.2), in the form

y(@) =vo(d) +nv1() + N*va(@) +-+  (m=¢€>) (see(3.2)), (5.5

and equating terms with equal powers of 7, it can be solved for
Vo(9),v1(d),v2(¢),..., and so on. As aresult, a very good approximation is obtained
considering terms up to third order.

n°) V2 —1=0, (5.6)
n') 2vgv} +sin? 6 = 0, (5.7)
%) v+ 20pv5 =0, (5.8)
) 2vv5 + 2vjv5 =0, (5.9

In order to fulfil the initial condition from (5.2) (y(0) = 0), it follows that vo(0) =
0,v1(0) = 0,v2(0) = 0,v3(0) = 0, and so on. Thus, the results are

vo(@) = ¢. (5.10)

1 1 .
v1(¢) =—Z¢+§sm2¢, (5.11)

3 1 1
v2(¢) :—a¢+§sin2¢—ﬁsin4¢, (5.12)
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5 1 1 . 5
v3(¢) = |: ¢——sm2¢+—sm4¢] %cosqﬁsm o, (5.13)

By substituting (5.10), (5.11), (5.12), and (5.13) into (5.5); and considering that
E(e,¢) = y(¢), it follows that an approximate solution to the incomplete second
kind elliptic integral would be

E(Mm,¢)=¢+ n[ sin2¢ — —¢]

+7 |:——¢+is ¢——sm4¢:|

256 (5.14)
+7 |:——<;5—i—i sin2¢ — sin4¢+icos¢sin5¢:|
768 384 3072 96
For convenience, (5.14) is rewritten in the form
1 3 15
E(n.¢)=¢ [1—10—6—4772—@77%---}
+s1n2¢|: n—i——r] +< +s1n ¢)17 + - :|
32 384 192 (5.15)
1 3
—s1n4¢|:ﬁr] +mn +]

Evaluating (5.15) for ¢ = 7/2, it becomes the complete elliptic integral of the second
kind (approximation (2.4))

a1, 3, 15
E(€)==|1—--e?——e*———¢° 5.16
© 2[ 2 T @ st T ] (5.16)

In order to find an approximate solution for integral (2.2), we use the following equa-

tion which relates the complete elliptic integrals [2]

dE(e)
de =

When substituting (5.16) into (5.17), it is possible to obtain the following expression
for K(¢)

K(e)=E(e)—¢ (5.17)

9 4

K(e) = [1+le + o€

15
+ 15366+---] (5.18)
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6. AN APPROXIMATE SOLUTION BY USING LAPLACE-PADE TRANSFORMATION
AND PM METHOD

In this section we will describe the use of Laplace transform and Padé transforma-
tion to deal with the truncated series (5.18) obtained by the PM method in order to
improve the approximation and the proposed valid range for the same series [21].

First, Laplace transformation is applied to (5.18) and then 1/¢ is written instead
of s in the obtained equation. Then, Padé approximant [2/2] is applied and 1/s is
written instead of €. Finally, by using the inverse Laplace transformation, we obtain
the modified approximate solution

K(e) = %cosh (\/756) . (6.1)

7. CASE STUDY

One relevant application to be considered here, for the complete elliptic integral of
the first kind (2.2), is the problem of calculating the period of a nonlinear pendulum.
The simple pendulum’s oscillatory motion is among the most investigated motions in
physics; many nonlinear phenomena in several fields of science and technology are
governed by pendulum-like differential equations.

For small amplitude oscillations, the approximate period of a simple pendulum is

given by
l
To ~2m,|—,
g

where [ is the length and g is the acceleration of gravity.
The exact value of the period of oscillation is

[ (72 do 6o
T =4 —f - . ezsin(—), (7.1)
\/; 0 V1—e2sin?26 2

where 6y is the initial amplitude. It is clear that we can express (7.1) in terms of the
complete integral of the first kind (2.2)

T = 4\/21((6), (7.2)
g

our procedure allows obtaining two different approximations to the oscillation period
for a pendulum. The first is obtained by substituting (5.18) into (7.2)

l 1 9 15
T=2m,—|14+-€>4+—e*+—€+...|. 7.3
jTVg|:+4E+64€+1536+ ] (7-3)
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| e=0
L5 > €=0.6
=
1 4
E(e.¢)
0.51
0 .
0 0.5 1 1.5

FIGURE 1. Exact numerical solution (solid line); approximate so-
lutions (5.15) for € = [0,0.6,0.9, 1] represented by: solid diamond,
circle, solid circle, diamond, respectively.

The second is the result of substituting (6.1) into (7.2), which lead us to

T =2n \/zcosh (ﬁe) .
g 2

For comparison purposes, period (7.2), (7.3) and (7.4) will be normalized to

.1
f=- /5T
1V

In the next section, we will analyse and compare T for (7.2), (7.3) and (7.4).

8. DISCUSSION

(7.4)

(7.5)

Nonlinear phenomena appear in broad scientific fields like applied mathematics,
physics, and engineering. Scientists in those disciplines constantly face the task of
finding solutions of nonlinear ordinary differential equations. The fact that the PM
method depends on a parameter which is assumed to be small, suggests that the met-
hod has limited range. In this work, the PM method has been applied to the problem
of evaluating, approximately, complete or incomplete elliptic integrals of the second
kind by using the nonlinear differential equation (5.2). From the obtained results, an
approximation was achieved for the complete elliptic integral of the first kind and, as
a consequence, for the period of a nonlinear pendulum. We will see that even though
the PM does not provide a satisfactory approximation in the latter case, when it is

coupled with Padé methods, we may obtain a better approximation.
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qummmm €=0, €=0.6
0.5 “Tpre. 1.5
0.005- LIS
- - o .
<o ...
-0.0101 5
~0.015/ o te=09
<o
<o
-0.0201 °
<o
<
-0.025] o
<o
o e=1

FIGURE 2.
gure 1.

E(e.9)

09 10 11 12 13 14 15
¢

FIGURE 3. Zoom from figure 1.

8.1. Elliptic integrals of the second kind

For the case of elliptic integrals of the second kind, we obtained highly accurate
approximations for both, complete and incomplete, integrals. From (5.16), for ins-
tance, in the case of the complete integral, the limit

lim E () = 1.073,
e—1

means that the error is about 7%.
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® Numerical PM-Padé RE% PM RE%
0 1.570796 1.570796 0 1.570796 0

4 1.571275 1.571275 1.93e-05 1.572716 -0.0917
8 1.572712 1.572708 0.000308 1.578537 -0.37

10 1.573792 1.573780 0.000754 1.582968 -0.583
20 1.582843 1.582653  0.012 1.622204  -2.49
30 1.598142 1597176  0.0605  1.698233  -6.26
40 1.620026 1.616958  0.189 1.832495  -13.1
50 1.648995 1.641458  0.457 2.065975  -25.3
60 1.685750 1.669998  0.934 2470172 -46.5
70 1.731245 1.701771 1.7 3.161204  -82.6
80 1.786769 1.735863 2.85 4.317044 -142
90 1.854075 1.771271 4.47 6.197893 -234
100 1.935581 1.806932 6.65 9.169686 -374
110  2.034715 1.841752 9.48 13.730732  -575

TABLE 1. Numerical comparison for 7.

The PM method provides, in general, better approximations for small perturbation
parameters when it includes the most number of terms from (3.2). Even so, it is
common that the obtained approximations are appropriate for a small interval of the
domain of the approximate solution. Fig. 3 represents, graphically, the reason why
this method is efficient for the case of the elliptic integrals represented by (5.2). It
can be seen that the range of values for E(¢) is (1,7/2], that is, 1 < E(e) < 1.57.
The extreme values of that range are given by points A and B in Fig. 3 (where
li_r)n1 E(e) =1 and E(0) = 1.57). Notice that the range for the incomplete elliptical
€

integral is even lower. For instance, points C and D represent the “extreme” values
for E(e, 1): lim1 E(e,1) =0.8414 and E(0,1) = 1.
e—

Under these conditions it seems reasonable that just a few terms are required from
(5.5) to obtain a good approximation of (5.2); because, since the beginning, the first
approximation vg(¢) (see (5.10)) is “close” to its final value E(e,¢). For instance,
in the case of complete integrals, at the limit € — 1, the first approximation provides
the value vg(7r/2) = 1.57, not far of the true value hm1 E(e) = 1. Moreover, for

E(e, 1), the 11m E(e,1) =0.8414 and E(0,1) = 1 are even closer. Our results have
an accuracy 51m11ar to other approximations reported in the literature [2].
8.2. Complete elliptic integral of the first kind and the nonlinear pendulum

Unlike what happens with the elliptic integrals depicted by differential equation
(5.2), the complete elliptic integral of the first kind is not appropriately represented
by (5.18). From Table 1 it can be noticed that normalized version of (7.3) is a proper
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approximation for T only for angles within the 30° range, possessing a relative per-
centage error lower than six percent. From the same table can be seen that for angles
of 80° the relative error is about -142%, and for angles of 110° the relative error
is about -575%. Therefore, the approximation given by (7.3) is, in general, totally
inadequate. Instead of adding terms to (5.18), Section 6 explained a technique that
coupled the Padé transformation and the PM method giving as result an approximate
value for K(¢) by (6.1) (see (7.4)).

[12] used a coupling of HPM, Laplace transformation, He’s polynomials, and Padé
technology in order to obtain series solution of nonlinear exponential boundary layer
equation. Unlike the aforementioned method, this work proposes the use of PM and
Laplace-Padé methods to deal with the truncated power series.

A noticeable difference can be seen in Table 1 for the percentage of the relative
error at 20°, it is just 0.012%; for 80° we obtain an error that is about 2.85%. Thus,
even for 110°, the obtained relative percentage error is 9.48%. Therefore, the combi-
nation of both techniques is not only novel but accurate. Finally note the simplicity
of (6.1) compared to the infinite series in (5.18).

9. CONCLUSIONS

This work shows that some nonlinear problems can be adequately approximated
by using the PM method, even for large values of the perturbation parameter; as it was
done for the elliptic integrals described by (5.2). In fact the first approximation (5.10)
is close to the true value for E(n,¢) (5.15), for every n € [0,1] and ¢ € [0,7/2] (see
Fig. 1 and Fig. 3). This contributes to the success of the method in this case and it
could be useful for similar cases, so our method can replace other sophisticated and
difficult methods. Section 6 showed that even though the method is not adequate, as
it can be seen for integral (2.2), it is possible to use a novel technique that coupled
the PM method and the Padé transformation to improve the approximation (as it was
proved for (6.1)). This result is much more accurate than (5.18), as it can be seen in
Table 1. Besides, it is handy and useful for engineering applications.
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