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Abstract. In this paper, we study the existence of solutions for boundary value problems of
fractional differential equations of order q 2 .0;1� with four-point integral boundary conditions.
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1. INTRODUCTION

In recent years, boundary value problems for nonlinear fractional differential equa-
tions have been addressed by several researchers. Fractional derivatives provide an
excellent tool for the description of memory and hereditary properties of various
materials and processes, see [15]. These characteristics of the fractional derivat-
ives make the fractional-order models more realistic and practical than the classical
integer-order models. As a matter of fact, fractional differential equations arise in
many engineering and scientific disciplines such as physics, chemistry, biology, eco-
nomics, control theory, signal and image processing, biophysics, blood flow phenom-
ena, aerodynamics, fitting of experimental data, etc. [13, 15–17]. For some recent
development on the topic, see [1–11] and the references therein.

In this paper, we discuss the existence and uniqueness of solutions for a boundary
value problem of nonlinear fractional differential equations of order q 2 .0;1� with
four-point integral boundary conditions given by8̂<̂

:
cDqx.t/D f .t;x.t//; 0 < t < 1; 0 < q � 1;

x.0/C˛

Z �

�

x.s/ds D x.1/; 0 < � < � < 1 .�¤ �/;
(1.1)
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where cDq denotes the Caputo fractional derivative of order q, f W Œ0;1��R! R is
continuous and ˛ 2 R n f0g: We denote by C D C.Œ0;1�;R/ the Banach space of all
continuous functions from Œ0;1�! R endowed with a topology of uniform conver-
gence with the norm denoted by k � k:

The boundary condition in the problem (1.1) can be regarded as four-point non-
local boundary condition, which reduces to the typical integral boundary condition
in the limit �! 0; �! 1:

We prove some new existence and uniqueness results by using a variety of fixed
point theorems. In Theorem 1 we prove an existence and uniqueness result by using
Banach’s contraction principle, in Theorem 2 we prove the existence of a solution by
using Krasnoselskii’s fixed point theorem, while in Theorem 3 we prove the existence
of a solution via Leray-Schauder nonlinear alternative.

It is worth mention that the methods used in this paper are standard, however their
exposition in the framework of problem (1.1) is new.

2. PRELIMINARIES ON FRACTIONAL CALCULUS

Let us recall some basic definitions of fractional calculus [13, 17].

Definition 1. For a continuous function g W Œ0;1/! R; the Caputo derivative of
fractional order q is defined as

cDqg.t/D
1

� .n�q/

Z t

0

.t � s/n�q�1g.n/.s/ds; n�1 < q < n;nD Œq�C1;

where Œq� denotes the integer part of the real number q:

Definition 2. The Riemann-Liouville fractional integral of order q is defined as

I qg.t/D
1

� .q/

Z t

0

g.s/

.t � s/1�q
ds; q > 0;

provided the integral exists.

Definition 3. The Riemann-Liouville fractional derivative of order q for a con-
tinuous function g.t/ is defined by

Dqg.t/D
1

� .n�q/

�
d

dt

�nZ t

0

g.s/

.t � s/q�nC1
ds; nD Œq�C1;

provided the right hand side is pointwise defined on .0;1/:

Lemma 1 ([13]). For q > 0; the general solution of the fractional differential
equation cDqx.t/D 0 is given by

x.t/D c0C c1tC c2t
2
C : : :C cn�1t

n�1;

where ci 2 R; i D 0;1;2; : : : ;n�1 (nD Œq�C1).
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In view of Lemma 1, it follows that

I q cDqx.t/D x.t/C c0C c1tC c2t
2
C : : :C cn�1t

n�1; (2.1)

for some ci 2 R; i D 0;1;2; : : : ;n�1 (nD Œq�C1).

Lemma 2. For a given g 2 C.Œ0;1�;R/ the unique solution of the boundary value
problem 8̂<̂

:
cDqx.t/D g.t/; 0 < t < 1; 0 < q � 1;

x.0/C˛

Z �

�

x.s/ds D x.1/; 0 < � < 1;

is given by

x.t/D
1

� .q/

Z t

0

.t � s/q�1g.s/dsC
1

˛.���/� .q/

Z 1

0

.1� s/q�1g.s/ds

�
1

.���/� .q/

Z �

�

�Z s

0

.s�m/q�1g.m/dm

�
ds; t 2 Œ0;1�:

(2.2)

Proof. For some constant c0 2 R; we have

x.t/D I qg.t/� c0 D

Z t

0

.t � s/q�1

� .q/
g.s/ds� c0: (2.3)

We have x.0/D�c0;

˛

Z �

�

x.s/ds D ˛

Z �

�

�Z s

0

.s�m/q�1

� .q/
g.m/dm� c0

�
ds

D ˛

Z �

�

�Z s

0

.s�m/q�1

� .q/
g.m/dm

�
ds�˛c0.���/;

and

x.1/D

Z 1

0

.1� s/q�1

� .q/
g.s/ds� c0;

which imply that

c0 D
1

���

Z �

�

�Z s

0

.s�m/q�1

� .q/
g.m/dm

�
ds�

1

˛.���/

Z 1

0

.1� s/q�1

� .q/
g.s/ds:

Substituting the value of c0 in (2.3) we obtain the solution (2.2). �
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3. EXISTENCE RESULTS

In view of Lemma 2, we define an operator F W C ! C by

.Fx/.t/ D
1

� .q/

Z t

0

.t � s/q�1f .s;x.s//ds

C
1

˛.���/� .q/

Z 1

0

.1� s/q�1f .s;x.s//ds

�
1

.���/� .q/

Z �

�

�Z s

0

.s�m/q�1f .m;x.m//dm

�
ds; t 2 Œ0;1�:

(3.1)
In the following we use the norm kxk D supt2Œ0;1� jx.t/j and for convenience, we set

�D
1

� .qC1/

�
1C

ı1ŒqC1Cj˛j.�
qC1��qC1/�

j˛j.qC1/

�
; ı1 D

1

j���j
: (3.2)

Our first result is based on Banach’s contraction principle.

Theorem 1. Assume that f W Œ0;1��R! R is a continuous function and satisfies
the assumption
.A1/ jf .t;x/�f .t;y/j � Ljx�yj;8t 2 Œ0;1�; L > 0; x;y 2 R;

with L < 1=�; where � is given by (3.2). Then the boundary value problem (1.1)
has a unique solution.

Proof. Setting supt2Œ0;1� jf .t;0/j DM and choosing r �
�M

1�L�
; we show that

FBr � Br ; where Br D fx 2 C W kxk � rg: For x 2 Br ; we have

k.Fx/.t/k

� sup
t2Œ0;1�

�
1

� .q/

Z t

0

.t � s/q�1jf .s;x.s//jds

C
1

j˛.���/j� .q/

Z 1

0

.1� s/q�1jf .s;x.s//jds

C
1

j���j� .q/

Z �

�

�Z s

0

.s�m/q�1 jf .m;x.m//jdm

�
ds

�
� sup
t2Œ0;1�

(
1

� .q/

Z t

0

.t � s/q�1.jf .s;x.s//�f .s;0/jC jf .s;0/j/kds

C
1

j˛.���/j� .q/

Z 1

0

.1� s/q�1.jf .s;x.s//�f .s;0/jC jf .s;0/j/ds

C
1

j���j� .q/

Z �

�

�Z s

0

.s�m/q�1.jf .m;x.m//�f .m;0/j
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Cjf .m;0/j/dm
�
ds

)

� .LrCM/ sup
t2Œ0;1�

�
1

� .q/

Z t

0

.t � s/q�1dsC
1

j˛.���/j� .q/

Z 1

0

.1� s/q�1ds

C
1

j���j� .q/

Z �

�

�Z s

0

.s�m/q�1dm
�
ds

�
�
.LrCM/

� .qC1/

�
1C

ı1ŒqC1Cj˛j.�
qC1��qC1/�

j˛j.qC1/

�
D .LrCM/�� r:

Now, for x;y 2 C and for each t 2 Œ0;1�; we obtain

k.Fx/.t/� .Fy/.t/k

� sup
t2Œ0;1�

�
1

� .q/

Z t

0

.t � s/q�1jf .s;x.s//�f .s;y.s//jds

C
1

j˛.���/j� .q/

Z 1

0

.1� s/q�1jf .s;x.s//�f .s;y.s//jds

C
1

j���j� .q/

Z �

�

�Z s

0

.s�m/q�1jf .m;x.m//�f .m;y.m//jdm

�
ds

�
� Lkx�yk sup

t2Œ0;1�

�
1

� .q/

Z t

0

.t � s/q�1dsC
1

j˛.���/j� .q/

Z 1

0

.1� s/q�1ds

C
1

j���j� .q/

Z �

�

�Z s

0

.s�m/q�1dm

�
ds

�
�

L

� .qC1/

�
1C

ı1ŒqC1Cj˛j.�
qC1��qC1/�

j˛j.qC1/

�
kx�yk D L�kx�yk;

where � is given by (3.2). Observe that � depends only on the parameters involved
in the problem. As L < 1=�; therefore F is a contraction. Thus, the conclusion
of the theorem follows by the contraction mapping principle (Banach fixed point
theorem). �

Now, we prove the existence of solution of (1.1) by applying Krasnoselskii’s fixed
point theorem.

Lemma 3 ([14], Krasnoselskii’s fixed point theorem). LetM be a closed, bounded,
convex and nonempty subset of a Banach space X: Let A;B be the operators such
that:

(i) AxCBy 2M whenever x;y 2M ;
(ii) A is compact and continuous;
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(iii) B is a contraction mapping.
Then there exists ´ 2M such that ´D A´CB´:

Theorem 2. Let f W Œ0;1��R!R be a continuous function satisfying assumption
.A1/: Moreover we assume that
.A2/ jf .t;x/j � �.t/; 8.t;x/ 2 Œ0;1��R; and � 2 C.Œ0;1�;RC/:

If
L

� .qC1/

�
ı1ŒqC1Cj˛j.�

qC1��qC1/�

j˛j.qC1/

�
< 1; (3.3)

then the boundary value problem (1.1) has at least one solution on Œ0;1�:

Proof. Letting supt2Œ0;1� j�.t/j D k�k, we fix

r �
k�k

� .qC1/

�
1C

ı1ŒqC1Cj˛j.�
qC1��qC1/�

j˛j.qC1/

�
;

and consider Br D fx 2 C W kxk � rg: We define the operators P and Q on Br as

.Px/.t/D

Z t

0

.t � s/q�1

� .q/
f .s;u.s//ds; t 2 Œ0;1�

.Qx/.t/D
1

˛.���/� .q/

Z 1

0

.1� s/q�1f .s;x.s/ds

�
1

.���/� .q/

Z �

�

�Z s

0

.s�m/q�1f .m;x.m//dm

�
ds; t 2 Œ0;1�:

For x;y 2 Br ; we find that

kPxCQyk �
k�k

� .qC1/

�
1C

ı1ŒqC1Cj˛j.�
qC1��qC1/�

j˛j.qC1/

�
� r:

Thus, PxCQy 2Br : It follows from the assumption .A1/ together with (3.3) that Q

is a contraction mapping. Continuity of f implies that the operator P is continuous.
Also, P is uniformly bounded on Br as

kPxk �
k�k

� .qC1/
:

Now we prove the compactness of the operator P :

In view of .A1/; we define sup.t;x/2Œ0;1��Br
jf .t;x/j D f ; and consequently we

have

k.Px/.t1/� .Px/.t2/k

D sup
.t;x/2Œ0;1��Br

ˇ̌̌̌
1

� .q/

Z t1

0

Œ.t2� s/
q�1
� .t1� s/

q�1�f .s;x.s//ds
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C

Z t2

t1

.t2� s/
q�1f .s;x.s//ds

ˇ̌̌̌
�

f

� .qC1/
j2.t2� t1/

q
C t

q
1 � t

q
2 j;

which is independent of x and tends to zero as t2�t1! 0: Thus, P is equicontinuous.
Hence, by the Arzelá-Ascoli Theorem, P is compact onBr : Thus all the assumptions
of Lemma 3 are satisfied. So the conclusion of Lemma 3 implies that the boundary
value problem (1.1) has at least one solution on Œ0;1�. �

Our next result is based on Leray-Schauder Nonlinear Alternative.

Lemma 4 ([12], Nonlinear alternative for single valued maps). . Let E be a
Banach space, C a closed, convex subset of E; U an open subset of C and 0 2 U:
Suppose that F W U ! C is a continuous, compact (that is, F.U / is a relatively
compact subset of C ) map. Then either

(i) F has a fixed point in U ; or
(ii) there is a u 2 @U (the boundary of U in C ) and � 2 .0;1/ with uD �F.u/:

Theorem 3. Let f W Œ0;1��R! R be a continuous function. Assume that:
.A3/ There exist a function p 2 L1.Œ0;1�;RC/; and  W RC! RC nondecreasing

such that jf .t;x/j � p.t/ .kxk/; 8.t;x/ 2 Œ0;1��R:
.A4/ There exists a constant M > 0 such that

M

 .M/

� .q/

��
1C

ı1

j˛j

�Z 1

0

.1� s/q�1p.s/dsC ı1

Z �

�

�Z s

0

.s�m/q�1p.s/ds

�
ds

� > 1;
where ı1 is given by (3.2).

Then the boundary value problem (1.1) has at least one solution on Œ0;1�:

Proof. Consider the operator ± W C ! C given by (3.1).
We prove that the operator ± is completely continuous. First we prove that ±x

maps bounded sets into bounded sets in C.Œ0;1�;R/. Indeed, it is enough to show
that there exists a positive constant ` such that, for each x 2 Br D fx 2 C.Œ0;1�;R/ W
kxk � rg; we have k±xk � `: From .A3/ we have

j.±x/.t/j

D
1

� .q/

Z t

0

.t � s/q�1jf .s;x.s//jds

C
1

j˛.���/j� .q/

Z 1

0

.1� s/q�1jf .s;x.s//jds

C
1

j���j� .q/

Z �

�

�Z s

0

.s�m/q�1jf .m;x.m//jdm

�
ds
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�
 .kxk/

� .q/

Z t

0

.t � s/q�1p.s/dsC
 .kxk/

j˛.���/j� .q/

Z 1

0

.1� s/q�1p.s/ds

C
 .kxk/

j���j� .q/

Z �

�

�Z s

0

.s�m/q�1p.s/ds

�
ds

�
 .kxk/

� .q/

��
1C

ı1

j˛j

�Z 1

0

.1� s/q�1p.s/ds

Cı1

Z �

�

�Z s

0

.s�m/q�1p.s/ds

�
ds

�
:

Thus,

k.±x/k �
 .r/

� .q/

��
1C

ı1

j˛j

�Z 1

0

.1� s/q�1p.s/ds

Cı1

Z �

�

�Z s

0

.s�m/q�1p.s/ds

�
ds

�
WD `:

Next we show that ±x maps bounded sets into equicontinuous sets of C.Œ0;1�;R/.
Let t 0; t 00 2 Œ0;1� with t 0 < t 00 and x 2 Br , where Br is a bounded set of C.Œ0;1�;R/.
Then

j.±x/.t 00/� .±x/.t 0/j D

ˇ̌̌̌
ˇ 1

� .q/

Z t 00

0

.t 00� s/q�1f .s;x.s//ds

�
1

� .q/

Z t 0

0

.t 0� s/q�1f .s;x.s//ds

ˇ̌̌̌
ˇ

�

ˇ̌̌̌
ˇ .r/� .q/

Z t 0

0

Œ.t 00� s/q�1� .t 0� s/q�1�p.s/ds

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇ .r/� .q/

Z t 00

t 0
.t 00� s/q�1p.s/ds

ˇ̌̌̌
ˇ :

Obviously the right hand side of the above inequality tends to zero independently
of x 2 Br as t 00 � t 0 ! 0: Therefore it follows by the Arzelá-Ascoli theorem that
± W C.Œ0;1�;R/! C.Œ0;1�;R/ is completely continuous.

Now let � 2 .0;1/ and let x D �±x. Then for x 2 Œ0;1�; using the previous com-
putations in proving that ±x is bounded, we have

jx.t/j D j�.±x/.t/j

�
1

� .q/

Z t

0

.t � s/q�1jf .s;x.s//jds

C
1

j˛.���/j� .q/

Z 1

0

.1� s/q�1jf .s;x.s//jds
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C
1

j���j� .q/

Z �

�

�Z s

0

.s�m/q�1 jf .m;x.m//jdm

�
ds

 .kxk/

� .q/

��
1C

ı1

j˛j

�Z 1

0

.1� s/q�1p.s/ds

Cı1

Z �

�

�Z s

0

.s�m/q�1p.s/ds

�
ds

�
:

and consequently

kxk

 .kxk/

� .q/

��
1C

ı1

j˛j

�Z 1

0

.1� s/q�1p.s/dsC ı1

Z �

�

�Z s

0

.s�m/q�1p.s/ds

�
ds

� � 1:
In view of .A4/, there exists M such that kxk ¤M . Let us set

U D fx 2 C.Œ0;1�;X/ W kxk<M g:

Note that the operator ± WU !C.Œ0;1�;R/ is continuous and completely continuous.
From the choice of U , there is no x 2 @U such that x D �±.x/ for some � 2 .0;1/.
Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma 4), we
deduce that ± has a fixed point x 2 U which is a solution of the problem (1.1). This
completes the proof. �

In the special case when p.t/D 1 and  .jxj/D kjxjCN we have the following
corollary.

Corollary 1. Let f W Œ0;1��R! R: Assume that:

.A5/ there exist constants 0 � � <
1

�
; where � is given by (3.2) and M > 0 such

that

jf .t;x/j � �jxjCM; for all t 2 Œ0;1�;x 2 C Œ0;1�:

Then the boundary value problem (1.1) has at least one solution.

4. EXAMPLES

Example 1. Consider the following four-point integral fractional boundary value
problem 8̂̂<̂

:̂
cD1=2x.t/D

1

.tC9/2
jxj

1Cjxj
; t 2 Œ0;1�;

x.0/C

Z 3=4

1=4

x.s/ds D x.1/:

(4.1)
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Here, q D 1=2; ˛ D 1; � D 1=4; � D 3=4; and f .t;x/ D
1

.tC9/2
jxj

1Cjxj
: As

jf .t;x/�f .t;y/j �
1

81
jx�yj; therefore, .A1/ is satisfied with LD

1

81
: Further,

L�D
L

� .qC1/

�
1C

ı1ŒqC1Cj˛j.�
qC1��qC1/�

j˛j.qC1/

�
D
17C3

p
3

729
p
�

< 1:

Thus, by the conclusion of Theorem 1, the boundary value problem (4.1) has a unique
solution on Œ0;1�.

Example 2. We consider the following boundary value problem8̂̂<̂
:̂

cD1=2x.t/D
1

.16�/
sin.2�x/C

jxj

1Cjxj
; t 2 Œ0;1�;

x.0/C

Z 3=4

1=4

x.s/ds D x.1/:

(4.2)

Here, q D 1=2; ˛ D 1; �D 1=4; � D 3=4; andˇ̌̌
f .t;x/

ˇ̌̌
D

ˇ̌̌̌
1

.16�/
sin.2�x/C

jxj

1Cjxj

ˇ̌̌̌
�
1

8
jxjC1:

Clearly M D 1 and

� D
1

8
<
1

�
D

9
p
�

17C3
p
3
:

Thus, all the conditions of Corollary 1 are satisfied and consequently the problem
(4.2) has at least one solution.
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