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1. INTRODUCTION

Let X be a Banach space. A subset E �X is called proximinal if for each x 2X;
there exists an element y 2E such that

d.x;y/D inffkx�´k W ´ 2Eg D d.x;E/:

It is known that every closed convex subset of a uniformly convex Banach space is
proximinal.

We denote by CB.E/;K.E/ and P.E/ the collection of all nonempty closed
bounded subsets, nonempty compact subsets, and nonempty proximal bounded sub-
sets of E respectively. The Hausdorff metric H on CB.X/ is defined by

H.A;B/Dmaxfsup
x2A

d.x;B/; sup
y2B

d.y;A/g

for all A;B 2 CB.X/:
Let T W X �! 2X be a multivalued mapping. An element x 2 X is said to be a

fixed point of T , if x 2 T x. Denote by F .T / the set of fixed points of T and by
F WD F .S/\F .T / the set of common fixed points of the mappings S and T .

Definition 1. A multivalued mapping T WX �! CB.X/ is called
(i) contraction if there exists a constant k 2 Œ0;1/ such that for any x;y 2X ,

H.T x;Ty/� k kx�yk ;
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(ii) nonexpansive if
H.T x;Ty/� kx�yk

for all x;y 2X ,
(iii) quasi-nonexpansive if F .T /¤¿ and

H.T x;Tp/� kx�pk

for all x 2X and all p 2 F .T /.

It is clear that every nonexpansive multivalued mappings T with F .T / ¤ ¿ is
quasi-nonexpansive. But there exist quasi-nonexpansive mappings that are not non-
expansive, see [13]. It is known that if T is a quasi-nonexpansive multivalued map-
pings, then F .T / is closed.

The fixed point theory of multivalued nonexpansive mappings is much more com-
plicated and diffucult than the corresponding theory of single-valued nonexpansive
mappings. However, some classical fixed point theorems for single-valued nonex-
pansive mappings have already been extended to multivalued mappings.

The study of fixed points for multivalued contractions and nonexpansive mappings
using the Hausdorff metric was initiated by Markin [7] (see also [8]). Later, an in-
teresting and rich fixed point theory for such maps was developed which has applic-
ations in control theory, convex optimization, differential inclusion and economics
(see, [2] and references cited therein). Moreover, the existence of fixed points for
multivalued nonexpansive mappings in uniformly convex Banach spaces was proved
by Lim [6].

In 1999, Sahu [11] obtained the strong convergence theorems of the nonexpansive
type and nonself multivalued mappings for the following algorithm:

xn D tnuC .1� tn/yn; n� 0; (1.1)

where yn 2 T xn;u 2 E;tn 2 .0;1/ and lim
n!1

tn D 0. He proved that fxng converges
strongly to some fixed points of T . Xu [15] extended Theorem 1.3 to a multivalued
nonexpansive nonself mapping and obtained the fixed theorem in 2001.

Recently, He et al. [3] obtained common fixed points of a nonexpansive multival-
ued mapping T W E �! CB.E/ satisfying certain conditions. To achive this, they
employed the following Mann type implicit algorithm:(

x0 2E;

xn D ˛nxn�1C .1�˛n/yn; n� 1;
(1.2)

where yn 2 T xn and ˛n 2 Œ0;1�. They proved some strong convergence theorems
of the sequence fxng defined by .1:2/ for nonexpansive multivalued mappings in
Banach spaces.

In this paper, we introduce an iterative algorithm for common fixed points of two
quasi-nonexpansive multivalued mappings. Let S;T W E �! CB.E/ be two quasi-
nonexpansive multivalued mappings with common fixed point p. Our algorithm is as
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follows: (
x0 2E;

xn D ˛nxn�1CˇnynCn´n; n� 1;
(1.3)

where yn 2 Sxn; ´n 2 T xn and f˛ng ;fˇng and fng are sequence of numbers in Œ0;1�
satisfying ˛nCˇnCn D 1.

Using the implicit algorithm .1:3/, we prove some weak and strong convergence
theorems for approximating common fixed points of two quasi-nonexpansive multi-
valued mappings in a uniformly convex Banach space. These results improve and
extend the corresponding results of Khan et al. [5], Soltuz [14] and Xu and Ori [16]
to the case of multivalued mappings. Our results also improve the corresponding
results of He et al. [3] for two quasi-nonexpansive multivalued mappings.

We shall use the condition Sp D Tp D fpg for any p 2 F WD F .S/\ F .T /

in order to prove main results of this paper. Below is an example of two quasi-
nonexpansive multivalued mappings satisfying this condition.

Example 1. LetED Œ0;1� be endowed with the Euclidean metric. Let S;T WE �!
CB.E/ be defined by Sx D Œ0;x� and T x D

�
0; x
2

�
. Thus

H .Sx;Sy/Dmaxfjx�yj ;0g

� jx�yj :

In a similar way, we obtain that

H .T x;Ty/Dmax
nˇ̌̌x
2
�
y

2

ˇ̌̌
;0
o

�

ˇ̌̌x
2
�
y

2

ˇ̌̌
� jx�yj :

Since F .S/D Œ0;1� and F .T /D f0g are nonempty sets, S and T are
quasi-nonexpansive multivalued mappings and Sp D Tp D fpg for any p 2 F .

2. PRELIMINARIES

A Banach space X is called uniformly convex if for each � > 0 there is a ı > 0
such that for x;y 2X with kxk ;kyk � 1 and kx�yk � �;kxCyk � 2.1� ı/ holds.
The modulus of convexity of X is defined by

ıX .�/D inf
�
1�

12 .xCy/
 W kxk ;kyk � 1;kx�yk � �� ;

for all � 2 Œ0;2�. X is said to be uniformly convex if ıX .0/D 0, and ı .�/ > 0 for all
0 < � � 2.
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A Banach space X is said to satisfy Opial’s condition [9] if for any sequence fxng
in X , xn*x implies that

limsup
n!1

kxn�xk< limsup
n!1

kxn�yk

for all y 2X with y ¤ x:
Examples of Banach spaces satisfying this condition are Hilbert spaces and all lp

spaces .1 < p <1/. On the other hand, LpŒ0;2�� with 1 < p ¤ 2 fail to satisfy
Opial’s condition.

A multivalued mapping T W E ! P.X/ is called demiclosed at y 2 E if for any
sequence fxng in E which is weakly convergent to an element x and yn 2 T xn with
fyng converges strongly to y, we have y 2 T x:

A multivalued mapping T W E ! CB.E/ is said to be satisfy Condition .A/ if
there exists a nondecreasing function f W Œ0;1/! Œ0;1/ with f .0/D 0, f .r/ > 0
for all r 2 .0;1/ such that

d.x;T x/� f .d.x;F .T //

for all x 2 E. Khan and Fukhar-ud-din [4] introduced the so-called Condition .A0/
and gave a bit improved version in [1]. The following is the multivalued version of
Condition .A0/:

Two multivalued nonexpansive mappings S;T W E ! CB.E/ where E a subset
of X; are said to satisfy Condition .A0/ if there exists a nondecreasing function f W
Œ0;1/! Œ0;1/ with f .0/D 0, f .r/ > 0 for all r 2 .0;1/ such that

either d.x;T x/� f .d.x;F .S/\F .T // or d.x;Sx/� f .d.x;F .S/\F .T //

for all x 2E. The Condition .A0/ reduces to the Condition .A/ when S D T .
Next, we state the following useful lemma.

Lemma 1 ([12]). Suppose that E is a uniformly convex Banach space and 0 <
p � tn � q < 1 for all positive integers n: Also suppose that fxng and fyng are
two sequences of E such that limsupn!1 kxnk � r; limsupn!1 kynk � r and
limn!1 ktnxnC .1� tn/ynkD r hold for some r � 0: Then limn!1 kxn�ynkD 0:

3. MAIN RESULTS

In order to prove some strong and weak convergence theorems, we need the fol-
lowing lemmas. By means of the iterative algorithm .1:3/, we shall prove the follow-
ing lemmas.

Lemma 2. Let X be a normed space and E be a nonempty closed convex subset
of X . Let S;T W E! CB.E/ be two quasi-nonexpansive multivalued mappings and
f˛ng ;fˇng ;fng be three real sequences in Œ0;1� satisfying ˛nCˇnCnD 1;0 < a�
˛n where a is a constant. Let fxng be the sequence as defined in .1:3/ : If F ¤¿ and
Sp D Tp D fpg for any p 2 F then limn!1 kxn�pk exists for all p 2 F:
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Proof. Let p 2 F: It follows from .1:3/ that

kxn�pk � ˛n kxn�1�pkCˇn kyn�pkCn k´n�pk

� ˛n kxn�1�pkCˇnd.Sxn;p/Cnd.T xn;p/

� ˛n kxn�1�pkCˇnH.Sxn;Sp/CnH.T xn;Tp/

� ˛n kxn�1�pkCˇn kxn�pkCn kxn�pk

and implies that .1�ˇn�n/kxn�pk � ˛n kxn�1�pk or
˛n kxn�pk � ˛n kxn�1�pk. Since ˛n � a > 0, therefore

kxn�pk � kxn�1�pk : (3.1)

We get that fkxn�pkg is a decreasing sequence, so limn!1 kxn�pk exists for
each p 2 F: �

Lemma 3. Let X be a uniformly convex Banach space and E be a nonempty
closed convex subset of X . Let S;T W E! CB.E/ be two quasi-nonexpansive mul-
tivalued mappings and f˛ng ;fˇng ;fng be three real sequences in Œ0;1� satisfying
˛nCˇnCnD 1;0 < a� ˛n;ˇn;n � b < 1 where a;b are some constants. Let fxng
be the sequence as defined in .1:3/. If F ¤ ¿ and Sp D Tp D fpg for any p 2 F
then lim

n!1
d.xn;Sxn/D 0D lim

n!1
d.xn;T xn/:

Proof. From Lemma 2, lim
n!1

kxn�pk exists for each p 2 F . We suppose that

lim
n!1

kxn�pk D d for some d � 0: Then

lim
n!1

kxn�pk D lim
n!1

k˛n.xn�1�p/Cˇn .yn�p/Cn.´n�p/k

D lim
n!1

.1�n/� ˛n

1�n
.xn�1�p/C

ˇn

1�n
.yn�p/

�
Cn.´n�p/


D d: (3.2)

Since T is a quasi-nonexpansive mapping and F ¤¿, we have

kyn�pk D d.yn;Sp/�H.Sxn;Sp/� kxn�pk

for each p 2 F . Taking limsup on both sides, we obtain

limsup
n!1

kyn�pk � d: (3.3)

Similarly,
limsup
n!1

k´n�pk � d: (3.4)

Now using .3:1/, we have

limsup
n!1

 ˛n

1�n
.xn�1�p/C

ˇn

1�n
.yn�p/


� limsup

n!1

�
˛n

1�n
kxn�1�pkC

ˇn

1�n
kyn�pk

�
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� limsup
n!1

�
˛n

1�n
kxn�1�pkC

ˇn

1�n
kxn�pk

�
D limsup

n!1
kxn�1�pk

D d: (3.5)

Using .3:2/, .3:3/, .3:5/ and Lemma 1, we get

lim
n!1

 ˛n

1�n
.xn�1�p/C

ˇn

1�n
.yn�p/� .´n�p/

D 0:
This means that

lim
n!1

 ˛n

1�n
xnC

ˇn

1�n
yn�´n


D lim
n!1

�
1

1�n

�
k˛nxnCˇnyn� .1�n/´nk

D 0:

Since 0 < a � n � b < 1, we have 1
1�a
�

1
1�n

�
1
1�b

. Thus,

lim
n!1

kxn�´nk D 0:

In a similar way, we can show that

lim
n!1

kxn�ynk D 0:

Therefore,
d.xn;T xn/� d.xn;´n/

and
d.xn;Sxn/� d.xn;yn/

gives d.xn;T xn/; and d.xn;Sxn/! 0 as n!1. This completes the proof of the
lemma. �

Now, we give some strong convergence theorems. Our first strong convergence
theorem is in general real Banach spaces. We then apply this theorem to obtain a
result in uniformly convex Banach spaces.

Theorem 1. Let X be a real Banach space and E; fxng S;T be as in Lemma 3: If
F ¤¿ and SpD TpDfpg for any p 2F then fxng converges strongly to a common
fixed point of S and T if and only if liminf

n!1
d.xn;F /D 0:

Proof. The necessity is obvious. Conversely, suppose that liminf
n!1

d.xn;F / D 0:

From Lemma 2; we know that

kxn�pk � kxn�1�pk ;
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which gives
d.xn;F /� d.xn�1;F /:

This implies that lim
n!1

d.xn;F / exists and so by the hypothesis,

liminf
n!1

d.xn;F /D 0. Therefore we must have lim
n!1

d.xn;F /D 0:

Now we show that fxng is a Cauchy sequence inE. Let "> 0 be arbitrarily chosen.
Since lim

n!1
d.xn;F /D 0, there exists a constant n0 such that for all n� n0; we have

d.xn;F / <
"

4
:

In particular, inffkxn0
�pk W p 2 F g<

"

4
: There must exist a p� 2 F such thatxn0
�p�

< "

2
:

For m;n� n0, we have

kxnCm�xnk �
xnCm�p�Cxn�p�
� 2

xn0
�p�


< 2

�"
2

�
D ":

Therefore fxng is a Cauchy sequence in a closed subset E of a Banach space E. So
it must converge in E. We suppose that lim

n!1
xn D q: Now

d.q;Sq/� d.q;xn/Cd.xn;Sxn/CH.Sxn;Sq/

� d.q;xn/Cd.xn;yn/Cd.xn;q/

! 0 as n!1

gives that d.q;Sq/D 0 which implies that q 2 Sq: Similarly,

d.q;Tq/� d.q;xn/Cd.xn;T xn/CH.T xn;T q/

� d.q;xn/Cd.xn;´n/Cd.xn;q/

! 0 as n!1

implies that q 2 Tq: Consequently, q 2 F: �

In our next theorem, we assume that S;T WE! CB.E/ satisfy condition .A0/: In
contrast to Theorem 3.8 [10], we do not impose the condition of proximinality on F .
We now apply the above theorem to obtain the following.

Theorem 2. Let X be a uniformly convex Banach space and E;fxng be as in
Lemma 2. Let S;T W E! CB.E/ be two quasi-nonexpansive multivalued mappings
satisfying Condition .A0/: If F ¤ ¿ and Sp D Tp D fpg for any p 2 F then fxng
converges strongly to a common fixed point of S and T:
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Proof. From Lemma 3; limn!1 kxn�pk exists for all p 2 F . We suppose that
lim
n!1

kxn�pk D d for some d � 0: If d D 0; there is nothing to prove. Suppose

d > 0: Now kxn�pk � kxn�1�pk gives that

inf
p2F
kxn�pk � inf

p2F
kxn�1�pk

which means that d.xn;F / � d.xn�1;F / and so lim
n!1

d.xn;F / exists. By using

condition .A0/; either

lim
n!1

f .d.xn;F //� lim
n!1

d.xn;T xn/D 0

or
lim
n!1

f .d.xn;F //� lim
n!1

d.xn;Sxn/D 0:

In both the cases, we have

lim
n!1

f .d.xn;F //D 0:

Since f is a nondecreasing function and f .0/D 0; so it follows that lim
n!1

d.xn;F /D

0: Now applying the above theorem, we obtain the result. �

Finally, here we will approximate common fixed points of the mappings S and T
through the weak convergence of the sequence fxng defined in .1:3/.

Theorem 3. Let X be a uniformly convex Banach space satisfying the Opial’s
condition and E;S;T and fxng be as taken in Lemma 3: If F ¤¿ and Sp D Tp D
fpg for any p 2 F; I �S and I �T are demiclosed with respect to zero, then fxng
converges weakly to a common fixed point of S and T .

Proof. Let p 2 F: From the proof of Lemma 2, lim
n!1

kxn�pk exists. Now we

prove that fxng has a unique weak subsequential limit in F: To prove this, let ´1
and ´2 be weak limits of the subsequences fxni

g and fxnj
g of fxng; respectively.

By Lemma 3, there exists yn 2 Sxn such that lim
n!1

kxn � ynk D 0 and I � S is
demiclosed with respect to zero, therefore we obtain ´1 2 S´1: Similarly, ´1 2 T ´1.
Again in the same way, we can prove that ´2 2 F .

Next, we prove uniqueness. For this, suppose that ´1 ¤ ´2: Then by the Opial’s
condition, we have

lim
n!1

kxn�´1k D lim
ni!1

kxni
�´1k

< lim
ni!1

kxni
�´2k

D lim
n!1

kxn�´2k

D lim
nj!1

kxnj
�´2k

< lim
nj!1

kxnj
�´1k
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D lim
n!1

kxn�´1k;

which is a contradiction. Hence fxng converges weakly to a point in F . �

The compactness assumption is quite strong, since it is easy to find a sequence in
the domain which converges to a fixed point of the mapping. Therefore, we give the
following result.

Corollary 1. Let E be a nonempty compact convex subset of a uniformly con-
vex Banach space X satisfying Opial’s condition, S;T W E ! K.E/ be two quasi-
nonexpansive multivalued mappings where K.E/ is the family of nonempty com-
pact subsets of E and f˛ng ;fˇng ;fng be three real sequences in Œ0;1� satisfying
˛nCˇnC n D 1;0 < a � ˛n;ˇn;n � b < 1 where a;b are some constants. Let
fxng be the sequence as defined in .1:3/. If F ¤ ¿ and Sp D Tp D fpg for any
p 2 F then fxng converges weakly to a common fixed point of S and T:

The algorithm .1:3/ reduces to the algorithm .1:2/ when either S D T or ˇn D 0
or n D 0. Therefore, we obtain the following results.

Corollary 2. Let X be a uniformly convex Banach space and E be a nonempty
closed convex subset ofX . Let T WE!CB.E/ be a quasi-nonexpansive multivalued
mapping satisfying Condition .A/ and f˛ng be a real sequence in Œ0;1� satisfying
0 < a � ˛n � b < 1 where a;b are some constants. Let fxng be the sequence as
defined in .1:2/. If F ¤¿ and TpD fpg for any p 2 F then fxng converges strongly
to a fixed point of T:

Corollary 3. Let X be a uniformly convex Banach space satisfying the Opial’s
condition and E be a nonempty closed convex subset of X . Let T W E! CB.E/ be
a quasi-nonexpansive multivalued mapping and f˛ng be a real sequence in Œ0;1� sat-
isfying 0 < a � ˛n � b < 1 where a;b are some constants. Let fxng be the sequence
as defined in .1:2/. If F ¤¿ and TpD fpg for any p 2 F; I �T is demiclosed with
respect to zero, then fxng converges weakly to a fixed point of T .
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