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Abstract. We offer two new proofs of famous Redheffer’s inequality, as well establish two con-
verse inequalities for it. Also a hyperbolic analogue is pointed out.
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1. INTRODUCTION

In 1969, Redheffer [8] proposed the following inequality

�2�x2

�2Cx2
�

sinx
x
; x 2 R; (1.1)

which was proved by Williams [12] in the same year. In literature, this inequality is
known as Redheffer’s inequality. By using the infinite product and induction method,
Williams verified this inequality also in 1969, [11]. Motivated by his work, many
developments such as generalizations, refinements and applications took place, e.g.,
see [4].

Thereafter some Redheffer’s-type inequalities for other trigonometric, hyperbolic
and Bessels function were established, e.g., see [2, 3, 6, 10, 13] and the references
therein.

Recently a new proof of (1.1) has appeared in [5], where authors are using the
Lagrange mean value theorem, combined with induction , which is very complicated
for the reader.

The inequality (1.1) is valid for all x 2 R. It is immediate that we may assume
x > 0 and x 2 .0;�/ as for x > � , we may let x D �C t for t > 0, then inequality
(1.1) becomes

sin t
t
<
2�2C3�tC t2

2�2C2�tC t2
:

This is obvious, as right side is greater than one, and left side less than one. Thus, we
may consider x 2 .0;�/.
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So far, all the authors have given the proof of (1.1) by using the induction method.
From our proof, it is obvious that the induction method is not needed. In this paper
we give new interesting proofs of (1.1), which are based on the elementary calculus.
The authors think that this proof could be one from the “Book” (See [1]).

2. NEW PROOF OF INEQUALITY AND ITS CONVERSE

Lemma 1. For all x 2 .0;�/ one has

xC sin.x/ > x2
cos.x=2/
sin.x=2/

:

Proof. Let h1.x/D xC sin.x/�x2 cos.x=2/=sin.x=2/: Then

h01.x/D 1C cos.x/�
2x sin.x/�x2

2sin.x=2/2
D

sin.x/2Cx2�2x sin.x/
2sin.x=2/2

> 0;

where we have used 1Ccos.x/D 2cos.x=2/2 and 2sin.x=2/cos.x=2/D sin.x/. As
h1.x/ > h1.0/D 0, the result follows. �

Theorem 1. The following inequalities

�2�x2

�2Cx2
�

sin.x/
x

<
12�x2

12Cx2
(2.1)

hold for x 2 .0;��.

Proof. Let

f1.x/D
x2.xC sin.x//
x� sin.x/

;

for x 2 .0;��. After some elementary computations, one has

.x� sin.x//2

2x
f 01.x/D x

2.1C cos.x//� sin.x/.xC sin.x//D g1.x/:

As 1C cos.x/D 2cos.x=2/2, and sin.x/D 2sin.x=2/cos.x=2/, we get

g01.x/ D 2cos
�x
2

�h
x2 cos

�x
2

�
� sin

�x
2

�
.xC sin.x//

i
D 2sin

�x
2

�
cos

�x
2

��
x2

cos.x=2/
sin.x=2/

� .xC sin.x//
�
< 0

by Lemma 1. Thus f 01.x/ < 0, and f1 is strictly decreasing in x 2 .0;��. We get
f1.x/ > limx!� f1.x/D �2, which is equivalent to

xC sin.x/
x� sin.x/

>
�2

x2
;

thus the first inequality in (2.1) follows. The second inequality in (2.1) follows sim-
ilarly from f1.x/ < limx!0f1.x/D 12. �
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The right side of (2.1) improves the known inequality:

sin.x/
x

< 1�
x2

�2
; 0 < x <

�

2
:

Indeed, this follows by x2C12 < 2�2, which is true, as �2=4C12 < 2�2 becomes
48 < 7�2.

Proposition 1. The second inequality in (2.1) refines the relation

sin.x/
x

<
cos.x/C2

3
; 0 < x <

�

2
;

so-called Cusa-Huygens inequality [7, 9].

Proof. It is equivalent to prove that,

.12Cx2/cos.x/C5x2�12D s.x/ > 0:

One has successively:

s0.x/D 2x.5C cos.x//� .12Cx2/sin.x/�12;

s00.x/D�4x sin.x/� .10Cx2/cos.x/C10;

s000.x/D x2 sin.x/C6.sin.x/�x cos.x// > 0;

as sin.x/ > x cos.x/ (i.e. tan.x/ > x). Thus we get

s00.x/ > s00.0/D 0; s0.x/ > s0.0/D 0;

and finally s.x/ > s.0/D 0. �

3. AN OTHER PROOF OF (1.1)

Lemma 2. Let f .x/ be two times differentiable function on .0;�/. Define g.x/D
f .x/=sin.x/, h.x/ D sin.x/2g0.x/ and F.x/ D f .x/C f 00.x/. Then the sign of
h0.x/ depends on the sign of F.x/.

Proof. One has

sin.x/2g0.x/D f 0.x/sin.x/�f .x/cos.x/D h.x/;

and
h0.x/D .f .x/Cf 00.x//sin.x/D F.x/sin.x/:

As sin.x/ > 0 for all x 2 .0;�/, the result follows. �

Theorem 2. For x 2 .0;�/, we have

�2�x2

�2Cx2
<

sin.x/
x

< c1
�2�x2

�2Cx2
;

where c1 D 1:07514.
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Proof. Let g.x/D f .x/=sin.x/ for x 2 .0;�/, where

f .x/D
x.�2�x2/

�2Cx2
:

One has

f 0.x/D
�4�4�2x2�x4

.�2Cx2/2
;

so we get

F.x/D f .x/Cf 00.x/D
xp.x/

.�2Cx2/3
;

i.e, by Lemma 2 the sign of h0.x/ depends on the sign of p.x/. Here

h.x/ D f 0.x/sin.x/�f .x/cos.x/

D
x
�
�4�x4

�
cos.x/C

�
�x4�4�2x2C�4

�
sin.x/�

x2C�2
�2

D
k.x/�

x2C�2
�2

and
p.x/D�x6��2x4C�2:x2.�2C4/�12�4C�6:

Here h.0/D h.�/D 0 and h.x0/D 0.
Elementary computation gives k.2�=3/ < 0, while with the use of a computer we

get k.17�=24/ > 0. So k.x/ has a root x0 between 2�=3� 2:0944 and 17�=24�
2:22529.

Now, by letting y D x2, we get

p.x/D q.y/D�y3��2y2C�2y.�2C4/C�6�12�4:

Since
q0.y/D�3y2�2�2yC�2.�2C4/;

and y > 0, the only root of q0.y/D 0 is y� D .2�
p
3C�2C3��2/=3, which lies

between � and �2. One can verify that q.0/ < 0 and q.�/ > 0. As q0.y/ > 0 for
y 2 .0;y�/ and < 0 in y 2 .y�;�2/, and as q.�2/ < 0, we get the following: q is
increasing from q.0/ to q.y�/ and decreasing from q.y�/ to q.�2/. Thus there exist
only two roots in .0;�2/ to q.y/, let them ´1 and ´2. Clearly, ´1 is in .0;�/ and y2
in .y�;�2/. More precisely, as q.6/ < 0 and q.7/ > 0, one finds that y2 > 6. These
imply that q.y/ < 0 in .0;´1/, > 0 in .´1;´2/ and < in .´2;�2/. In terminology of
P.x/, we get that p.x/ < 0 in .0;

p
´1/; > 0 in .

p
´1;
p
´2/, and < 0 in .

p
´2;�/. In

.0;
p
´1/ clearly h0.x/ < 0, so h.x/ < h.0/D 0; similarly in .´2;�/ one has h0.x/ <

0, so h.x/ > h.�/ D 0. Remains the interval .
p
´1;
p
´2/. As ´1 < � and ´2 > 6,

we get that
p
´1 <

p
� < 2 < x0 <

p
6� 2:44949 <

p
´2;
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so we find that x0 lies between
p
´1 and

p
´2. Then clearly h.x/ < h.x0/ D 0 in

.
p
´1;x0/, and h.x/ > h.x0/D 0 in .x0;

p
´2/, so all is done.

Thus the minimum point of g is at x0. As g.x/ tends to 1 when x tends to 0 or
� , thus the Redheffer’s inequality follows. On the other hand, we get also g.x/ �
g.x0/, i.e. the best possible converse to Redheffer’s inequality. Now, with the aid
of a computer one can find the more precise approximation x0 � 2:12266; giving
g.x0/� 0:93012D 1=c1 so the converse to the Redheffer’s inequality holds true. �

Lemma 3. For aD 2:175, the function

Q.x/D�3ax2aC2�2a�axaC2

C2a.a�1/.2a�1/�axaCa�2axa�2a.aC1/.a�2/�2a

has exactly two roots y1 and y2 in .0;�/.

Proof. We have Q.1=2/ < 0; Q.�=2/ > 0; and Q.�/ < 0, so Q has two roots y1
in .1=2;�=2/, resp. y2 in .�=2;�/. To show that Q has no other zeros, we have to
consider Q0.x/D xR.x/, where

R.x/D�3a.2aC2/x2a�2a.aC2/�axa�2a2.a�a/.2a�1/�axa�2C2a�2a:

One has further
R0.x/D 2a2xa�3T .x/;

here

T .x/D�3.2aC2/xaC2� .aC2/�ax2�2a2.a�1/.a�2/.2a�1/�a:

Since a > 2, we get T .x/ < 0, soR0.x/ < 0:One hasQ0.x/D xR.x/, whereR0.x/ <
0: Since R.0/ > 0 and R.�/ < 0, and R.x/ is strictly decreasing, R.x/ D 0 can
have exactly one root r in .0;�/. Therefore, Q.x/ has exactly one extremal point.
Since Q.0/ < 0; Q.�/ < 0 and Q takes also positive values, clearly Q.r/ will be a
maximum of Q.x/. This shows that Q has exactly two roots in .0;�/: one in .0;r/
and the other one in .r;�/.

�

Theorem 3. For x 2 .0;�/, the following inequality holds
sin.x/
x

<
�a�xa

�aCxa
;

where aD 87=40D 2:175.

Proof. Inequality can be written as g.x/D f .x/=sin.x/ > 1; where

f .x/D
x.�a�xa/

�aCxa
:

First of all, similarly to the proof of Theorem 2, one has

f 0.x/D
�2a�2a�axa�x2a

.�aCxa/2
;
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so we get

h.x/D
K.x/

.�aCxa/2
;

where
K.x/D .�2�2a�axa�x2a/sin.x/�x.�2a�x2a/cos.x/:

One finds

F.x/D
xP.x/

.�aCxa/3
;

where

P.x/D�x3a��ax2aC2a.a�1/�ax2a�2C�2axa�2a.aC1/�2axa�2C�3a:

Now the proof of Theorem runs as follows: Since K.1=2/ > 0 and K.�=4/ <
0; K.�=2/ > 0 and K.2�=3/ < 0, we get x1 in .1=2;�=4/ such that K.x1/D 0 and
x2 in .�=2;2�=3/ such that K.x2/D 0. As P.0/ > 0 and P.�=4/ < 0. One has

P 0.x/D xQ.x/;

where Q.x/ is as in Lemma 3. It follows from Lemma 3 that that, Q.x/ < 0 for x in
.0;y1/ and .y2;�/, and Q.x/ > 0 for x in .y1;y2/. This shows that P.x/ is strictly
decreasing in .0;y1/ and .y2;�/ and strictly increasing in .p1;p2/. This implies that
P.x/ has a unique root p1 in .0;y1/, as well as a unique p2 in .y1;y2/ and p3 in
.y2;�/. By approximate computation we can see that p1 < 2=3; p2 > 1 and p3 > 2,
and p1 < p2 < p3. This shows that for the roots x1 and x2 of function k.x/ one has
that x1 is in .p1;p2/ and x2 in .p2;p3/. As h.0/D h.x1/D h.x2/D h.�/D 0, we
get the following;

(1) for x 2 .0;p1/ one has h.x/ > h.0/D 0;
(2) for x 2 .p1;x1/ one has h.x/ > h.x1/D 0;
(3) for x 2 .x1;p2/ one has h.x/ < h.x1/D 0;
(4) for x 2 .p2;x2/ one has h.x/ < h.x2/D 0;
(5) for x 2 .x2;p3/ one has h.x/ > h.x2/D 0;
(6) for x 2 .p3;�/ one has h.x/ > h.�/D 0:

From the above it follows that x1 is a local minimum point , while x2 a local max-
imum point of g.x/. Clearly, g.x1/ > limg.x/, when x tends to zero, D 1 and
limg.x/ at x D � is a=2 > 1: This completes the proof.

�

4. A HYPERBOLIC ANALOGUE

Lemma 4. For x 2 .0;1/,

xC sinh.x/ > x2 coth.x=2/:

Let h2.x/D xC sinh.x/�x2 coth.x=2/.
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Proof. One has

h02.x/D
.sinh.x/�x/2

2sinh.x=2/2
> 0;

and h2.x/ > limx!0h2.x/D 0. Thus, inequality holds. �

Theorem 4. For x 2 .0;1/, we have

sinh.x/Cx
sinh.x/�x

>
12

x2
: (4.1)

Proof. Let

f2.x/D
x2.sinh.x/Cx/

sinh.x/�x
;

for x 2 .0;1/. We get

.sinh.x/�x/2

2x
f 02.x/D .sinh.x=2//..xC sinh.x//�x2 cosh.x=2/2/;

which is positive by Lemma 4. Thus, f2 is strictly increasing in x 2 .0;1/, and
the inequality (4.1) follows from f2.x/ > limx!0f2.x/ D 12. Therefore, we have
an analogue of the second inequality in the circular case, and this is (4.1). When
x2 < 12, then (4.1) becomes

sinh.x/
x

<
12Cx2

12�x2
:

�

It is interesting to observe that

12Cx2

12�x2
<
�2Cx2

�2�x2
;

if x < � . Indeed this becomes: �2 < 12.
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