
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 16 (2015), No 1, pp. 575-586 DOI: 10.18514/MMN.2015.1258

Monotone iterative technique by upper and

lower solutions with initial time di�erence

Co³kun Yakar, Ismet Arslan, and Muhammed Çiçek

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/163101516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 16 (2015), No. 1, pp. 575–586

MONOTONE ITERATIVE TECHNIQUE BY UPPER AND LOWER
SOLUTIONS WITH INITIAL TIME DIFFERENCE
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Abstract. In this work, the monotone iterative technique have been investigated by choosing
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1. INTRODUCTION

The original method of monotone iterative technique provides an explicit analytic
representation for the solution of nonlinear differential equations which yields point-
wise upper and lower estimates for the solution of problem whenever the functions
involved are monotone nondecreasing and nonincreasing [1–3,8,10–13]. As a result,
the method has been popular in applied areas [1, 2],[4–6],[9, 12, 13]. The monotone
iterative technique [2, 6–8], uncoupled with the method of upper and lower solu-
tions, offers monotone sequences that converge uniformly and monotonically to the
extremal solutions of the given nonlinear problem. Since each member of such a
sequence is the solution of a certain (ODEs) which can be explicitly computed, the
advantage and the importance of this technique needs no special emphasis. Moreover,
this method can successfully be employed to generate two sided pointwise bounds on
solutions of initial value problems of ODEs from which qualitative and quantitative
behavior can be investigated. In this paper especially we employed monotone iterat-
ive technique for ODEs with initial time difference.

2. PRELIMINARIES

In this section we will give some basic definition and theorems by [4] which are
very useful to use in our future references.

c
 2015 Miskolc University Press
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We consider the following initial value problem

x0.t/D f .t;x.t//;x.t0/D x0 for t � t0; t0 2RC (2.1)

where f 2 C ŒRC�R;R� and t 2 Œt0; t0CT � :

Definition 1. .i/ Let r.t/ be a solution of the (2.1) on t 2 Œt0; t0CT �. Then r.t/
is said to be a maximal solution of (2.1) if, for every solution x.t/ of (2.1) existing
on Œt0; t0CT � the inequality

x.t/� r.t/; t 2 Œt0; t0CT � (2.2)

holds.
.i i/ Let �.t/ be a solution of the (2.1) on t 2 Œt0; t0CT �. Then �.t/ is said to be

a minimal solution of (2.1) if, for every solution x.t/ of (2.1) existing on Œt0; t0CT �
the inequality

x.t/� �.t/; t 2 Œt0; t0CT � (2.3)

holds.

Definition 2. .i/A function ˇ 2C 1 ŒŒt0; t0CT � ;R� is said to be an upper solution
of (2.1) if

ˇ0 � f .t;ˇ/;ˇ.t0/� x0; t 2 Œt0; t0CT � (2.4)

.i i/ A function ˛ 2 C 1 ŒŒt0; t0CT � ;R� is said to be a lower solution of (2.1) if

˛0 � f .t;˛/;˛.t0/� x0; t 2 Œt0; t0CT � (2.5)

Theorem 1 ([4]). Let ˛;ˇ 2 C 1 ŒŒt0; t0CT � ;R� be lower and upper solutions of
(2.1) respectively. Suppose that x � y , f satisfies the inequality

f .t;x/�f .t;y/�M.x�y/ (2.6)

where M is a positive constant .Then ˛.t0/ � ˇ.t0/ implies that ˛.t/ � ˇ.t/; t 2
Œt0; t0CT � :

Remark 1 ([4]). Let the assumptions of Theorem 1 hold. Then every solution x.t/
of (2.1) such that ˛.t0/ � x.t0/ � ˇ.t0/ satisfies the estimate

˛.t/� x.t/� ˇ.t/; t 2 Œt0; t0CT � : (2.7)

Theorem 2 ([4]). Let f 2 C ŒŒt0; t0CT ��R;R� and jf .t;x/j � L. Then there
exist a solution of the IVP (2.1) on Œt0; t0CT � :

3. COMPARISON THEOREMS AND EXISTENCE RESULTS RELATIVE TO INITIAL
TIME DIFFERENCE

In this section, we will give some basic comparison theorems and existence results
relative to initial time difference.
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Theorem 3 ([5]). Assume that f 2 C ŒRC�R;R� and
.i/ ˛ 2 C 1 ŒŒ�0; �0CT � ;R� ;�0 � 0;T > 0;ˇ 2 C

1 ŒŒ�0;�0CT � ;R� ;�0 > 0; and

˛0.t/� f .t;˛.t// for t 2 Œ�0; �0CT � (3.1)

ˇ0.t/� f .t;ˇ.t// for t 2 Œ�0;�0CT � (3.2)

with ˛.�0/� ˇ.�0/I

.i i/ f .t;x/�f .t;y/�M.x�y/;x � y;M > 0I

.i i i/ �0 < t0 < �0 and f .t;x/ is nondecreasing in t for each x:
Then .A/ ˛.t/� ˇ.tC .�C �// for t � �0 where � D t0� �0; � D �0� t0:

.B/ ˛.t ��/� ˇ.tC �/ for t � t0;where � D t0� �0 and � D �0� t0:

.C / ˛.t � .�C �/� ˇ.t/; t � �0 where � D t0� �0; � D �0� t0:

Proof of Theorem 3. Please see [5] for the details of the proof by simple modific-
ation of .A/; .B/ and .C /: �

The following theorem is the existence result in the closed sectors.

Theorem 4. Assume that f 2 C ŒRC�˝;R� and
.i/ ˛ 2 C 1 ŒŒ�0; �0CT � ;R� ;�0 � 0;T > 0;ˇ 2 C

1 ŒŒ�0;�0CT � ;R� ;�0 > 0

˛0.t/� f .t;˛.t// for t 2 Œ�0; �0CT �

ˇ0.t/� f .t;ˇ.t// for t 2 Œ�0;�0CT �

with ˛.�0/� ˇ.�0/I

.i i/ �0 < t0 < �0 and f .t;x/ is nondecreasing in t for each xI

.i i i/ ˛.t ��/� ˇ.tC �/ for t0 � t � t0CT where � D t0� �0; � D �0� t0:

Then there exist a solution of initial value problem (2.1) satisfying

˛.t ��/� x.t/� ˇ.tC �/

for t0 � t � t0CT:

Proof of Theorem 4. Let ˇ0.t/ D ˇ.t C �/ and ˛0.t/ D ˛.t � �/ for
t 2 Œt0; t0CT �D I: Then we get ˇ0.t0/D ˇ.�0/� ˛0.t0/D ˛.�0/ and

ˇ00.t/� f .tC �;ˇ0.t//;˛
0
0.t/� f .t ��;˛0.t//:

Assume that ˛0.t0/� x0 � ˇ0.t0/ and p W Œt0; t0CT ��R!R such that

p.t;x/Dmax Œ˛0 .t/ ;min Œx;ˇ0 .t/��

Then f .t;p.t;x// defines a continuous extension of f to Œt0; t0CT ��R which is
also bounded since f is bounded on ˝; where

˝ D f.t;x/ 2RC�R W ˛.t ��/� x � ˇ.tC �/ for t0 � t � t0CT g: (3.3)

Therefore, the initial value problem x0 D f .t;p.t;x//;x.t0/D x0 according to The-
orem 2 has a solution on I: For sufficiently small " > 0; consider

˛0"
.t/D ˛0.t/� ".1C t / (3.4)
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ˇ0"
.t/D ˇ0.t/C ".1C t /: (3.5)

Clearly

˛0"
.t0/ < ˛0.t0/� x0 � ˇ0.t0/ < ˇ0"

.t0/

and hence ˛0"
.t0/ < x0 < ˇ0"

.t0/: We wish to show that

˛0"
.t/ < x.t/ < ˇ0"

.t/ on I

Suppose that it is not true, then there exists a t1 2 .t0; t0CT � such that

˛0"
.t/ < x.t/ < ˇ0"

.t/ on Œt0; t1/ and ˇ0"
.t1/D x.t1/:

Then x.t1/ > ˇ0.t1/ and so

p.t1;x.t1//D ˇ0.t1/

Also ˛0.t1/� p.t1;x.t1//� ˇ0.t1/: Hence

ˇ00.t1/� f .t1;ˇ0.t1//D f .t1;p.t1;x.t1///D x
0.t1/

Since ˇ00"
.t1/ > ˇ

0
0.t1/ � x

0.t1/ we have ˇ00"
.t1/ > x

0.t1/ . This contradicts x.t/ <
ˇ0"

.t/ for t 2 Œt0; t1/: The other case can be proved similarly. Consequently, we
obtain ˛0"

.t/ < x.t/ < ˇ0"
.t/ on I: Letting "! 0 we get

˛0.t/� x.t/� ˇ0.t/ on I:

Therefore the proof is completed. �

Remark 2. Assume that f 2 C ŒRC�R;R�, assumptions .i/, .i i/ of Theorem 4
hold and
.i i i/� ˛.t/� ˇ.tC .�C�// for �0 � t � �0CT where � D t0��0; � D �0� t0:

Then there exist a solution satisfying

˛.t/� x.tC�/� ˇ.tC .�C �//

for �0 � t � �0CT .

Remark 3. Assume that f 2 C ŒRC�R;R�, assumptions .i/, .i i/ of Theorem 4
hold and
.i i i/�� ˛.t�.�C�//� ˇ.t/ for �0 � t � �0CT where � D t0��0; � D �0� t0:

Then there exist a solution satisfying

˛.t � .�C �//� x.t � �/� ˇ.t/

for �0 � t � �0CT .



INITIAL TIME DIFFERENCE MONOTONE ITERATIVE TECHNIQUE 579

4. MONOTONE ITERATIVE TECHNIQUE WITH THE DIFFERENT INITIAL DATA

In this section we have applied the monotone iterative technique for the nonlinear
initial value problem of (2.1) by choosing lower and upper solutions with known at
the different initial data.

Theorem 5. Assume that f 2 C ŒRC�R;R� and
.i/ ˛ 2 C 1 ŒŒ�0; �0CT � ;R� ;�0 � 0;T > 0;ˇ 2 C

1 ŒŒ�0;�0CT � ;R� ;�0 > 0

˛0.t/� f .t;˛.t// for t 2 Œ�0; �0CT �

ˇ0.t/� f .t;ˇ.t// for t 2 Œ�0;�0CT �

with ˛.�0/� ˇ.�0/I

.i i/ �0 < t0 < �0 and f .t;x/ is nondecreasing in t for each xI

.i i i/ ˛.t ��/� ˇ.tC �/ for t0 � t � t0CT;� D t0� �0; � D �0� t0I

.iv/ f .t;x/�f .t;y/��M.x�y/ whereM >0 and ˛.t��/� y � x �ˇ.tC�/
for t 2 Œt0; t0CT � :

Then there exist monotone sequences
n
�
˛n

o
and

�
�

ˇn

�
which converge uniformly and

monotonically on Œt0; t0CT � such that
�
˛n! � and

�

ˇn! r as n!1: Moreover, �
and r are minimal and maximal solutions such that � is the minimal solution of the
initial value problem of x0 D f .t;x/;x.�0/ D x0 on Œ�0; �0CT � and r is the max-
imal solution of the initial value problem of x0 D f .t;x/;x.�0/D x0 on Œ�0;�0CT �

respectively where
�

ˇ0.t/D ˇ.tC �/;
�
˛0.t/D ˛.t ��/:

Proof of Theorem 5. Since
�

ˇ0.t/Dˇ.tC�/,
�

ˇ0.t0/Dˇ.t0C�/Dˇ.�0/�˛0.�0/

and
�

ˇ
0

0.t/ � f .t C �;
�

ˇ0.t//;
�
˛
0

0.t/ � f .t � �;
�
˛0.t//; t 2 Œt0; t0CT � : Consider the

following linear initial value problems

�
˛
0

nC1.t/D f .t ��;
�
˛n.t//�M.

�
˛nC1.t/�

�
˛n.t//;

�
˛nC1.t0/D x0 (4.1)

�

ˇ
0

nC1.t/D f .tC �;
�

ˇn.t//�M.
�

ˇnC1.t/�
�

ˇn.t//;
�

ˇnC1.t0/D x0 (4.2)

Setting p.t/D
�

ˇ1 .t/�
�

ˇ0.t/ where p.t0/� 0 for t 2 I:

p0.t/D
�

ˇ
0

1.t/�
�

ˇ
0

0.t/

D f .tC �;
�

ˇ0.t//�M.
�

ˇ1.t/�
�

ˇ0.t//�
�

ˇ
0

0.t/

� f .tC �;
�

ˇ0.t//�M.
�

ˇ1.t/�
�

ˇ0.t//�f .tC �;
�

ˇ0.t//

p0.t/� �Mp.t/



580 COŞKUN YAKAR, İSMET ARSLAN, AND MUHAMMED ÇİÇEK

This shows that p.t/�p.t0/e�Mt � 0 since we have p.t0/� 0:Hence
�

ˇ1.t/�
�

ˇ0.t/

on I: Similarly we can show that
�
˛0.t/ �

�
˛1.t/ on I: Setting p.t/D

�
˛1.t/�

�
˛0.t/

and p.t0/� 0 for t 2 Œt0; t0CT � :

p0.t/D
�
˛
0

1.t/�
�
˛
0

0.t/

D f .t ��;
�
˛0.t//�M.

�

˛1.t/�
�
˛0.t//�

�
˛
0

0.t/

� f .t ��;
�
˛0.t//�M.

�
˛1.t/�

�
˛0.t//�f .t ��;

�
˛0.t//

p0.t/� �Mp.t/

This shows that p.t/�p.t0/e�Mt � 0:Hence
�
˛0.t/�

�
˛1.t/ on I:Now we can show

�
˛1.t/�

�

ˇ1.t/. Setting p.t/D
�
˛1.t/�

�

ˇ1.t/ where p.t0/� 0 for t 2 Œt0; t0CT � :

p0.t/D
�
˛
0

1.t/�
�

ˇ
0

1.t/

D f .t ��;
�
˛0.t//�M.

�
˛1.t/�

�
˛0.t//�f .tC �;

�

ˇ0.t//CM.
�

ˇ1.t/�
�

ˇ0.t//

� f .t;
�
˛0.t//�M.

�
˛1.t/�

�
˛0.t//�f .t;

�

ˇ0.t//CM.
�

ˇ1.t/�
�

ˇ0.t//

D f .t;
�
˛0.t//�f .t;

�

ˇ0.t//�M.
�
˛1.t/�

�
˛0.t//CM.

�

ˇ1.t/�
�

ˇ0.t//

� �

�
�M.

�

ˇ0.t/�
�
˛0.t//

�
�M.

�
˛1.t/�

�
˛0.t//CM.

�

ˇ1.t/�
�

ˇ0.t//

DM.
�

ˇ1.t/�
�
˛1.t//

p0.t/� �Mp.t/

This shows that p.t/ � p.t0/e�Mt � 0 on I: Hence
�
˛1.t/ �

�

ˇ1.t/ on Œt0; t0CT � :
Consequently, we have

�
˛0.t/�

�
˛1.t/�

�

ˇ1.t/�
�

ˇ0.t/ on I:

To employ the method of mathematical induction, assume that for some k > 1
�
˛k�1.t/�

�
˛k.t/�

�

ˇk.t/�
�

ˇk�1.t/ on I

we then show that
�
˛k.t/�

�
˛kC1.t/�

�

ˇkC1.t/�
�

ˇk.t/ on I:

where
�
˛kC1.t/ and

�

ˇkC1.t/ are the solutions of the linear IVPs
�
˛
0

kC1.t/D f .t ��;
�
˛k.t//�M.

�
˛kC1.t/�

�
˛k.t//;

�
˛kC1.t0/D x0

�

ˇ
0

kC1.t/D f .tC �;
�

ˇk.t//�M.
�

ˇkC1.t/�
�

ˇk.t//;
�

ˇkC1.t0/D x0:
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As we have done before, we set p.t/D
�
˛kC1.t/�

�
˛k.t/ where p.t0/� 0:

p0.t/D
�
˛
0

kC1.t/�
�
˛
0

k.t/

D f .t ��;
�
˛k.t//�M.

�
˛kC1.t/

�
�
˛k.t//�f .t ��;

�
˛k�1.t//CM.

�
˛k.t/�

�
˛k�1.t//

D f .t ��;
�
˛k.t//�f .t ��;

�
˛k�1.t//

�M.
�
˛kC1.t/�

�
˛k.t//CM.

�
˛k.t/�

�
˛k�1.t//

� �M.
�
˛k.t/�

�
˛k�1.t//�M.

�
˛kC1.t/�

�
˛k.t//�M.

�
˛k.t/�

�
˛k�1.t//

D�M.
�
˛kC1.t/�

�
˛k.t//

p0.t/� �Mp.t/

This shows that p.t/ � p.t0/e�Mt � 0 on I: Hence
�
˛k.t/ �

�
˛kC1.t/ on I: Setting

p.t/D
�

ˇkC1.t/�
�

ˇk.t/ where p.t0/� 0:

p0.t/D
�

ˇ
0

kC1.t/�
�

ˇ
0

k.t/

D f .tC �;
�

ˇk.t//�M.
�

ˇkC1.t/�
�

ˇk.t//

�f .tC �;
�

ˇk�1.t//CM.
�

ˇk.t/�
�

ˇk�1.t//

D f .tC �;
�

ˇk.t//�f .tC �;
�

ˇk�1.t//

�M.
�

ˇkC1.t/�
�

ˇk.t//CM.
�

ˇk.t/�
�

ˇk�1.t//

� �

�
�M.

�

ˇk�1.t/�
�

ˇk.t//

�
�M.

�

ˇkC1.t/�
�

ˇk.t//CM.
�

ˇk.t/�
�

ˇk�1.t//

p0.t/� �Mp.t/

This shows that p.t/ � p.t0/e�Mt � 0 on I: Hence
�

ˇkC1.t/ �
�

ˇk.t/ on I: Now

setting p.t/D
�
˛kC1.t/�

�

ˇkC1.t/ where p.t0/� 0:

p0.t/D
�
˛
0

kC1.t/�
�

ˇ
0

kC1.t/

D f .t ��;
�
˛k.t//�M.

�
˛kC1.t/�

�
˛k.t//

�f .tC �;
�

ˇk.t//CM.
�

ˇkC1.t/�
�

ˇk.t//

� f .t;
�
˛k.t//�f .t;

�

ˇk.t//�M.
�
˛kC1.t/�

�
˛k.t//CM.

�

ˇkC1.t/�
�

ˇk.t//
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� �

�
�M.

�

ˇk.t/�
�
˛k.t//

�
�M.

�
˛kC1.t/�

�
˛k.t//CM.

�

ˇkC1.t/�
�

ˇk.t//

p0.t/� �Mp.t/

This shows that p.t/� p.t0/e�Mt � 0 on I: Hence
�
˛kC1.t/�

�

ˇkC1.t/ on I: Con-
sequently, for all k 2N and for t 2 I: We get

�
˛k.t/�

�
˛kC1.t/�

�

ˇkC1.t/�
�

ˇk.t/ on I:

Hence it follows that for all n 2N and t 2 I; we have
�
˛0.t/�

�
˛1.t/� :::�

�
˛n.t/�

�

ˇn.t/� :::�
�

ˇ1.t/�
�

ˇ0.t/ on I: (4.3)

It is clear that the sequences
n
�
˛n

o
and

�
�

ˇn

�
are uniformly bounded and equicon-

tinuous sequence of functions on Œt0; t0CT � and consequently by Ascoli-Arzela’s

theorem there exist subsequences
n
�
˛nk

o
and

�
�

ˇnk

�
that converge uniformly on

Œt0; t0CT � . In view of (4.3) it follows that the entire sequences
n
�
˛n

o
and

�
�

ˇn

�
converge uniformly and monotonically to

�
� and

�
r ,respectively, as n!1: We have

obtained the following corresponding Volterra integral equation for (4.1) and (4.2)

�
˛nC1.t/D x0C

tZ
t0

.f .s��;
�
˛n.s//�M.

�
˛nC1.s/�

�
˛n.s//ds

�

ˇnC1.t/D x0C

tZ
t0

.f .sC �;
�

ˇn.s//�M.
�

ˇnC1.s/�
�

ˇn.s//ds:

Therefore, we get
�

�0.t/D f .t ��;
�
�.t//;

�
�.t0/D x0 (4.4)

�

r 0.t/D f .tC �;
�
r .t//;

�
r .t0/D x0 (4.5)

as n!1 where
�
�.t/D �.t ��/ and

�
r .t/D r.tC�/, respectively. Finally, we must

show that
�
� and

�
r are the minimal and maximal solutions of the IVP (4.4) and (4.5),

respectively. Let x.t/ be any solution of (2.1) such that
�
˛0.t/� x.t/�

�

ˇ0.t/ on Œt0; t0CT � :

Then we need to prove
�
˛0.t/�

�
� � x.t/�

�
r �

�

ˇ0.t/ on Œt0; t0CT � :
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Suppose that for some n;
�
˛n.t/� x.t/�

�

ˇn.t/:

Then, we set p.t/D
�
˛nC1.t/�x.t/ where p.t0/D 0: Thus

p0.t/D
�
˛
0

nC1.t/�x
0.t/

D f .t ��;
�
˛n.t//�M.

�
˛nC1.t/�

�
˛n.t//�f .t;x/

� f .t;
�
˛n.t//�f .t;x/�M.

�
˛nC1.t/�

�
˛n.t//

� �M.
�
˛n.t/�x.t//�M.

�
˛nC1.t/�

�
˛n.t//

D�M.
�
˛nC1.t/�x.t//

D�Mp.t/:

This shows that p.t/ � p.t0/e
�Mt � 0 on I since we have p.t0/ � 0: Hence

�
˛nC1.t/ � x.t/ on I: In a similar manner, we can show that x.t/ �

�

ˇn.t/ on

Œt0; t0CT � : This proves by induction that
�
˛n.t/� x.t/�

�

ˇn.t/ for all n taking limit
as n!1 we arrive at

�
� � x.t/ �

�
r on Œt0; t0CT � : Therefore the proof is com-

pleted. �

Corollary 1. If in addition to the assumption of Theorem 5, we assume

f .t;x/�f .t;y/�M.x�y/;˛.t ��/� y � x � ˇ.tC �/;M > 0

then we have unique solution of (2.1) such that
Ï
� D x D

Ï
r :

Proof. If we set pD r�� then p0D r 0��0 D f .t; r/�f .t;�/�M.r��/, which
gives p0 �Mp and p.t0/D 0:Hence we get p.t/ � 0 on Œt0; t0CT � which implies
r � �: Also , utilizing the fact that � � r; we have � D x D r is the unique solution
of (2.1). �

Corollary 2. If in addition to the assumption .i/; .i i/ of Theorem 5, we assume
.i i i/ ˛.t/� ˇ.tC .�C �// for �0 � t � �0CT where � D t0� �0; � D �0� t0I

.iv/ f .t;x/ � f .t;y/ � �M.x � y/ where M > 0 and ˛.t/ � y � x �

ˇ.tC .�C �// for t 2 Œ�0; �0CT � :

Then there exist monotone sequences f˛ng and
�
�

ˇn

�
which converge uniformly

and monotonically on Œ�0; �0CT � such that ˛n! � and
�

ˇn!
�
r as n!1: More-

over, � and r are minimal and maximal solutions such that � is the minimal solution
of the initial value problem of x0 D f .t;x/;x.�0/D x0 on Œ�0; �0CT � and r is the
maximal solution of the initial value problem of

�
x
0

.t/D f .tC�;
�
x.t//;

�
x.�0/D x0; t 2 Œ�0; �0CT � (4.6)
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respectively where
�

ˇ0.t/D ˇ.tC .�C �//;
�
˛0.t/D ˛0.t/:

Corollary 3. If in addition to the assumption .i/; .i i/ of Theorem 5, we assume
.i i i/ ˛.t � .�C �//� ˇ.t/ for �0 � t � �0CT where � D t0� �0; � D �0� t0I

.iv/ f .t;x/�f .t;y/ � �M.x�y/ where M > 0 and ˛.t � .�C �// � y � x �
ˇ.t/ for t 2 Œ�0;�0CT � :

Then there exist monotone sequences
n
�
˛n

o
and fˇng which converge uniformly

and monotonically on Œ�0;�0CT � such that
�
˛n!

�
� and ˇn! r as n!1: More-

over,
�
� and r are minimal and maximal solutions such that

�
� is the minimal solution

of the initial value problem of

�
x
0

.t/D f .t � �;
�
x.t//;

�
x.�0/D x0; t 2 Œ�0;�0CT � (4.7)

and r is the maximal solution of the initial value problem of x0D f .t;x/; x.�0/D x0

on Œ�0;�0CT � where
�

ˇ0.t/D ˇ0.t/;
�
˛0.t/D ˛0.t � .�C �//:

5. EXAMPLES

Example 1. Consider the nonlinear initial value problem

x0.t/D etx2; x.1/D�1 for t � 1 (5.1)

where f .t;x/D etx2 2 C ŒRC�R;R� and t 2 Œ1;4� :
.E1/ ˛.t/ D � 2

et ; ˛.0/ D �2; ˛.t/ 2 C
1 ŒŒ0;3� ; R� and ˇ.t/ D � 1

2et ;

ˇ.2/D� 1
2e2 ; ˇ.t/ 2 C

1 ŒŒ2;5� ; R�, then we get for T D 3

˛0.t/D
2

et
and f .t;˛/D

4

et
then ˛0.t/� f .t;˛/ for t 2 Œ0;3�

ˇ0.t/D
1

2et
and f .t;ˇ/D

1

4et
then ˇ0.t/� f .t;˛/ for t 2 Œ2;5� :

Therefore, ˛.t/ and ˇ.t/ are lower and upper solutions, respectively and

˛.�0/D ˛.0/D�2 < x.t0/D x.1/D�1 < ˇ.�0/D ˇ.2/D�
1

2e2
:

.E2/ 0 < 1 < 2 and f .t;x/ is nondecreasing in t for each x and ˛.1/ D �2
e
�

ˇ.1/D� 1
2e
:

.E3/ f .t;x/�f .t;y/��M.x�y/ whereM D 4e4 > 0 is the Lipschitz constant

for ˛.1/� y � x � ˇ.1/; t 2 Œ0;5� : Also
�
˛0.t/D ˛.t �1/ and

�

ˇ0.t/D ˇ.tC1/ for
t 2 Œ1;4� :

Therefore,
�
˛nC1 is a lower solution and

�

ˇnC1is an upper solution of (5.1) for

t 2 Œ1;3� : Thus
�
˛nC1.t/�

�

ˇnC1.t/ for t 2 Œ1;4� :
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Consequently, we have for all n;

�
˛0.t/�

�
˛1.t/� � � � �

�
˛n.t/�

�

ˇn.t/� � � � �
�

ˇ1.t/�
�

ˇ0.t/ for t 2 Œ1;4�

Employing the standard monotone technique it can be shown that the monotone
sequence

n
�
˛n.t/

o
converges to

�
� which is the minimal solution of (5.1) as n!1

and monotone sequence
�
�

ˇn.t/

�
converges to

�
r which is the maximal solution of

(5.1) as n!1: We arrive at
�
� � x.t/ �

�
r on Œ1;3� : In this example,since the

solution x.t/D� 1
etC1�e

of (5.1) is unique,
�
� D x.t/D

�
r :
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Coşkun Yakar
Gebze Technical University Faculty of Sciences Department of Mathematics Applied Mathematics

Gebze-Kocaeli 141-41400
E-mail address: cyakar@gtu.edu.tr
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