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Abstract. In the paper, by finding linear relations of differences between some means, the authors
supply a unified proof of several double inequalities for bounding Neuman-Sdndor means in
terms of the arithmetic, harmonic, and contra-harmonic means and discover some new sharp
inequalities involving Neuman-Sandor, contra-harmonic, root-square, and other means of two
positive real numbers.
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1. INTRODUCTION

It is well known that the quantities

b
A(a,b):anr , Ga.b) = Vab
2ab — 2(a® +ab +b?)
H ,b = C ,b — )
@by =77 (@.b) 3(a+b)
a? +b? a—>b
Ca,by=—, P(a,b) = ,
@.b) a+b @.5) 4arctan/a/b —m
a?+b? a—b
Q(a,b) = — T(a,b) = —
Zarctana+b

are respectively called in the literature the arithmetic, geometric, harmonic, centroidal,
contra-harmonic, first Seiffert, root-square, and second Seiffert means of two positive

real numbers a and b with a # b.

For a,b > 0 with a # b, Neuman-Sandor mean M (a,b) is defined in [1 1] by
a—>b

Ma,b = )
@.5) 2 arcsinh 22

a_
a+b
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where arcsinhx = In(x + +/x2 + 1) is the inverse hyperbolic sine function. At the
same time, a chain of inequalities

G(a,b) < L_1(a,b) < P(a,b) < A(a,b) < M(a,b) < T(a,b) < Q(a,b)

were given in [1 1], where

pp+1 _ o+l 1/p

- - ~1.0

[(ptlg%—ag] » P#E-L

—a

Lp(a.b)y=41(b" _0

e\ a? ’ P=

b—a _ 1

Inb—1Ina’ P=

is the p-th generalized logarithmic mean of a and b with a # b.
In[11,12], it was established that

A(a,b) < M(a,b) < T(a,b), P(a,b) <M(a,b) <T?(a,b),

A%(a,b) +T?*(a,b)

A(a,b)T(a,b) < M?(a,b) < >

fora,b > 0 witha # b.
For0 <a,b < % with a # b, Ky Fan type inequalities

G(a,b) L_i(a.b) P(a.b)
Gl—a1-b) Li(l—a,1=b) ~ P(l—a,1—b)
A(a,b) M(a.b) T(a,b)

SA(—a,1-b) ~M(—a1-b) T(—-a,1-b)

were presented in [1 1, Proposition 2.2].
In [8], it was showed that the double inequality

Lpy(a,b) < M(a,b) < Ly(a,b)

holds for all a,b > 0 with a # b and for po = 1.843..., where py is the unique
solution of the equation (p + 1)/? = 2In(1 + +/2).
In [10], Neuman proved that the double inequalities

aQa,b)+ (1—a)A(a,b) < M(a,b) < BQ(a,b)+ (1—B)A(a,b)
and
AC(a,b)+ (1—21)A(a,b) < M(a,b) < uC(a,b) + (1 —p)A(a,b) (1.1)
hold for all a,b > 0 with a # b if and only if
1—In(1 +/2)

ai(ﬁ—l)ln(1+ﬁ)zo'3249"" B>

W | =
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and
1-1
)< Ioin(++2) —0.1345..., p>o
In(1 + +/2) 6
In [20, Theorems 1.1 to 1.3], it was found that the double inequalities
a1H(a,b)+(1—a1)Q(a,b) < M(a,b) < B1H(a,b)+(1—81)0(a,b),
a2G(a,b)+ (1—az)0(a,b) < M(a,b) < B2G(a,b) + (1 —B2)0(a,b),
and
asH(a,b)+ (1 —a3)C(a,b) < M(a,b) < B3H(a,b)+ (1—-pB3)C(a,b) (1.2)
hold for all a,b > 0 with a # b if and only if

2 1
=02222..., Bi<1

T - =0.1977...,
"= V2In(1++/2)
1 1

ar >~ =0.3333..., <l-— =0.1977...,
223 B2 S+ 3)

> 1 ! 0.4327 B3 < > _ 0.4166
o - =0. e, <—=0.
= a1+ v2) 12

In [19, Theorem 3.1], it was established that the double inequality
al(a,b)+ (1 —a)Q(a,b) < M(a,b) < Bl(a,b)+(1—p)0(a,b)
holds for all a,b > 0 with a # b if and only if

V24 V2= 1] 4oy
(vV2e—=2)In(1+2)

For more information on this topic, please refer to [1-3,5,7-10, 12—14, 16-18,20]
and plenty of references cited therein.

The first goal of this paper is, by finding linear relations of differences between
some means, to supply a unified proof of inequalities (1.1) and (1.2).

The second purpose of this paper is to establish some new sharp inequalities in-
volving Neuman-Séndor, centroidal, contra-harmonic, and root-square means of two
positive real numbers a and b with a # b.

o> and B <

2. LEMMAS

In order to attain our aims, the following lemmas are needed.

o0
Lemma 1 ([15, Lemma 1.1]). Suppose that the power series f(x) = Y anx"
n=0

o0
and g(x) = Y_ byx" have the radius of convergence r > 0 and b, > 0 for all n €
n=0

N={0,1,2,...}. Let h(x) = %. Then the following statements are true.
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(1) If the sequence {Z—Z o2 o is (strictly) increasing (decreasing), then h(x) is
also (strictly) increasing (decreasing) on (0,r).

(2) If the sequence {Z_Z} is (strictly) increasing (decreasing) for 0 <n < ng and
(strictly) decreasing (increasing) for n > ng, then there exists xo € (0,r)
such that h(x) is (strictly) increasing (decreasing) on (0,x¢) and (strictly)
decreasing (increasing) on (xo,r).

Lemma 2. Let

sinhx —x
hx)=——5. 2.1
1() 2x sinh? x @1
Then h1(x) is strictly decreasing on (0,00) and has the limit lim hj(x) = %

x—0T

Proof. Let fi(x) =sinhx —x and f>(x) = 2x sinh? x = x cosh2x — x. Using the
power series

x2n+1 0 x2n
sinhx = Z FTET and coshx = Z @t (2.2)
n=0 n=0
we can express the functions f1(x) and f>(x) as
o0 x2n+3 o0 22n+2,.2n+3
= SRS d = _ 2.3
A0 =2 Gy M=) 23)
n=0 n=0
Hence, we have
ZOO=O anx2n
1 22n+2 an _ 1
where ay = m and bn = m Let Cp = b Then Cp = W and
—(6n+17)
Cn+1—Cn

= <0
(2n +3)(2n + 5)22n+4

As aresult, by Lemma 1, it follows that the function /;(x) is strictly decreasing on
(0,00).

From (2.4), itis easy to see that lim,_, o+ h1(x) = Z—g = 1—12 The proof of Lemma 2
is complete. U
Lemma 3. Let
_ sinhx . sinh®x
ha(x) = T (2.5)

coshx —

Then hy(x) is strictly increasing on (0,00) and has the limit limJr ha(x) = %
x—0
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Proof. Let

sinhx  sinh?x sinhx cosh2x—1

f3(x) L T3 . c

and

inh
fa(x) = coshx — Sy

Making use of the power series in (2.2) shows that

o0 o0
(2n+3)22"12—-6 ,.., 2n+2
= d — = I’l+2.
/3(x) ’; 62n+3)! and  fa(x) ’12:;)(271+3)!x

Therefore, we have
Zoo 2n+2
n=0%nX

1200 = S i

(2.6)

2n+2_
(2n+3)2 6 and b,

where a, = 60T 3! (2n+3), Letc, = b . Then
B (2n+3)22n+1_3
" 6(n+1)
and

3+7'22n+2+21n,22n+1+3n2'22n+2
Cnl—Cn = > 0.
o 6(n+ 1)(n +2)

Accordingly, by Lemma 1, it follows that the function /5 (x) is strictly increasing on
(0, 00).
It is clear that lim, _, o+ h2(x) = Z—g = % The proof of Lemma 3 is complete. [

Lemma 4. Let
cosh x — sinhx

ha 00 = —x—si“hx ' @7

Then h3(x) is strictly decreasing on (0,00) and has the limit lim h3(x) =

x—>0t
Proof. Let
f5(x) = coshx — sinh x
and | |
fe(x) = 1 +sinh?x — Slr;hx —1_ Sllilx 4 COShix_ 1

Utilizing the power series in (2.2) gives

N\ 2n+2 X (25 +3)22n+1 _
fs(x) = Z (2’113)')62”“ and  fe(x) = Z( nt213+3)! (2n+2
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This implies that
o0

> gn x> +2

ZZOZO bnx2n+2

_ (2n+3)22n+1_q

h3(x) = (2.8)

where a, = % and b, = ontar - Leten = Z—:. Then
2n+2
Cp =
(21’! + 3)22n+1 —1
and

2(1 + 7.22n+2 +21n _22n+1 + 3n2 .22n+2)
- (3 .22n+1 +n .22n+2 _ 1)(5_22n+3 +n .22n+4 _ 1) <
In light of Lemma 1, we obtain that the function /3(x) is strictly decreasing on
(0,00).
It is obvious that lim,_, o+ h3(x) = Z—g = % The proof of Lemma 4 is complete.
O

0.

Cn+1—Cn =

3. A UNIFIED PROOF OF INEQUALITIES (1.1) AND (1.2)

Now we are in a position to supply a unified proof of inequalities (1.1) and (1.2)
and, as corollaries, to establish some new inequalities involving Neuman-Sandor,
contra-harmonic, centroidal, and root-square means of two positive real numbers «
and b witha # b.

It is not difficult to see that the inequalities (1.1) and (1.2) can be rearranged re-
spectively as
M(a,b)—C(a,b)

A< b —A@D)

<pu—1 (3.1)
and
M _
- (a,b)—C(a,b) -
C(a,b)—H(a,b)
The denominators in (3.1) and (3.2) meet

Bs. (3.2)

(a—b)?
a+b

which were presented in [4, Eq. (4.4)]. This implies that the inequalities (1.1) and (1.2)
are identical up to a scalar. Therefore, it is sufficient to prove one of the two inequal-
ities (1.1) and (1.2).

By a direct calculation, we also find

2[C(a,b) — A(a,b)] = C(a,b)— H(a,b) = (3.3)

6[C(a,b)— A(a,b)] = 3[C(a,b) — C(a,b)] = 2[A(a,b) — H(a,b)]

(@a—b)* a
L CH@.b). (4

= %[E(a,b)—H(a,b)] =
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So, it is natural to raise a problem: what are the best constants « and 8 such that the
double inequality
M(a,b)—C(a,b)
< 35
CH(a,b) P (35)
holds for all a,b > 0 with a # b? The following theorem gives a solution to this
problem.

Theorem 1. The double inequality (3.5) holds for all a,b > 0 with a # b if and
only if
1
0 —— —
2In(1 4 +/2)

Proof. Without loss of generality, we assume that @ > b > 0. Let x = %. Then
x> 1and

5
1=-0.4327... and B> = —0.4166...

x—1 _ x241
M(a,b)—C(a,b) _ 2arcsinh§_T_% x+1
CH(a,b) x=1)2
x+1

Letr = 221 Thent € (0,1) and

M(a,b)—C(a,h)  gom—12—1

CH(a,b) 22
Let ¢t = sinh 6 for 6 € (0,ln(1 + ﬁ)) Then

M(a,b)—C(a,b) 8% —sinh>6—1 sinh6—6 1

CH(a,b) 2sinh2 6 " 20sinh?6 2

In virtue of Lemma 2, Theorem 1 is thus proved. O

Corollary 1. The double inequality
aCH(a,b)+ M(a,b) < C(a,b) < BCH(a,b)+ M(a,b) (3.6)
holds for all a,b > 0 with a # b if and only if o < % =0.4166... and

1
>1—— =0.4327...
Pz 2In(1 ++/2)
Corollary 2. The double inequality
aCH(a,b)+ M(a,b) < C(a,b) < BCH(a,b) + M(a,b) (3.7)
holds for all a,b > 0 with a # b if and only if o < % =0.0833... and
2 1
p>=-— =0.0993...

3 2In(1++2)
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4. SOME NEW INEQUALITIES INVOLVING NEUMAN-SANDOR MEAN

Finally we further establish some new inequalities involving Neuman-Sandor, centroidal,
root-square, and other means.

Theorem 2. The inequality
M(a,b) > ACH(a,b) 4.1

. . . 1 .
holds for all a,b > 0 with a # b if and only if A < TN 0.5672....
Proof. ltis clear that
M(a,b) (a—b)(a+Db) _a+b 1
CH(a,b)  (a—b)22arcsinh % a—b 2arcsinh Z_T_l]; '
Without loss of generality, we assume thata > b > 0. Let x = Z;Z. Then x € (0,1)
and M(a.b) :
a, A
= —— = f(0).
CH(a,b) 2xarcsinhx
Differentiating f(x) yields
X i
P = Nowesl + arcsinh x 0
2x2arcsinh®x
which means that function f(x) is decreasing for x € (0, 1).
It is apparent that
1
lim f(x)=—.
x—>1- J&) 2In(1 4+ v/2)
The proof of Theorem 2 is thus complete. O

Theorem 3. The double inequality
aQ(a,b)+ (1 —a)M(a,b) < C(a,b) < BQO(a,b)+ (1—B)M(a,b) 4.2)
holds for all a,b > 0 with a # b if and only if o < % and
3—4In(1 4 /2)
3[1—+/2In(1+ v2)]
Proof. 1t is sufficient to show
C(a,b)—M(a,b
= Qia,b;—MEa,b; <b

Without loss of generality, we assume thata > b > 0. Let x = %. Then x > 1 and

=0.7107...

B>

o 2(x24+x+1)  x—1
C(a,b)—M(a,b) _ 3(x+1) 2arcsinhj§—lll

Q(a.b)—M(a.b) ~ [x241 _ x-1
2 2arcsinh§—;}
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_ x—1
Let? = 377 Thent € (0,1) and

rol 2ot
C(a,b)—M(a,b) _ 3 +1 arcsinh?

0@.b)—M@ab) VT2 —_L_
Let ¢t = sinh 6 for 6 € (O,ln(l + «/E)) Then

Cla.b)—M(a.b) _ sinh?6 | | _ sinhf
Q(a.b)—M(a.b) cosh@—%

By Lemma 3, we obtain Theorem 3. U

Theorem 4. The double inequality
aC(a,b)+ (1 —a)M(a,b) < Q(a,b) < BC(a,b)+ (1—B)M(a,b) (4.3)
holds for all a,b > 0 with a # b if and only if
Y < V2In(14++2)—1
T 2In(1++2)-1
Proof. The double inequalities (4.3) is the same as

- Q(a,b)—M(a,b) <5
C(a,b)—M(a,b)

Without loss of generality, we assume thata > b > 0. Let x = %. Then x > 1 and

2
=03231... and f>7.

x2+1 x—1
Q(a,b)—M(a,b) _ 2 2arcsinh§—_7_'1

C(a,b)—M(a,b)  x*>+1_ _ x-1

x+1 2arcsinh %

Lett = % Thent € (0,1) and

0(a.b)—M(a,b) ~N1+12 -

arcsinh?

C(a’ b) - M(a’ b) I+2— arcsﬁnht
Let ¢t = sinh 6 for 6 € (O,ln(l + «/5)) Then

O(a,b)—M(a,b) _ coshf— sl
C(a,b)— M(a,b) 1+Sinh29_¥.

According to Lemma 4, the proof of Theorem 3 is complete. g

Remark 1. This paper is a slightly revised version of the preprint [6].
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