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Abstract. Aktag et. al. in [3] introduced the generalized Humbert matrix polynomials (G-HMP)
P,f1 (m,x,y,c). In this paper we focus on some properties of these matrix polynomials such
as matrix recurrence relations, matrix differential equation and an integral representation. We
introduce generalized forms of operational rules associated with operators corresponding to a
G-HMP expansions. Moreover, we obtain a series transformation formula involving Gegenbauer
matrix polynomials. Then we provide a number of applications.
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1. INTRODUCTION

Classical Humbert polynomials, which are generalized forms of Gegenbauer, Le-
gendre, second kind Chebyshev, Pincherle polynomials, are defined in [16] and stud-
ied by many mathematicians. Through the last two decades, matrix polynomials have
comprised an emerging field of study with important results in both theory and ap-
plications continuing to appear in the literature. Extension of the matrix framework
of the classical families of polynomials are introduced [12,13,18,20,23,29] and sev-
eral properties of the these matrix polynomials are established [4—0,10,11,25,31,37].
Generalized Humbert matrix polynomials are introduced in [3]. Furthermore various
families of bilinear and bilateral generating matrix functions and some relations of
these matrix polynomials are presented [1,2]. By means of this study, choosing ap-
propriate parameter we get both the known and the unknown properties of second
kind Chebyshev, Legendre, Pincherle, Gegenbauer matrix polynomials which are in-
troduced to date. The organization of this paper is as follows. In Section 2, start-
ing from the generating matrix function, some matrix recurrence relations are given.
Also, these polynomials appear as finite series solutions of m th-order matrix dif-
ferential equation are demonstrated. Section 3 deals with an integral representation
and operational identities for G-HMP. Finally in Section 4, a series transformation
formula for Gegenbauer matrix polynomials is established and some applications are
given.

© 2014 Miskolc University Press



510 LEVENT KARGIN AND VELI KURT

Throughout this paper, the zero matrix and identity matrix will be denoted by 0
and I, respectively. If A is a matrix in C"*7, its spectrum o (A) denotes the set of all
eigenvalues of A. Its 2-norm is denoted by || A|| and defined by

| Ax||
| A]| = sup 2,
x#£0 [l x1l,

1
where for a vector y in C”, || y|, = (yT,y)5 is the Euclidean norm of y. If f (z)
and g(z) are holomorphic functions of the complex variable z, which are defined in
an open set §2 of the complex plane and A is a matrix in C"*" such that 6 (A4) C £2,
then from the properties of matrix functional calculus in [15, p. 558], it follows
that f(A)g(A) = g(A) f(A). For a matrix A in C™*” the authors give the following
relation due to [21]

- — An n
g ===y Doy <, (L1)
n=0 ’

where (A),, is the Pochhammer symbol or shifted factorial which is defined by
(A),=AA+1)A+2])...(A+(n—-11), n>1, (1.2)
with (A)y = I (see [21]). Moreover, from [22] for a matrix A in C™” such that
A +nl is invertible for every integer n > 0 we have
(A), =T (A+nl)I1(4), (1.3)

where I" (A) is the gamma matrix function which is defined by [22]
o0
I (4) = / e 1A 1 gy, (1.4)
0

Let A be an arbitrary matrix in C"*”. Then the Humbert matrix polynomials
P,fl (m,x,y,c) are defined by generating matrix function

o0
Z PA(m.x.y.c)t" = (c —mxt —i—ytm)_A = F(x,y,t,c,A), (1.5)
n=0
where |mxt — yt™| < |c|, m is a positive integer and the other parameters are un-
restricted in general (see [3]). Also these matrix polynomials satisfy the following
explicit expression

(7] _ _
(—1)kC (A+(n—mk+k)I) (A)n—mk+k

A _
P; (m,x,y,C)—Z k! (n—mk)!
k=0

It is clear from (1.6) that

(mx)" ™k yk - (1.6)

@D gmx  m>1
cA@TDA(x—y) im=1"

A

P(j4 (m,x,y,c)=c" 7, PIA (m,x,y,c)=
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X
P,;‘1 (m,x,y,c)= (:_AP,;‘1 (m,—,z),
c ¢

and

(_1)n C—(A+n1) (A)n yn

n! '
c=AHnD (4),, (mx)"

n! ’
For the special case of (1.6), we consider P,f (m,x,y,c) as follows

PAQ2.x.y.1) =Ca(x.y).

[A
P;«EI]IXI (2,x E’y’ 1) :Un (x’y’A)a
1 [A
Pr!;z]lxl (2’x 5,1’1) :Pn (X,A)’

PAB,x,1,1) =hi(x),

P,f‘m (m,0,y,c) =

PA(m,x,0,c) =

511

where C,f (x,y): Gegenbauer matrix polynomials with two variables [19],
U, (x,y,A): second kind Chebyshev matrix polynomials with two variables [7],
Py (x,A): Legendre matrix polynomials [36], h;:l (x): Pincherle matrix polynomi-

als [27].

2. RECURRENCE RELATIONS

In this section we obtain matrix recurrence relations and m t h-order matrix differ-

ential equation for G-HMP.

Let us get some matrix recurrence relations for G-HMP. Differentiating (1.5) with

respect to ¢, x, y,t we have

ad —A

_F ’ 7ta ’A =—F ) ’ti ’A ’
dc (x,y.1.¢,4) c—mxt + yt™ (x.y.1.¢,4)

0 t

_F ’ 7ta ,A = AF ’ s[9 7A )
dx (et 4) c—mxt+yt’”m (et 4)
O F(eyitie.d) 4P (vt A)
o x’ bl ’c’ - x’ b 7C7 9
dy Y c—mxt+yt™ y

ad (x—ytm_l)

_F ) ’Za 7A - AF . ,Z, ,A .
g - e yted) c—mxt+ytm x.y.1.e.4)

We can rewrite (2.2) and (2.3) in the from

o0
_ ad
mA(c—mxt+ytm) “+h - E gprflﬂ(m,x,y,c)t",
n=0

2.1

(2.2)

(2.3)

2.4)

(2.5)
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and

—(A+1)

o0
0
—A(c—mxt 4 yt™) = Z—P,{im (m,x,y,c)t", (2.6)

dy
n=0
respectively. Applying (1.5) to the left-hand sides of equations (2.5) and (2.6) we
have

o0 o0 a
A+1T A
X:mAPnJr (m,x,y,c)t"=’;)5Pn+1(mvx»%c)tn’

n=0

o o a

Z—AP,{H'I (m,x,y,c)t" = Z a_PIf+m (m,x,y,c)t".
n=0 n=0 y

Comparing the coefficients of ¢” in the above equations we arrive at

0

B—P,f1 (m,x,y,c)= mAPA+I (m,x,y,c), n>1, 2.7
d

8_P (m,x,y,c)= PA+I(mxyc) n>m
y

By iteration we obtain two differential relations for G-HMP

o Pl (mox,y.c) = m" (A), P (m.x,p.c), (2.8)
"

By PA(m,x,y.c) = (=1) (A), P (m,x,y.c). (2.9

Therefore, we have

.0
P (m,x,y.c)+(=1)""'m P;:l+(m 1y (m,x,y,¢) =0. (2.10)

ax” 8 r
Considering equations (2.1) and (2.2), and applying the same method we get
" 0"
o rP (m,x,y,c)=(=1)"m" Fy A_,(m,x,y,c), n=>r. (2.11)
Also, from equations (2.1) and (2.3) we have
8
3y rPA(mxyc) PAm,(mxyc) n>mr. (2.12)

Let us consider the equations (2.2) and (2.4). Then we have
ad ad
(x—yt"™ ") —F (x,y.t,c,A)—t—F (x,y,t,c,A) =0
ax at

Using (1.5) we get

ZX—PA(m x,y,¢c)t" —Zy PA(m x,y,c)t"tm-l
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o0
= ZnP,fl (m,x,y,c)t".
n=1
Since %P(j‘1 (m,x,y,c) =0, comparing the coefficients of " yields

d 0
ng,fl (m,x,y,c) —nP,f1 (m,x,y,c)= yaP,fH_m (m,x,y,c). (2.13)

Furthermore, from equations (2.2) and (2.4), we get

mA (c—mxt—i—ytm)_A .9 A _
=y _—_p X, y,c)t" 1 2.14
P ;ax A m.xy.c) (2.14)

and
(x =yt VYmA(c—mxt + yt™) ™4
(c—mxt + yt™)

o0
=Y nPl(m.x.y.0)i""  (2.15)
n=1

respectively. Thus, multiplying (2.14) by 1 —y (m—1)¢" and (2.15) by mt and
substracting them we get

d
y(m— l)aprfl_i_l_m (M,X,y,c)
ad

= EP,;“H (m,x,y,c)—m(A+nl) PnA (m,x,y,c). (2.16)

Using (2.13) in the above equation we have

%P,,AH (m,x,y,c)=(m— I)X%PnA (m,x,y,c)+(mA+nl) P,f (m,x,y,c).

2.17)
Finally, applying (2.7) in equations (2.16) and (2.17) respectively we obtain two more
matrix recurrence relations

m(A+nl)PA(m.x,y.c) (2.18)
= mAP,{HI (m,x,y,c)—m(m— 1)AyP,;4_",'nI (m,x,y,c), n>m,
(mA+nI)PA(m.x.y.c) (2.19)

=mAP,f1+I (m,x,y,c)—m(m— I)AxP,fl_’Lll (m,x,y,c), n>1.

From (2.4) we get
ad
(¢ —mxt + yt™) EF(x,y,t,c,A) = (x—yt"™ YYmAF (x,y,t,c,A).

Using (1.5) in the above equation we obtain

o0
(c —mxt + yt™\nPA (m,x,y,c)t"!

n=1
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o0
= Z (x—yt™ YmAPA (m,x,y,c)t".
n=0
By making appropriate changes of indices and comparing the coefficients of ¢, we
obtain a three-term matrix recurrence relation for G-HMP

c(n+1)P,{4+1(m X, Y, c)—mx(A-l—nI)P,f(m,x,y,c) (2.20)
+ymA+m—m+1)I]P, n+1 _mm.x,y,c)=0, n>m—1.
Summary of these results is given in the following theorem.

Theorem 1. Let A be an arbitrary matrix in C™" and m be a positive integer.
Then G-HMP satisfy the differential relation (2.10) and recurrence relations (2.18),
(2.19) and (2.20).

Before concluding this section we discuss the matrix differential equation of G-
HMP. Let the sequence ( f;)}—, be given by f, = f (r), where

f(t)=(n—t)((n_[)1+m(A+”)) :

m
Also we introduce two standard difference operators: the forward difference operator
A and the displacement (or shift) operator £ are given as

Afr = fr+1 _fr and Efr = fr—i—l
and their powers are given by

Aofr = fr’ Akfr =A (Ak_lfr), Ekfr = fr—i—k-

Theorem 2. Let A be an arbitrary matrix in C™" and m be a positive integer.
Then G-HMP are a particular solution of the m t h-order matrix differential equation
in the form:

_ am S
"y a—mP,f (m,x,y, c)+Zasx PA(m X,y,c) = (2.21)
where the coefficients ag are given by

mm—l

ag = A fo. (2.22)

Proof. Letn =mp +q, where p = [%] and 0 < g < m — 1. Differentiating (1.6)
with respect to x, we get

[%5] (= 1Yk ¢—(At+n=mk+K)1) (A m—tok

9
Xt g Pr mexy.)= ) KL (n—mk —s)!

a . (mx)n—mk k
k=0

y )

and
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a4
B_mP (m,x,y,c)
-1 ko— -
B p (_1) ¢ (A+(n—mk+k)I) (A)n—(m—l)kmm nem(k+D) k
= (mx) v,
k!'(n—m(k 4+ 1))!
k=0
where ["m;s] = { P =4 . Substituting these expressions in the differential
p—1 s>q
equation (2.21) and comparing the corresponding coefficients, we obtain
m
(" )stag =mMk (A+(n—(m—1)k) 1), (2.23)
§s=0

where k =0,1,2,---p—1, and

M=

("IP)slag =m™ p(A+ (n—(m—1)k)I),,_; . (2.24)

s=0

(2.24) can be written as
q n—gq
2: m"m=LAS f, _mm—l(n—q)(A+(q+—)1) .
=0 m m—1

This equality holds because it is equivalent to
1+ fo=Efo=fg=f(q).
Fork =0,1,2,--- p—1,(2.23) can be written in the form

Z ("TEVA fo = Fucm- (2.25)

Since f (¢) is a polynomial of degree m, the last equality holds and (2.25) is a forward
difference formula for f at the point t = n —mk. Thus, the proof is completed. []

Corollary 1. Pincherle matrix polynomials are a solution of the third-order matrix
differential equation in the form:

32 d3 16 d?
8 d

— 5, GnA+ @+ )1 -(BA+21) (A + 51))xd—h;;1 (x)
X

+2§7n(3A+n1)(3A+(n+ D)y (x) =
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3. AN INTEGRAL REPRESENTATION AND ITS APPLICATIONS

Firstly, let us discuss the extension of classical Lahiri generalized Hermite poly-
nomials (G-LHP) which are specified by the series definition

[%] k  k n—mk
(=D" y* (mx)
=n!
Hym (x,y) =n!y ey e—— 3.1
k=0
and by the generating function
o0 [”
ZHn,m (X,y)m = exp (mxt—ytm). 3.2)

n=0
It is easy to show that

n X
Hym(x,y)=ymHy (—) and Hy, ;n (x,1) = Hp m (x),
Yy

m

where Hj, ,; (x) is the G-LHP given in [30]. In particular, for m =2, Hy, 5 (x,1) =
Hp (x), where Hj, (x) denotes the ordinary Hermite polynomials [35]. Moreover,
Hym(x,y) = git (mx,—y), where g’ (x,y) is the Gould-Hopper generalized
Hermite polynomials (G-HGHP) [17].

Using the summation formula for G-HGHP in [28, Theorem 2.1 p. 1538] G-LHP
satisfy

n,s n s
Hy+s,m (w,y) = Z (k) (r)mk+r (w _x)k—i—r Hn+s—k—r,m (x,). (3.3)
k,r=0

In the following theorem we give an integral representation for G-HMP including

G-LHP.

Theorem 3. Let A be a matrix in C™" such that Re(z) > 0 for all z € 0 (A), m
be a positive integer and ¢ be a complex number such that Re (¢) > 0. Then G-HMP
have the integral representation

r=1(4) [*
P,‘:l (m,x,y,c) = %\/(; e_CtlA+(n_1)IHn,m (X,Ll) dt. (34)

rm-

Proof. Using (3.1) in the right-hand side of (3.4) we have

—1
F_'(A)/ooe—cttAHn—l)IHmm (x, 4 )dt
n: 0

tm_l

[7:] (—1)k ¢—(A+=mk+IOT) (g yn=mk

=2 K\ (n —mk)!

k=0

I YA (A4 n—mk +k)).

From (1.3) we get the proof. O
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As an application of this theorem we give the following proposition for G-HMP.

Proposition 1. G-HMP satisfy the summation formula

n,s n\ (s k—l—r k+r
(Agrm™™" (w—x) A+ (k+r)]

PA(mow.y.c) = () ()

" ’ k,rz=0 () (k +r)! n+s—k—r

(m,x,y,c).

(3.5)

Proof. Replacing n with n 4 s in (3.4) and using the summation formula (3.3) we
deduce

PA (m.w.y.c) = Z D)) 1 45—k —r)im T (- x)f
n+s ’ s —

]
koo (n+s)!
8k+r
ookt Pnts—te—r (M:%.3.€).
From (2.8) we obtain the result. ]

Taking k = 0 in assertion (3.5) of Proposition 1, we deduce the following con-
sequence of Proposition 1.

Corollary 2. The following summation formula for the G-HMP holds

n k k
A)m® (w—x
P,fl (m,w,y,c)= E (D k(' ) P;l_",'ckl (m,x,y,c). (3.6)

k=0
Remark 1. Replacing w by w + x in (3.6), we obtain

n k
Z (A)g (mw)
P,f(l’l’l,X-i-w,y,C): kTPr‘:l_—i];kI(m’x9yﬂc)'
k=0 )

Now, we try to understand more deeply the role played by the integral transform
connecting G-LHP and G-HMP. It is obvious that both H, ,, (x,y) and P,fl (m,x,y,c)
reduce to ordinary form for y = 1.

It is easy to find that

r=1@) [® n t
PA(m.x.c) = n—'()/o et A+ gy, (x—) di. (37

Using the fact that
d
exp (/\x—) f(x)=f(xexpA),
dx
where f (x) is an appropriate function, we have

r—t (e n
PA(m.x.c) = %/(; e_”tAJr(ﬁJr(l_i)x%_l)IdtHn,m (x).

From (1.4) we acquire the following theorem.
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Theorem 4. Let A be a matrix in C™" such that Re (z) > 0 for all z € 0 (A), m
be a positive integer and ¢ be a complex number such that Re (¢) > 0. Then G-HMP

satisfy
I (A)n!PA(m,x.c) = exp (—@mc) r (@) Hym (x), (3.8)
where @ = [A—I—( +(1——) E)]]
We conclude this section giving another representation for the G-HMP.

Theorem 5. Let A be an arbitrary matrix in C™" and m be a positive integer.
Then G-HMP satisfy the identity

A om
P,f(m,x,y,c)z n exp|:y( m)_mD (m—1)

] ~ArnD (uxyr . (3.9)
dxm

where Dc_1 denotes the inverse derivative operator (see [14] for details).

Proof. Identities (2.11) and (2.12) allow us to conclude that
am A a4
(—m)mmPn (m,x,y,c)= 3_mPn (m,x,y,c).
The last identity and the fact that
A
Pr‘:l (m’x’ 0, C) — gc—(A+n1) (mx)n ,
n!
give the proof. U

We note that taking A = [1];;, m = 2 and replacing x/ by x \/g , the expressions

(3.8) and (3.9) coincide with the formulas which was given in [24] for the second kind
Chebyshev matrix polynomials.

4. SOME RESULTS FOR GEGENBAUER MATRIX POLYNOMIALS

In this section we deal with the integral representation for Gegenbauer matrix poly-
nomials including classical Hermite polynomials. Using this representation we give
a generating function of Gegenbauer matrix polynomials with two-variables. As a
main theorem of this section we obtain a series transformation formula involving
Gegenbauer matrix polynomials. We then provide a number of applications using
appropriate binomial transformations.

Takingc =1, m =2 and replacing n with n 4+ p in (3.4) we deduce

-1
CA (x.y) = = A) [ armir-v1 gy (Y as
n+p a (}’l—"—p)' n+p ’[ k)

Multiplying both hand sides of above equation by
from zero to infinity, we get

("+p (D)t -n and summing over n
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Z (n+p)! n+p(x )z

n'n!
n=0 p

_ r=14) o~ A+ (=11 Z o +p< ) (zt)

p! 0 o t/ n!

Using identity [32]

o
ZH”+1’ (x,y)i—': :exp(2xz—yZ2) Hy,(x—yz.,y), 4.1)
we have i
Z(’l‘i‘l?) n+p(x "
o n!p!
_ F_;!(A) Oooe—t(1—2xz+yzz)tA+(p—1)IH (x z, )dt

This gives the following theorem for Gegenbauer matrix polynomials with two-
variables.

Theorem 6. Let A be a matrix in C™" such that Re (z) > 0 for all z € o(A), p
be a positive integer. Then Gegenbauer matrix polynomials with two-variables have
the generating function

> (n ; p) CA (. »)2" 42)

n=0

=(1-2xz+ yzz)_(A+pI) CH(x—yz.(1-2xz+yz?) )

where |2xz—yzz| < 1.
We note that for the case y = 1 the expression (4.2) coincides with the formula

which was proved by Khammash ([26]) for the Gegenbauer matrix polynomials.
Before giving the main theorem of this section we need the following lemma.

Lemma 1 ([8, p. 386, Theorem 1.1]). The following series transformation formula
holds

Zaan(x)t > fZZ( 1" Hn(x—r)—gz(,’j)(—l)kak},
n=0

k=0
where
o0
k
f@ =Y ap,
k=0
is an arbitrary function, analytical in a neighborhood of zero.
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Theorem 7. Let A be a matrix in C™*" such that Re (z) > 0 forall z € 6 (A). Then
Gegenbauer matrix polynomials have the series transformation formula

o0 o0 n
ZanCnA () 2" = p~A Z(_l)n cA (x Zl) " { Z (Z) (_1)kak} ’
n=0 n=0 pp k=0
4.3)
where ay, are the Maclauren coefficients of an arbitrary function f (t), p=1—2xz+
yz2and |1—p| < 1.

Proof. For ¢ =1 and m = 2,(3.7) reduce to
r-1 [« n
C,fl (x)= #/ e_ttAJr(f_l)IHn (xﬁ) dt.
n! 0

Multiplying both hand sides of the above equation by a, z" and summing over n from
zero to infinity, we get

Y an Gl =) ()Gl x—z.p)2" { > (Z) (—1)kak} ;

n=0 n=0 k=0

Using this equation and

A —apqafx 1
C, (x,c)=c""C, (EZ)

for ¢ = 1 —2xz + yz?2, we get the proof. g

Note that C,f %, %) are Gegenbauer matrix polynomials with two-variables.

Our first application is the following.

Corollary 3. Let B € C™*" and C be matrix in C™*" such that C + k1 is invertible
for all integer k > 0. Then we obtain bilateral series with hypergeometric matrix
functions and Gegenbauer matrix polynomials

D CAX) (B), 1), (2)"

n=0

o0
-z 1
=p 1) G (x P Z’E) F(=nl,B;C;y)z". (44)

n=0
Proof. Hypergeometric matrix functions have the representation [21]

-1
P piCey = Y RO
k>0 ’
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where A, B,C are matrices in C"*" such that C + kI is invertible for all integer
k > 0. Setting A = —n I, where n is a natural number, we get
n
n -
F(-nl.B:C:y)=Y_ (k) (—D* (B [(C)] 7" ¥

k=0
Applying (4.3) with ag = (B); [(C)]~" y¥ we obtain (4.4). O
Now, we can obtain bilateral generating function with hypergeometric matrix func-

tions and Gegenbauer matrix polynomials with two-variables. Taking C = 24 in
(4.4) and using the generating function [5]

o0 5 )
- B, BB I I (x*—=1)r
1 A n_ B . .
> (B l@A)T G )" = (1 —xn) P (S S+ 5 PR
n=0
we have
o x—z 1
S (1) F(nl, B:2A: )G ( ',—) o
n=0 1Y P
_ B B I I (x2-1)(y2)?
= (1—xyz) Bexp(Alnp) F(=, =+ =1 A+ = ~—— ,
( yZ) p(Alnp) (2 D) AT
where AB = BA.

For the next corollary we use the binomial transform

) ()= ()

which is a version of the Vandermonde convolution formula (see [33]). Here, p is

any complex number. The generating function for ay = (p Zk) is

(1—1)P1 = Z (P;{l—k)tk.

k=0
According to (4.3) we obtain the following corollary.

Corollary 4. For any complex number p

> p+n > )4 x—z 1

Z( )C,f(x)z”:p_AZ( )C,f(—ﬂ—)z”.
n n p P

n=0 n=0

It is interesting that when p is a positive integer, the right-hand side is finite. So,

we have the closed form evaluation
o0

p+n n A P x—z 1) ,
Z( . )C,,A(x)z =p A';)(H)C,,A(—,—)Z- 4.5)

o o p



522 LEVENT KARGIN AND VELI KURT

We have the equation for Stirling numbers of the second kind extended for com-

plex argument [9]
n

(—1)" n! Z =3 Z (1) ke,
k=0

where 0 # « € C. Using this equation with a; = k* we have the following corollary.
Corollary 5. For any complex number o # 0

o gl (P x—2z 1
donClt=p1) n!c,;‘( ,—)z”.
n=0 n=0 n p p

Setting o« = m € Z U {0} we have {"'} = 0 for m < n. Therefore, we obtain the
closed form evaluation

oo m

—z 1
Yot =p Y " nzc,{‘(x Z,—)z”. (4.6)
n=0 n=0 n p P

We note that taking A = [y],; the expression (4.6) coincides with the formula
which was given by Srivastava ([34]) for the classical Gegenbauer polynomials by
different means.
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