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Abstract. Aktaş et. al. in [3] introduced the generalized Humbert matrix polynomials (G-HMP)
PAn .m;x;y;c/. In this paper we focus on some properties of these matrix polynomials such
as matrix recurrence relations, matrix differential equation and an integral representation. We
introduce generalized forms of operational rules associated with operators corresponding to a
G-HMP expansions. Moreover, we obtain a series transformation formula involving Gegenbauer
matrix polynomials. Then we provide a number of applications.
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1. INTRODUCTION

Classical Humbert polynomials, which are generalized forms of Gegenbauer, Le-
gendre, second kind Chebyshev, Pincherle polynomials, are defined in [16] and stud-
ied by many mathematicians. Through the last two decades, matrix polynomials have
comprised an emerging field of study with important results in both theory and ap-
plications continuing to appear in the literature. Extension of the matrix framework
of the classical families of polynomials are introduced [12,13,18,20,23,29] and sev-
eral properties of the these matrix polynomials are established [4–6,10,11,25,31,37].
Generalized Humbert matrix polynomials are introduced in [3]. Furthermore various
families of bilinear and bilateral generating matrix functions and some relations of
these matrix polynomials are presented [1, 2]. By means of this study, choosing ap-
propriate parameter we get both the known and the unknown properties of second
kind Chebyshev, Legendre, Pincherle, Gegenbauer matrix polynomials which are in-
troduced to date. The organization of this paper is as follows. In Section 2, start-
ing from the generating matrix function, some matrix recurrence relations are given.
Also, these polynomials appear as finite series solutions of m th-order matrix dif-
ferential equation are demonstrated. Section 3 deals with an integral representation
and operational identities for G-HMP. Finally in Section 4, a series transformation
formula for Gegenbauer matrix polynomials is established and some applications are
given.

c 2014 Miskolc University Press



510 LEVENT KARGIN AND VELI KURT

Throughout this paper, the zero matrix and identity matrix will be denoted by 0
and I , respectively. If A is a matrix in Cr�r , its spectrum �.A/ denotes the set of all
eigenvalues of A. Its 2-norm is denoted by kAk and defined by

kAk D sup
x¤0

kAxk2
kxk2

;

where for a vector y in Cr , kyk2 D
�
yT ;y

� 1
2 is the Euclidean norm of y. If f .´/

and g.´/ are holomorphic functions of the complex variable ´, which are defined in
an open set ˝ of the complex plane and A is a matrix in Cr�r such that �.A/�˝,
then from the properties of matrix functional calculus in [15, p. 558], it follows
that f .A/g.A/D g.A/f .A/: For a matrix A in Cr�r the authors give the following
relation due to [21]

g .A/D .1�y/�A D

1X
nD0

.A/n
nŠ

yn; jyj< 1; (1.1)

where .A/n is the Pochhammer symbol or shifted factorial which is defined by

.A/n D A.ACI /.AC2I / : : : .AC .n�1/I / ; n� 1; (1.2)

with .A/0 D I (see [21]): Moreover, from [22] for a matrix A in Cr�r such that
ACnI is invertible for every integer n� 0 we have

.A/n D � .ACnI /�
�1 .A/ ; (1.3)

where � .A/ is the gamma matrix function which is defined by [22]

� .A/D

Z 1
0

e�t tA�Idt: (1.4)

Let A be an arbitrary matrix in Cr�r . Then the Humbert matrix polynomials
PAn .m;x;y;c/ are defined by generating matrix function

1X
nD0

PAn .m;x;y;c/ t
n
D
�
c�mxtCytm

��A
D F .x;y; t;c;A/ ; (1.5)

where jmxt �ytmj < jcj, m is a positive integer and the other parameters are un-
restricted in general (see [3]). Also these matrix polynomials satisfy the following
explicit expression

PAn .m;x;y;c/D

Œ n
m �X
kD0

.�1/k c�.AC.n�mkCk/I/ .A/n�mkCk

kŠ.n�mk/Š
.mx/n�mk yk : (1.6)

It is clear from (1.6) that

PA0 .m;x;y;c/D c
�A; PA1 .m;x;y;c/D

�
c�.ACI/Amx Im> 1

c�.ACI/A.x�y/ ImD 1
;
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PAn .m;x;y;c/D c
�APAn

�
m;
x

c
;
y

c

�
;

and

PAnm .m;0;y;c/D
.�1/n c�.ACnI/ .A/ny

n

nŠ
;

PAn .m;x;0;c/D
c�.ACnI/ .A/n .mx/

n

nŠ
:

For the special case of (1.6), we consider PAn .m;x;y;c/ as follows

PAn .2;x;y;1/D C
A
n .x;y/ ;

P
Œ1�1�1
n

 
2;x

r
A

2
;y;1

!
D Un .x;y;A/ ;

P
Œ 1

2 �1�1
n

 
2;x

r
A

2
;1;1

!
D Pn .x;A/ ;

PAn .3;x;1;1/D h
A
n .x/ ;

where CAn .x;y/: Gegenbauer matrix polynomials with two variables [19],
Un .x;y;A/: second kind Chebyshev matrix polynomials with two variables [7],
Pn .x;A/: Legendre matrix polynomials [36], hAn .x/: Pincherle matrix polynomi-
als [27].

2. RECURRENCE RELATIONS

In this section we obtain matrix recurrence relations and m th-order matrix differ-
ential equation for G-HMP.

Let us get some matrix recurrence relations for G-HMP. Differentiating (1.5) with
respect to c;x;y; t we have

@

@c
F .x;y; t;c;A/D

�A

c�mxtCytm
F .x;y; t;c;A/ ; (2.1)

@

@x
F .x;y; t;c;A/D

t

c�mxtCytm
mAF .x;y; t;c;A/ ; (2.2)

@

@y
F .x;y; t;c;A/D

�tm

c�mxtCytm
AF .x;y; t;c;A/ ; (2.3)

@

@t
F .x;y; t;c;A/D

�
x�ytm�1

�
c�mxtCytm

mAF .x;y; t;c;A/ : (2.4)

We can rewrite (2.2) and (2.3) in the from

mA
�
c�mxtCytm

��.ACI/
D

1X
nD0

@

@x
PAnC1 .m;x;y;c/ t

n; (2.5)
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and

�A
�
c�mxtCytm

��.ACI/
D

1X
nD0

@

@y
PAnCm .m;x;y;c/ t

n; (2.6)

respectively. Applying (1.5) to the left-hand sides of equations (2.5) and (2.6) we
have

1X
nD0

mAPACIn .m;x;y;c/ tn D

1X
nD0

@

@x
PAnC1 .m;x;y;c/ t

n;

1X
nD0

�APACIn .m;x;y;c/ tn D

1X
nD0

@

@y
PAnCm .m;x;y;c/ t

n:

Comparing the coefficients of tn in the above equations we arrive at

@

@x
PAn .m;x;y;c/DmAP

ACI
n�1 .m;x;y;c/ ; n� 1; (2.7)

@

@y
PAn .m;x;y;c/D�AP

ACI
n�m .m;x;y;c/ ; n�m

By iteration we obtain two differential relations for G-HMP

@r

@xr
PAn .m;x;y;c/Dm

r .A/r P
ACrI
n�r .m;x;y;c/ ; (2.8)

@r

@yr
PAn .m;x;y;c/D .�1/

r .A/r P
ACrI
n�mr .m;x;y;c/ : (2.9)

Therefore, we have
@r

@xr
PAn .m;x;y;c/C .�1/

r�1mr
@r

@yr
PAnC.m�1/r .m;x;y;c/D 0: (2.10)

Considering equations (2.1) and (2.2), and applying the same method we get

@r

@xr
PAn .m;x;y;c/D .�1/

rmr
@r

@cr
PAn�r .m;x;y;c/ ; n� r: (2.11)

Also, from equations (2.1) and (2.3) we have

@r

@yr
PAn .m;x;y;c/D

@r

@cr
PAn�mr .m;x;y;c/ ; n�mr: (2.12)

Let us consider the equations (2.2) and (2.4). Then we have�
x�ytm�1

� @
@x
F .x;y; t;c;A/� t

@

@t
F .x;y; t;c;A/D 0:

Using (1.5) we get
1X
nD0

x
@

@x
PAn .m;x;y;c/ t

n
�

1X
nD0

y
@

@x
PAn .m;x;y;c/ t

nCm�1
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D

1X
nD1

nPAn .m;x;y;c/ t
n:

Since @
@x
PA0 .m;x;y;c/D0; comparing the coefficients of tn yields

x
@

@x
PAn .m;x;y;c/�nP

A
n .m;x;y;c/D y

@

@x
PAnC1�m .m;x;y;c/ : (2.13)

Furthermore, from equations (2.2) and (2.4), we get

mA.c�mxtCytm/�A

c�mxtCytm
D

1X
nD0

@

@x
PAn .m;x;y;c/ t

n�1 (2.14)

and �
x�ytm�1

�
mA.c�mxtCytm/�A

.c�mxtCytm/
D

1X
nD1

nPAn .m;x;y;c/ t
n�1; (2.15)

respectively. Thus, multiplying (2.14) by 1� y .m�1/ tm and (2.15) by mt and
substracting them we get

y .m�1/
@

@x
PAnC1�m .m;x;y;c/

D
@

@x
PAnC1 .m;x;y;c/�m.ACnI /P

A
n .m;x;y;c/ : (2.16)

Using (2.13) in the above equation we have
@

@x
PAnC1 .m;x;y;c/D .m�1/x

@

@x
PAn .m;x;y;c/C .mACnI /P

A
n .m;x;y;c/ :

(2.17)
Finally, applying (2.7) in equations (2.16) and (2.17) respectively we obtain two more
matrix recurrence relations

m.ACnI /PAn .m;x;y;c/ (2.18)

DmAPACIn .m;x;y;c/�m.m�1/AyPACIn�m .m;x;y;c/ ; n�m;

.mACnI /PAn .m;x;y;c/ (2.19)

DmAPACIn .m;x;y;c/�m.m�1/AxPACIn�1 .m;x;y;c/ ; n� 1:

From (2.4) we get�
c�mxtCytm

� @
@t
F .x;y; t;c;A/D

�
x�ytm�1

�
mAF .x;y; t;c;A/ :

Using (1.5) in the above equation we obtain

1X
nD1

�
c�mxtCytm

�
nPAn .m;x;y;c/ t

n�1
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D

1X
nD0

�
x�ytm�1

�
mAPAn .m;x;y;c/ t

n:

By making appropriate changes of indices and comparing the coefficients of tn; we
obtain a three-term matrix recurrence relation for G-HMP

c .nC1/PAnC1 .m;x;y;c/�mx .ACnI /P
A
n .m;x;y;c/ (2.20)

Cy ŒmAC .n�mC1/I �PAnC1�m .m;x;y;c/D 0; n�m�1:

Summary of these results is given in the following theorem.

Theorem 1. Let A be an arbitrary matrix in Cr�r and m be a positive integer.
Then G-HMP satisfy the differential relation (2.10) and recurrence relations (2.18),
(2.19) and (2.20).

Before concluding this section we discuss the matrix differential equation of G-
HMP. Let the sequence .fr/nrD0 be given by fr D f .r/ ; where

f .t/D .n� t /

�
.n� t /I Cm.AC tI /

m

�
m�1

:

Also we introduce two standard difference operators: the forward difference operator
� and the displacement (or shift) operator E are given as

�fr D frC1�fr and Efr D frC1

and their powers are given by

�0fr D fr ; �kfr D�
�
�k�1fr

�
; Ekfr D frCk :

Theorem 2. Let A be an arbitrary matrix in Cr�r and m be a positive integer.
Then G-HMP are a particular solution of them th-order matrix differential equation
in the form:

cm�1y
@m

@xm
PAn .m;x;y;c/C

mX
sD0

asx
s @

s

@xs
PAn .m;x;y;c/D 0: (2.21)

where the coefficients as are given by

as D
mm�1

sŠ
�sf0: (2.22)

Proof. Let nDmpCq, where p D
�
n
m

�
and 0 � q �m�1: Differentiating (1.6)

with respect to x, we get

xs
@s

@xs
PAn .m;x;y;c/D

Œn�s
m �X
kD0

.�1/k c�.AC.n�mkCk/I/ .A/n�.m�1/k

kŠ.n�mk� s/Š
.mx/n�mk yk;

and
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@m

@xm
PAn .m;x;y;c/

D

p�1X
kD0

.�1/k c�.AC.n�mkCk/I/ .A/n�.m�1/km
m

kŠ.n�m.kC1//Š
.mx/n�m.kC1/yk;

where
�
n�s
m

�
D

�
p Is � q

p�1 Is > q
: Substituting these expressions in the differential

equation (2.21) and comparing the corresponding coefficients, we obtain

mX
sD0

�
n�mk
s

�
sŠas Dm

mk .AC .n� .m�1/k/I /m�1 (2.23)

where k D 0;1;2; � � �p�1; and

qX
sD0

�
n�mp
s

�
sŠas Dm

mp .AC .n� .m�1/k/I /m�1 : (2.24)

(2.24) can be written as
qX
sD0

�
q
s

�
mm�1�sf0 Dm

m�1 .n�q/
�
AC

�
qC

n�q

m

�
I
�
m�1

:

This equality holds because it is equivalent to

.1C�/q f0 DE
qf0 D fq D f .q/ :

For k D 0;1;2; � � �p�1;(2.23) can be written in the form

mX
sD0

�
n�mk
s

�
�sf0 D fn�mk : (2.25)

Since f .t/ is a polynomial of degreem, the last equality holds and (2.25) is a forward
difference formula for f at the point t D n�mk: Thus, the proof is completed. �

Corollary 1. Pincherle matrix polynomials are a solution of the third-order matrix
differential equation in the form:�

1�
32

27
x3
�
d3

dx3
hAn .x/�

16

9
.2AC3I /x2

d2

dx2
hAn .x/

�
8

27
.3n.2AC .nC1/I /� .3AC2I /.3AC5I //x

d

dx
hAn .x/

C
8

27
n.3ACnI /.3AC .nC1/I /hAn .x/D 0:
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3. AN INTEGRAL REPRESENTATION AND ITS APPLICATIONS

Firstly, let us discuss the extension of classical Lahiri generalized Hermite poly-
nomials (G-LHP) which are specified by the series definition

Hn;m .x;y/D nŠ

Œ n
m �X
kD0

.�1/k yk .mx/n�mk

kŠ.n�mk/Š
(3.1)

and by the generating function
1X
nD0

Hn;m .x;y/
tn

nŠ
D exp

�
mxt �ytm

�
: (3.2)

It is easy to show that

Hn;m .x;y/D y
n
mHn

�
x

m
p
y

�
and Hn;m .x;1/DHn;m .x/ ;

where Hn;m .x/ is the G-LHP given in [30]. In particular, for mD 2; Hn;2 .x;1/D
Hn .x/ ; where Hn .x/ denotes the ordinary Hermite polynomials [35]. Moreover,
Hn;m .x;y/ D gmn .mx;�y/; where gmn .x;y/ is the Gould–Hopper generalized
Hermite polynomials (G-HGHP) [17].

Using the summation formula for G-HGHP in [28, Theorem 2.1 p. 1538] G-LHP
satisfy

HnCs;m .w;y/D

n;sX
k;rD0

 
n

k

! 
s

r

!
mkCr .w�x/kCrHnCs�k�r;m .x;y/ : (3.3)

In the following theorem we give an integral representation for G-HMP including
G-LHP.

Theorem 3. Let A be a matrix in Cr�r such that Re.´/ > 0 for all ´ 2 �.A/, m
be a positive integer and c be a complex number such that Re.c/ > 0. Then G-HMP
have the integral representation

PAn .m;x;y;c/D
� �1 .A/

nŠ

Z 1
0

e�ct tAC.n�1/IHn;m

�
x;

y

tm�1

�
dt: (3.4)

Proof. Using (3.1) in the right-hand side of (3.4) we have

� �1 .A/

nŠ

Z 1
0

e�ct tAC.n�1/IHn;m

�
x;

y

tm�1

�
dt

D

Œ n
m �X
kD0

.�1/k c�.AC.n�mkCk/I/ .mx/n�mk yk

kŠ.n�mk/Š
� �1 .A/� .AC .n�mkCk// :

From (1.3) we get the proof. �
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As an application of this theorem we give the following proposition for G-HMP.

Proposition 1. G-HMP satisfy the summation formula

PAnCs .m;w;y;c/D

n;sX
k;rD0

�
n
k

��
s
r

�
.A/kCrm

kCr .w�x/kCr�
nCs
kCr

�
.kC r/Š

P
AC.kCr/I

nCs�k�r
.m;x;y;c/ :

(3.5)

Proof. Replacing n with nC s in (3.4) and using the summation formula (3.3) we
deduce

PAnCs .m;w;y;c/D

n;sX
k;rD0

.�1/kCr
�
n
k

��
s
r

�
.nC s�k� r/ŠmkCr .w�x/kCr

.nC s/Š

@kCr

@ckCr
PAnCs�k�r .m;x;y;c/ :

From (2.8) we obtain the result. �

Taking k D 0 in assertion (3.5) of Proposition 1, we deduce the following con-
sequence of Proposition 1.

Corollary 2. The following summation formula for the G-HMP holds

PAn .m;w;y;c/D

nX
kD0

.A/km
k .w�x/k

kŠ
PACkI
n�k

.m;x;y;c/ : (3.6)

Remark 1. Replacing w by wCx in (3.6), we obtain

PAn .m;xCw;y;c/D

nX
kD0

.A/k .mw/
k

kŠ
PACkI
n�k

.m;x;y;c/ :

Now, we try to understand more deeply the role played by the integral transform
connecting G-LHP and G-HMP. It is obvious that bothHn;m .x;y/ andPAn .m;x;y;c/
reduce to ordinary form for y D 1:

It is easy to find that

PAn .m;x;c/D
� �1 .A/

nŠ

Z 1
0

e�ct tAC.
n
m
�1/IHn;m

�
xt
m
p
t

�
dt: (3.7)

Using the fact that

exp
�
�x

d

dx

�
f .x/D f .x exp�/;

where f .x/ is an appropriate function, we have

PAn .m;x;c/D
� �1 .A/

nŠ

Z 1
0

e�ct tAC.
n
m
C.1� 1

m/x
d

dx
�1/IdtHn;m .x/ :

From (1.4) we acquire the following theorem.
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Theorem 4. Let A be a matrix in Cr�r such that Re.´/ > 0 for all ´ 2 �.A/, m
be a positive integer and c be a complex number such that Re.c/ > 0. Then G-HMP
satisfy

� .A/nŠPAn .m;x;c/D exp
�
�bQ lnc

�
�
�bQ�Hn;m .x/ ; (3.8)

where bQD hAC� n
m
C
�
1� 1

m

�
x d
dx

�
I
i
:

We conclude this section giving another representation for the G-HMP.

Theorem 5. Let A be an arbitrary matrix in Cr�r and m be a positive integer.
Then G-HMP satisfy the identity

PAn .m;x;y;c/D
.A/n
nŠ

exp
�
y .�m/�m bD�.m�1/c

@m

@xm

�
c�.ACnI/ .mx/n ; (3.9)

where bD�1c denotes the inverse derivative operator (see [14] for details).

Proof. Identities (2.11) and (2.12) allow us to conclude that

.�m/m
@m

@cm�1@y
PAn .m;x;y;c/D

@m

@xm
PAn .m;x;y;c/ :

The last identity and the fact that

PAn .m;x;0;c/D
.A/n
nŠ

c�.ACnI/ .mx/n ;

give the proof. �

We note that takingAD Œ1�1�1,mD 2 and replacing xI by x
q
A
2
; the expressions

(3.8) and (3.9) coincide with the formulas which was given in [24] for the second kind
Chebyshev matrix polynomials.

4. SOME RESULTS FOR GEGENBAUER MATRIX POLYNOMIALS

In this section we deal with the integral representation for Gegenbauer matrix poly-
nomials including classical Hermite polynomials. Using this representation we give
a generating function of Gegenbauer matrix polynomials with two-variables. As a
main theorem of this section we obtain a series transformation formula involving
Gegenbauer matrix polynomials. We then provide a number of applications using
appropriate binomial transformations.

Taking c D 1, mD 2 and replacing n with nCp in (3.4) we deduce

CAnCp .x;y/D
� �1 .A/

.nCp/Š

Z 1
0

e�t tAC.nCp�1/IHnCp

�
x;
y

t

�
dt;

Multiplying both hand sides of above equation by .nCp/Š
nŠpŠ

´n and summing over n
from zero to infinity, we get
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1X
nD0

.nCp/Š

nŠpŠ
CAnCp .x;y/´

n

D
� �1 .A/

pŠ

Z 1
0

e�t tAC.p�1/I
1X
nD0

HnCp

�
x;
y

t

� .´t/n
nŠ

dt:

Using identity [32]
1X
nD0

HnCp .x;y/
´n

nŠ
D exp

�
2x´�y´2

�
Hp .x�y´;y/ ; (4.1)

we have
1X
nD0

.nCp/Š

nŠpŠ
CAnCp .x;y/´

n

D
� �1 .A/

pŠ

Z 1
0

e�t.1�2x´Cy´
2/tAC.p�1/IHp

�
x�y´;

y

t

�
dt:

This gives the following theorem for Gegenbauer matrix polynomials with two-
variables.

Theorem 6. Let A be a matrix in Cr�r such that Re.´/ > 0 for all ´ 2 �.A/, p
be a positive integer. Then Gegenbauer matrix polynomials with two-variables have
the generating function

1X
nD0

 
nCp

p

!
CAnCp .x;y/´

n (4.2)

D
�
1�2x´Cy´2

��.ACpI/
CAp

�
x�y´;

�
1�2x´Cy´2

�
y
�

where
ˇ̌
2x´�y´2

ˇ̌
< 1:

We note that for the case y D 1 the expression (4.2) coincides with the formula
which was proved by Khammash ([26]) for the Gegenbauer matrix polynomials.

Before giving the main theorem of this section we need the following lemma.

Lemma 1 ([8, p. 386, Theorem 1.1]). The following series transformation formula
holds

1X
nD0

anHn .x/
tn

nŠ
D e2xt�t

2
1X
nD0

.�1/nHn .x� t /
tn

nŠ

(
nX
kD0

 
n

k

!
.�1/k ak

)
;

where

f .t/D

1X
kD0

akt
k;

is an arbitrary function, analytical in a neighborhood of zero.
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Theorem 7. LetA be a matrix in Cr�r such that Re.´/ > 0 for all ´2 �.A/: Then
Gegenbauer matrix polynomials have the series transformation formula

1X
nD0

anC
A
n .x/´

n
D ��A

1X
nD0

.�1/nCAn

�
x�´

�
;
1

�

�
´n

(
nX
kD0

 
n

k

!
.�1/k ak

)
;

(4.3)
where ak are the Maclauren coefficients of an arbitrary function f .t/ ; �D 1�2x´C
y´2 and j1��j< 1:

Proof. For c D 1 and mD 2;(3.7) reduce to

CAn .x/D
� �1 .A/

nŠ

Z 1
0

e�t tAC.
n
2
�1/IHn

�
x
p
t
�
dt:

Multiplying both hand sides of the above equation by an´n and summing over n from
zero to infinity, we get

1X
nD0

anC
A
n .x/´

n
D

1X
nD0

.�1/nCAn .x�´;�/´
n

(
nX
kD0

 
n

k

!
.�1/k ak

)
;

Using this equation and

CAn .x;c/D c
�ACAn

�
x

c
;
1

c

�
;

for c D 1�2x´Cy´2; we get the proof. �

Note that CAn
�
x�´
�
; 1
�

�
are Gegenbauer matrix polynomials with two-variables.

Our first application is the following.

Corollary 3. LetB 2Cr�r andC be matrix in Cr�r such thatCCkI is invertible
for all integer k � 0: Then we obtain bilateral series with hypergeometric matrix
functions and Gegenbauer matrix polynomials

1X
nD0

CAn .x/.B/n Œ.C /n�
�1 .´y/n

D ��A
1X
nD0

.�1/nCAn

�
x�´

�
;
1

�

�
F.�nI;BIC Iy/´n: (4.4)

Proof. Hypergeometric matrix functions have the representation [21]

F.A;BIC Iy/D
X
k�0

.A/k .B/k Œ.C /k�
�1

kŠ
yk jyj< 1;
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where A;B;C are matrices in Cr�r such that C C kI is invertible for all integer
k � 0: Setting AD�nI , where n is a natural number, we get

F.�nI;BIC Iy/D

nX
kD0

 
n

k

!
.�1/k .B/k Œ.C /k�

�1yk

Applying (4.3) with ak D .B/k Œ.C /k�
�1yk we obtain (4.4). �

Now, we can obtain bilateral generating function with hypergeometric matrix func-
tions and Gegenbauer matrix polynomials with two-variables. Taking C D 2A in
(4.4) and using the generating function [5]
1X
nD0

.B/n Œ.2A/n�
�1CAn .x/r

n
D .1�xr/�B F.

B

2
;
B

2
C
I

2
IAC

I

2
I

�
x2�1

�
r2

.1�xr/2
/;

we have
1X
nD0

.�1/nF.�nI;BI2AIy/CAn

�
x�´

�
;
1

�

�
´n

D .1�xy´/�B exp.A ln�/F.
B

2
;
B

2
C
I

2
IAC

I

2
I

�
x2�1

�
.y´/2

.1�xy´/2
/;

where AB D BA:
For the next corollary we use the binomial transform

nX
kD0

 
n

k

!
.�1/k

 
pCk

k

!
D .�1/n

 
p

n

!
which is a version of the Vandermonde convolution formula (see [33]). Here, p is
any complex number. The generating function for ak D

�pCk
k

�
is

.1� t /�p�1 D

1X
kD0

 
pCk

k

!
tk :

According to (4.3) we obtain the following corollary.

Corollary 4. For any complex number p
1X
nD0

 
pCn

n

!
CAn .x/´

n
D ��A

1X
nD0

 
p

n

!
CAn

�
x�´

�
;
1

�

�
´n:

It is interesting that when p is a positive integer, the right-hand side is finite. So,
we have the closed form evaluation

1X
nD0

 
pCn

n

!
CAn .x/´

n
D ��A

pX
nD0

 
p

n

!
CAn

�
x�´

�
;
1

�

�
´n: (4.5)
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We have the equation for Stirling numbers of the second kind extended for com-
plex argument [9]

.�1/nnŠ

(
˛

n

)
D

nX
kD0

 
n

k

!
.�1/k k˛;

where 0¤ ˛ 2C: Using this equation with ak D k˛ we have the following corollary.

Corollary 5. For any complex number ˛ ¤ 0
1X
nD0

n˛CAn .x/´
n
D ��A

1X
nD0

(
˛

n

)
nŠCAn

�
x�´

�
;
1

�

�
´n:

Setting ˛ D m 2 Z[f0g we have
˚
m
n

	
D 0 for m < n: Therefore, we obtain the

closed form evaluation
1X
nD0

n˛CAn .x/´
n
D ��A

mX
nD0

(
m

n

)
nŠCAn

�
x�´

�
;
1

�

�
´n: (4.6)

We note that taking A D Œ�1�1 the expression (4.6) coincides with the formula
which was given by Srivastava ([34]) for the classical Gegenbauer polynomials by
different means.
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