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Abstract. The main object of this investigation is to define a multivariable matrix generalization
of Gould-Hopper polynomials and to reveal some relations such as matrix generating function,
matrix recurrence relation, matrix differential equation for them. Furthermore, more general
families of bilinear and bilateral matrix generating functions are obtained for these matrix poly-
nomials.
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1. INTRODUCTION

Matrix polynomials and special matrix functions, which have many applications
on statistics, group representation theory, scattering theory, interpolation and quadrat-
ure, splines and medical imaging, comprise an emerging field of study with important
results in literature .

In the recent papers, the matrix generalizations of many polynomials were intro-
duced by many authors and their various properties were given from the scalar case,
see for example [1, 3–6, 9–13].

Throughout this paper, for a matrix A in CN�N , its spectrum �.A/ denotes the set
of all eigenvalues of A. If f .´/ and g.´/ are holomorphic functions of the complex
variable ´, which are defined in an open set˝ of the complex plane and A is a matrix
in CN�N with �.A/�˝, then from the properties of the matrix functional calculus
in [7], it follows that:

f .A/g.A/D g.A/f .A/:

If D is the complex plane cut along the negative real axis and log.´/ denotes the
principle logarithm of ´, then ´1=2 represents exp..1=2/log.´//. If A is a matrix in
CN�N with �.A/ �D, then A1=2 D

p
A denotes the image by ´1=2 of the matrix

functional calculus acting on the matrix A.
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Let A 2 CN�N so that Re.´/ > 0; 8´ 2 �.A/; then we say that A is a positive
stable matrix in CN�N . Hermite matrix polynomials Hn.x;A/ are defined by [9]:

Hn.x;A/D nŠ

Œn
2 �X

kD0

.�1/k

kŠ.n�2k/Š
.x
p
2A/n�2k ; n� 0

and satisfy the three term matrix recurrence relation:

cHn.x;A/D xI
p
2AHn�1.x;A/�2.n�1/Hn�2.x;A/I n� 1

H�1.x;A/D �; H0.x;A/D I

where I is unit matrix and � is zero matrix in CN�N : Also, for these matrix polyno-
mials, it follows

d

dx
Hn.x;A/D n

p
2AHn�1 .x;A/ ; n� 1

exp
�
xt
p
2A� t2I

�
D

1X
nD0

1

nŠ
Hn.x;A/t

n; jt j<C1.

In this paper, we deal with matrix version of the multivariable extension of Gould-
Hopper polynomials which are generalization of Hermite polynomials.

We organize the paper as follows:
In Section 2, we construct matrix extension of Gould-Hopper polynomials and give

some matrix recurrence relations and matrix differential equation for these polynomi-
als. In Section 3, multivariable generalization of the matrix polynomials presented in
Section 2 is defined and their properties are examined. In the last section, bilinear and
bilateral generating matrix functions are derived for the multivariable Gould-Hopper
matrix polynomials and some applications of our results are presented.

We recall that the Gould–Hopper polynomials gmn .x;y/ are specified by the gen-
erating function

exp.xtCytm/D
1X
nD0

gmn .x;y/
tn

nŠ
(1.1)

where m is positive integer [8] (see also [14]).
In the special casemD 2, we have g2n .x;y/DHn .x;y/ whereHn .x;y/ denotes

the two-variable Hermite–Kampé de Fériet polynomials generated by (see [2])

exp.xtCyt2/D
1X
nD0

Hn .x;y/
tn

nŠ
: (1.2)
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Furhermore, we note that Hn .�x;�1/DHn;m;� .x/ ;where Hn;m;� .x/ is the gener-
alized Hermite polynomials defined by Lahiri [15] and they are generated by

exp.�xt � tm/D
1X
nD0

Hn;m;� .x/
tn

nŠ
: (1.3)

From the equations (1.1), (1.2) and (1.3) we have the special cases g2n .2x;�1/D
Hn .x/ ; Hn .2x;�1/DHn .x/ andHn;2;2 .x/DHn .x/ ; respectively whereHn .x/
denotes Hermite polynomials.

2. MATRIX GENERALIZATION OF GOULD-HOPPER POLYNOMIALS

We define a matrix version of Gould-Hopper polynomials as follows:
1X
nD0

gmn .x;yIA;B/
tn

nŠ
DG.x;y; t/

D exp.xt
p
2A/exp.Bytm/ (2.1)

where A;B are matrices in CN�N satisfying that A is a positive stable and m is
positive integer.

By using (2.1) and Taylor series at t D 0; we can write

1X
nD0

gmn .x;yIA;B/
tn

nŠ
D

0B@ 1X
nD0

�
xt
p
2A
�n

nŠ

1CA 1X
kD0

.Bytm/k

kŠ

!

D

1X
nD0

Œ n
m �X
kD0

�p
2A
�n�mk

.B/k

.n�mk/Š kŠ
xn�mkyktn:

Then comparing coefficients of tn; we have explicit representation for matrix version
of Gould-Hopper polynomials as:

gmn .x;yIA;B/D

Œ n
m �X
kD0

nŠ
�p

2A
�n�mk

.B/k

.n�mk/Š kŠ
xn�mkyk : (2.2)

Now, we consider some special cases as follows.

Remark 1. The caseB D I 2CN�N in (2.1) gives the matrix polynomials defined
by [16].

Remark 2. If we take mD 2 in (2.1), we have matrix version of the two-variable
Hermite–Kampé de Fériet polynomials Hn .x;y/ which are generated by (1.2).

Remark 3. Setting �x instead of x and y D �1 in (2.1), we get matrix extension
of the generalized Hermite polynomials Hn;m;� .x/ specified by (1.3).
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Remark 4. If we take mD 2;y D�1 and B D I 2CN�N in (2.1), we have

g2n.x;�1IA;I /D

Œn=2�X
kD0

nŠ .�1/k
�
x
p
2A
�n�2k

.n�2k/Š kŠ

DHn.x;A/

where Hn.x;A/ is Hermite matrix polynomial given by [9].

Remark 5. For x! .�x/ in (2.2), we get

gmn .�x;yIA;B/D .�1/
ngmn .x;.�1/

myIA;B/:

If we write x D 0 in (2.1), we have
1X
nD0

gmn .0;yIA;B/
tn

nŠ
D

1X
nD0

.Bytm/n

nŠ
: (2.3)

On the other hand, we can write
1X
nD0

gmn .0;yIA;B/
tn

nŠ
D

1X
nD0

gmnm.0;yIA;B/
tnm

.nm/Š

C

1X
nD0

gmnmC1.0;yIA;B/
tnmC1

.nmC1/Š

C :::C

1X
nD0

gmnmCm�1.0;yIA;B/
tnmCm�1

.nmCm�1/Š
: (2.4)

Using (2.3) and (2.4), we have

gmnm.0;yIA;B/D
.By/n .mn/Š

nŠ
(2.5)

gmnmCk.0;yIA;B/D � I k D 1;2; :::;m�1:

Remark 6. For mD 2;y D�1 and B D I in (2.5), we have

g22n.0;�1IA;I /DH2n.0;A/D
.�1/n .2n/ŠI

nŠ

and
g22nC1.0;�1IA;I /DH2nC1.0;A/D �:

If we differentiate (2.1) with respect to x; matrix polynomials gmn .x;yIA;B/ sat-
isfy recurrence relations as follows:

@

@x
gmn .x;yIA;B/D n

p
2Agmn�1.x;yIA;B/I n� 1
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@k

@xk
gmn .x;yIA;B/D n.n�1/ :::.n�kC1/

�p
2A
�k
� gmn�k.x;yIA;B/I n� k:

(2.6)

Similarly, differentiating (2.1) with respect to y; the following holds for matrix poly-
nomials gmn .x;yIA;B/

@

@y
gmn .x;yIA;B/D

nŠ

.n�m/Š
gmn�m.x;yIA;B/B I n�m: (2.7)

By using the derivative of the generating function (2.1) with respect to t; we can give
next relation

gmnC1.x;yIA;B/�
p
2Axgmn .x;yIA;B/

D
my nŠ

.n�mC1/Š
gmn�mC1.x;yIA;B/BI n�m�1:

On the other hand, from (2.1) we get
@

@x
G.x;y; t/D t

p
2AG.x;y; t/

@

@t
G.x;y; t/D x

p
2AG.x;y; t/CG.x;y; t/mBytm�1

9>>>=>>>; (2.8)

from which, we obtain that

t
p
2A

@

@t
G.x;y; t/D x

p
2A

@

@x
G.x;y; t/C

@

@x
G.x;y; t/mBytm�1:

In view of (2.1) and the last relation, we derive

n
p
2Agmn .x;yIA;B/�x

p
2A

@

@x
gmn .x;yIA;B/

Dmy
@

@x
gmn�mC1.x;yIA;B/

nŠ

.n�mC1/Š
BI n�m�1: (2.9)

Now, let’s find matrix differential equation for the Gould-Hopper matrix polyno-
mials. We start with writing nC1 instead of n in (2.7). Then we have

@

@y
gmnC1.x;yIA;B/D

.nC1/Š

.nC1�m/Š
gmnC1�m.x;yIA;B/B: (2.10)

Then differentiating (2.10) with respect to x and then using (2.6); we get

.nC1/
p
2A

@

@y
gmn .x;yIA;B/D

.nC1/Š

.nC1�m/Š

@

@x
gmnC1�m.x;yIA;B/B: (2.11)

If we write (2.11) in (2.9), we arrive at the following matrix differential equation

ngmn .x;yIA;B/D x
@

@x
gmn .x;yIA;B/Cmy

@

@y
gmn .x;yIA;B/:
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3. MULTIVARIABLE EXTENSION OF GOULD-HOPPER MATRIX POLYNOMIALS

The multivariable matrix extension of the Gould-Hopper polynomials given by
(2.1) is defined by the following generating function

Gmn .X,Y;T,A,B/ (3.1)

DGm1
n1

�
x1;y1I t1;A1;B1

�
Gm2
n2
.x2;y2I t2;A2;B2/ :::G

mr
nr
.xr ;yr I tr ;Ar ;Br/

D

rY
iD1

n
exp.xi ti

p
2Ai /exp.Biyi t

mi

i /
o

D

1X
n1;:::;nrD0

gmn .X,Y;A,B/
t
n1

1 :::t
nr
r

n1Š:::nr Š

where XD .x1; :::;xr/, YD .y1; :::;yr/ ; mD.m1; :::;mr/ ; nD.n1; :::;nr/ ; jnjDn1C
::: C nr .n1; :::;nr 2N0/ ;m1; :::;mr 2 N; TD.t1; :::; tr/ ;AD.A1; :::;Ar/ ;
BD.B1; :::;Br/ and Ai ;Bi are matrices in CN�N satisfying that Ai is positive
stable for 1� i � r:

For the multivariable Gould-Hopper matrix polynomials gmn .X,Y;T,A,B/ ; explicit
form is

gmn .X,Y;A,B/D
Œn1=m1;:::;nr=mr �X

k1;:::;krD0

n1Š.
p
2A1/

n1�m1k1B
k1

1 :::nr Š.
p
2Ar/

nr�mrkrB
kr
r

.n1�m1k1/Šk1Š:::.nr �mrkr/Škr Š

x
n1�m1k1

1 y
k1

1 :::x
nr�mrkr
r ykr

r :

Similar to the relations (2.6) and (2.7), if we differentiate (3.1) with respect to the
variables xi and yi .i D 1;2; :::; r/; we can easily obtain

@

@xi
gmn .X,Y;A,B/

D ni
p
2Aig

m
n1;n2;:::ni�1;ni�1;niC1;:::;nr

.X,Y;A,B/ I ni � 1; (3.2)

@k

@xki

gmn .X,Y;A,B/

D .ni �kC1/k

�p
2Ai

�k
gmn1;n2;:::ni�1;ni�k;niC1;:::;nr

.X,Y;A,B/ I ni � k;

@

@yi
gmn .X,Y;A,B/

D
ni Š

.ni �mi /Š
gmn1;n2;:::ni�1;ni�mi ;niC1;:::;nr

.X,Y;A,B/ I ni �mi ; (3.3)
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@r

@x1:::@xr
gmn .X,Y;A,B/D n1

p
2A1:::nr

p
2Arg

m
n1�1;n2�1;:::;nr�1

.X,Y;A,B/ ;

for all ni � 1; i D 1;2; :::; r and

@r

@y1:::@yr
gmn .X,Y;A,B/

D
n1Š:::nr Š

.n1�m1/Š:::.nr �mr/Š
gmn1�m1;n2�m2;:::;nr�mr

.X,Y;A,B/ ;

for all ni � mi ; i D 1;2; :::; r where all of the matrices are commutative with each
other.

Using the same method in (2.8), we get

ni
p
2Aig

m
n .X,Y;A,B/�

p
2Aixi

@

@xi
gmn .X,Y;A,B/

Dmiyi
ni Š

.ni �mi C1/Š

@

@xi
gmn1;n2;:::ni�1;ni�miC1;niC1;:::;nr

.X,Y;A,B/Bi (3.4)

for ni �mi �1 where all of the matrices are commutative with each other.
In view of the equations (3.2), (3.3) and (3.4), we obtain the following matrix

differential equation for multivariable Gould-Hopper matrix polynomials
rX
iD1

nig
m
n .X,Y;A,B/D

rX
iD1

xi
@

@xi
gmn .X,Y;A,B/C

rX
iD1

miyi
@

@yi
gmn .X,Y;A,B/

where all of the matrices are commutative with each other.

4. BILINEAR AND BILATERAL GENERATING MATRIX FUNCTIONS FOR
MULTIVARIABLE GOULD-HOPPER MATRIX POLYNOMIALS

In order to obtain several families of bilinear and bilateral generating matrix func-
tions for multivariable Gould-Hopper matrix polynomials, we first state our result as
the following.

Theorem 1. For a non-vanishing function ˝�.´1; :::;´s / of s complex variables
´1; :::;´s .s 2N/ and of complex order �, let

��;�.´1; :::;´sI�/ WD

1X
kD0

ak˝�C�k.´1; :::;´s /�
k
I .ak ¤ 0; �;� 2C/

and

�mn;p;�;�.X;YI´1; :::;´sI�/ WD

Œn1=p�X
kD0

ak

.n1�pk/Šn2Š:::nr Š
gmn1�pk;n2;:::;nr

.X,Y;A,B/

�˝�C�k.´1; :::;´s /�
k (4.1)
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where mD.m1; :::;mr/ ; nD.n1; :::;nr/ ; X D .x1; :::;xr/ ;Y D .y1; :::;yr/ ;p 2 N
and (as usual) Œ˛� represents the greatest integer in ˛ 2 R: Then we have

1X
n1;:::;nrD0

�mn;p;�;�

 
X;YI´1; :::;´sI

�

t
p
1

!
t
n1

1 t
n2

2 :::t
nr
r

D

rY
iD1

n
exp.xi ti

p
2Ai /exp.Biyi t

mi

i /
o
��;�.´1; :::;´sI�/ (4.2)

provided that each member of .4:2/ exists:

Proof. For convenience, let S denote the left hand-side of the assertion (4.2) of
Theorem 1. Then, upon substituting for the polynomials�mn;p;�;�

�
X;YI´1; :::;´sI

�

t
p
1

�
from the definition (4.1) into the left-hand side of (4.2), we obtain

S D

1X
n1;:::;nrD0

Œn1=p�X
kD0

ak
gm
n1�pk;n2;:::;nr

.X,Y;A,B/

.n1�pk/Šn2Š:::nr Š

�˝�C�k.´1; :::;´s/�
kt
n1�pk
1 t

n2

2 :::t
nr
r : (4.3)

Upon inverting the order of summation in (4.3), if we replace n1 by n1Cpk; we can
write

S D

1X
n1;:::;nrD0

1X
kD0

ak
gmn .X,Y;A,B/
n1Šn2Š:::nr Š

˝�C�k.´1; :::;´s /�
kt
n1

1 :::t
nr
r

D

0@ 1X
n1;:::;nrD0

gmn .X,Y;A,B/
n1Šn2Š:::nr Š

t
n1

1 :::t
nr
r

1A 1X
kD0

ak˝�C�k.´1; :::;´s /�
k

!

D

rY
iD1

n
exp.xi ti

p
2Ai /exp.Biyi t

mi

i /
o
��;�.´1; :::;´sI�/:

The proof is completed. �

In order to give some applications of Theorem 1, we consider the expresses of
the multivariable function ˝�C�k.y1; :::;ys / .k 2 N0 ; s 2 N/ in terms of simpler
function of one and more variables.
First of all, let’s get sD 2r and˝�C�k.u1; :::;ur Iv1; :::;vr/DP

.C1;:::;Cr /

�C�k
(L,U,V,D)

in Theorem 1, whereP .C1;:::;Cr /

�C�k
(L,U,V,D) denotes the multivariable matrix Humbert

polynomials generated by [1]

1X
kD0

P
.C1;:::;Cr /

k
(L,U,V,D)tk
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D

rY
iD1

.Di � liui tCvi t
li /�Ci

�ˇ̌̌
liui t �vi t

li
ˇ̌̌
< jDi j I i D 1;2; :::; r

�
(4.4)

where Ci 2 CN�N ;UD .u1; :::;ur/, VD .v1; :::;vr/ ; DD .D1; :::;Dr/IDi¤0; i D
1;2; :::; r; LD .l1; :::; lr/ and li .i D 1;2; :::; r/ is positive integer.

Then we obtain the following class of bilateral generating functions for the
gmn .X,Y;A,B/ and P .C1;:::;Cr /

�C�k
(L,U,V,D).

Corollary 1. If �L
�;�.U,VI�/ WD

1P
kD0

akP
.C1;:::;Cr /

�C�k
(L,U,V,D)�k where

.ak ¤ 0; �;� 2N0/I and

�m,L
n;p;�;�.X,Y;U,VI�/ WD

Œn1=p�X
kD0

ak
gm
n1�pk;n2;:::;nr

.X,Y;A,B/

.n1�pk/Šn2Š:::nr Š
P
.C1;:::;Cr /

�C�k
(L,U,V,D)�k

where n;p 2N: Then we have

1X
n1;:::;nrD0

�m,L
n;p;�;�

 
X,Y;U,VI

�

t
p
1

!
t
n1

1 :::t
nr
r

D

rY
iD1

n
exp.xi ti

p
2Ai /exp.Biyi t

mi

i /
o
�L
�;�.U,VI�/ (4.5)

provided that each member of .4:5/ exists.

Remark 7. Using the generating relation .4:4/ and taking ak D 1; �D 0; � D 1;
we have

1X
n1;:::;nrD0

Œn1=p�X
kD0

gm
n1�pk;n2;:::;nr

.X,Y;A,B/

.n1�pk/Šn2Š:::nr Š
P
.C1;:::;Cr /

k
(L,U,V,D)�ktn1�pk

1 t
n2

2 :::t
nr
r

D

rY
iD1

n
exp.xi ti

p
2Ai /exp.Biyi t

mi

i /
o rY
iD1

n
.Di � liui�Cvi�

li /�Ci

o
:

Now, setting s D 2 and ˝�C�k.´1;´2/D gl�C�k.´1;´2IC;D/ in Theorem 1, we
obtain the following class of bilinear generating function for the matrix version of the
Gould-Hopper polynomials.

Corollary 2. If �l�;�.´1;´2I�/ WD
1P
kD0

akg
l
�C�k

.´1;´2IC;D/�
k where .ak ¤

0; �;� 2N0/I and

�m;ln;p;�;�.X,Y;´1;´2I�/ WD
Œn1=p�X
kD0

ak
gm
n1�pk;n2;:::;nr

.X,Y;A,B/

.n1�pk/Šn2Š:::nr Š
gl�C�k.´1;´2IC;D/�

k
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where n1;p 2N: Then we have

1X
n1;:::;nrD0

�m;ln;p;�;�

 
X,Y;´1;´2I

�

t
p
1

!
t
n1

1 :::t
nr
r

D

rY
iD1

n
exp.xi ti

p
2Ai /exp.Biyi t

mi

i /
o
�l�;�.´1;´2I�/ (4.6)

provided that each member of .4:6/ exists.

Remark 8. Using Corollary 2 and taking ak D 1; �D 0; � D 1; we have

1X
n1;:::;nrD0

Œn1=p�X
kD0

gm
n1�pk;n2;:::;nr

.X,Y;A,B/

.n1�pk/Šn2Š:::nr Š
glk.´1;´2IC;D/�

kt
n1�pk
1 t

n2

2 :::t
nr
r

D

rY
iD1

n
exp.xi ti

p
2Ai /exp.Biyi t

mi

i /
o

exp.´1�
p
2C /exp.D´2�l/:

We remark that for every suitable choice of the coefficients ak .k 2 N0/; if the
multivariable function ˝�C�k.´1; :::;´s/; .s 2 N/; is expressed as an appropriate
product of several simpler functions, the assertions of Theorem 1 can be applied in
order to derive various families of multilinear and multilateral generating functions
for the gmn .X,Y;A,B/ :
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[3] E. Defez and L. Jódar, “Chebyshev matrix polynomials and second order matrix differential equa-
tions,” Util. Math., vol. 61, pp. 107–123, 2002.
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