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Abstract. Let [F4[x] be the polynomial ring over the finite field F; containing g elements. We
compute the probability that n polynomials in Fy4[x] are k-wise relatively coprime, using the
concept of natural density. As a special case, we get the probability that n polynomials in Fg[x]
are pairwise coprime.
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1. INTRODUCTION AND MAIN RESULTS

Let N be the set of all positive integers. Dirichlet [2] first discovered an interesting
result that relates the probability that two randomly chosen integers are relative prime
to the Riemann’s zeta function, and the probability turns out to be

2 -
lim [{(m,n) € N* |1 <m,n < N,ged(m,n) = 1}| _ )= i
N —o0 N2 2
where gcd(m,n) denotes the greatest common divisor of m and n, and {(s) is the

Riemann’s zeta function. This result was generalized to the case of several integers,
that is, the probability of n randomly chosen integers to be coprime is given by

lim {(m1q,...,my) e N* |1 <mq,...,my, < N,gcd(my,...,my) = 1}|
N—oo N©
=" (n). (1.1)

In [7], Kubota and Sugita gave a rigorous probabilistic interpretation to Dirichlet’s
theorem. Other probability problems over integers were also considered: L. T6th [12]
obtained that the probability of n positive integers to be pairwise coprime is ]_[p (1—

%)”‘1 1+ n’%l), where p is a prime number; Hu [4] showed that the probability of
o . . . k— _
n positive integers to be k-wise relatively prime is [ [, (Zm=10 (”:1) (%)m (1- %)” my,

For deeper links between probability theory and number theory, please refer to Ten-
enbaum [ 1], Kubilius [6] and Kac [5].
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This notation of probability with respect to the uniform distribution over infinite
sets N, n € N, is also known as natural density, which can be defined for any subset
A as .

D(A) = Jim 402 N

N—o0 N7

provided the limit exists, where |- | denotes the cardinality of the corresponding set.
In [8], Maze, Rosenthal and Wagner computed the natural density of the set of k xn
unimodular integer matrices for any positive integers k < n, where a k x n integer
matrix is called unimodular if it can be extended to an invertible n X n matrix over
the integers. Recently, Guo and Yang [3] generalized this result to the matrices of
polynomials over finite fields.

Let [, be the finite field consisting of g elements, and [F,[x] be the polynomial
ring over [F;, where g is a prime power. To define the concept of natural density
for certain subsets, we need to enumerate polynomials in F,[x]. For convenience,
denote the elements in F; by ag = 0,a1,+--,a4—1. Let X' be the set of all vectors
o = (amy.am, . -+) with m; € {0,1,---,g — 1} and m; = 0 for sufficiently large i.
Then there is a one-to-one map

’

o0
XX —>Zy=NU{0}, x(amy.am,, )= Zmiq’.
j=0

Forall j € Z, we set
w .
fi(x)= Zamix’, with y(amg,am,, ) = J.
i=0

Then Fy[x] ={f;(x) | j € Z4}.

From now on, we fix a prime power ¢ and a positive integer n > 2. Denote M =
(F4[x])" for convenience and let My be the subset of M consisting of vectors with
entries taken from { fo, f1,---, fv}. For any subset S € M, we define the natural
density of S in M as

D(S)= lim M
N—oo |<M N |

Using a probabilistic method, Sugita and Takanobu [10] determined the probab-
ility of two polynomials over [F, to be coprime for a prime p. Recently, Morrison
[9], Benjamin and Bennett [ 1] computed the probability that n polynomials over [,
are coprime, which is 1 —¢!™". They used natural density methods and Euclidean
algorithm respectively. Then it is natural to consider the questions: what is the prob-
ability that n polynomials in [F,[x] are pairwise coprime? Generally, what is the
probability that n polynomials in [F,[x] are k-wise relatively coprime?

Our main purpose in this paper is to compute the probabilities mentioned above.
More precisely, we determined the natural density of the set of n-dimensional vectors
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over [F,;[x] whose entries are k-pairwise coprime, for any positive integer k < n. Our
methods are conceptional and the main idea comes from [8] and [3].

Theorem 1. Let k be a positive integer and k < n. Denote
G ={(g1.+-.8n) € M| ged(giy.---.8i) =1, V1 =iy < <ig <nj.
Then the natural density of G is

il (%( )(—) =), (12

m=1 i=0
where ¢ (m) is the number of monic irreducible polynomials with degree m in Fy[x].

Remark 1. The result of Theorem 1 can be understood as follows: the probability
that n polynomials in [F,[x] are k-wise relatively coprime is

A S R
(5 ()t )™

Take k = n, we get that the probability of n polynomials in [F,[x] being coprime is
the H;?:l (1— mn )¢(m) To see what this means, we introduce the following g-zeta
function

oo 1 bm
Lq(n) —1‘[(1 ,,deg(f)) = Ul(l_q"'") pim, (1.3)

where f goes through all monic irreducible polynomials (not including the constant
polynomials, as usual) in [F,[x]. Recall the following interesting equation

[Tt —rtee)! Zq” —1_qt (1.4)
s

For more details, see [9] and [3]. Putting t = ¢~" in (1.4), we get

1
¢ty =1- =y (1.5)

Combining the equations (1.3) and (1.5), we get that the probability of n polynomials
in [y [x] being coprime is { ln)y=1- q,,%l, which is just one of the main results of
[9]. In particular, when n = 2, the probability that 2 polynomials in [F, [x] are coprime
is1— é, which is one of the main results of [1].

Taking k = 2 in Theorem 1, we have the following corollary.
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Corollary 1. Denote E = {(g1,"**,8n) € M |gcd(gi.gj) =1, V1=<i<j=<n}
Then

o0

pE) =] ((- )" e+ nLyysem, (1.6)

m=1
Similarly, the value in (1.6) can be interpreted as the probability that 7 polynomials
in [F,[x] are pairwise coprime.
2. RESULTS

In this section, we will give the proof of Theorem 1. Before this, we need some
preparations.
Fix a positive integer k < n. Let T be a finite set of monic irreducible polynomials
in [F;[x], denote
Gr ={(g1.-.8&n) € M | [ }ged(giy. . &ix)
Vel l<ii<--<iy<n}.
Clearly we have G = (| Gr. Denote by ( /') the ideal generated by f € [F,[x].

Lemma 1. Let G be defined as above, then we have

i 1 n—i
D(Gr) =[] Z( ) deg(/) (l_qdeg(f)) ‘

feT i=0

Proof. Denote f(T) = [lfer f and dp = deg(f ). Given g € Fy[x] let g be

its image in [Fy[x]/( f (T)). Then for any positive integer N, we have the canonical
maps

w: My = F/ DN (g1, gn) = (B1.ee . 8n),

o (F 1/ F D)) (H R /(1)) = T Falxl/ (1))
feT
where the first part of ¢ is induced from the 1somorphlsm

f(T) l_[ F,

feT

and

a consequence of the Chinese Remainder Theorem and the second part of ¢ is an
obvious isomorphism of vector spaces.
First suppose that N = mq?T —1 for some m € N. Then it is easy to see

(i) [0S SNy ={f(0)x + fi(x) [0<s <m—1,0=<1 <¢qT —1}.
For any fixed 0 < s < m — 1, the following projection is one-to-one:
s + 1) [0 <1 <q%T 1} — Fyx]/( S D),
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and the canonical projection

i) 0= <Ny — Fylx)/ (/D)
is m-to-one. Thus the projection map m is m”-to-one.

Forany f €T, let ¢f be the canonical projection from (Fy[x]/{ f ™) to
(Fy[x]/(f )" via @. Given any A € My, we see that A € Gr if and only if at most
k — 1 entries of ¢ o (A) is zero for all f € T. Noticing that |Fg[x]/( f )| = glee),
it is easy to deduce that

k—1
lpor(Mpy)| = ]_[ Z (’l_’)(qdeg(f) i

feTi=0
As a result we have

G (Y Mw|=m"|por(My)]

n i 1 n—i
= (mg®")" [] Z( ) deg(f)) (l_qdeg(f)) ‘

feTi=0
Now let N be any positive integer. There exist m,r € Z such that N +1 =
quT +r, where 0 <r < da and m, r are not both 0. For convenience, set N =
quT — 1. Then by the definition of the natural density, we have

|G N My
D(Gr) = M|
. |G M|+ |G ((My — MF)I
N—o0 | MN| '

Note that My — Mz| < rn(N + 1)1, that is

. |G N (My — M7)| . rn(N+1)r!
lim = Im ——— =
N—oo | My | N—oo (N +1)"
So, we obtain
Gr (M
D(Gr)= lim m
N—oo (N 4 1)"
— m (quT)n erTZ ( ) qdeg(/>) (1 qdegl(f))n_i

1 n— l
= 1_[ Z( ) deg(f)) (- deg(f))

feT i=0
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This completes the proof. 0
Proof of Theorem 1.1. For any irreducible polynomial f € [F,[x], denote
Kr ={(g1.-.&n) | flged(gi,, . gix). 1 iy <+ <ix <n}.
Letgr = q%€") then by Lemma 2.1 we have
D(Ky) =1-D(Gy¢ry)

gy A 1
=1_ _ll__n
;}(l.)%f)( )
<1—a-""hHaer=h
qf qf
qar

Let T; be the set of all monic irreducible polynomials with degree no more than ¢,
and denote T the set of all monic irreducible polynomials in [F;[x]. For convenience,
we set G; = Gr,. Since

GG < | K
feT\T;

we have

G:\G)NM |(Useirr, KM M|
limsupl( AL0I0 N|§1imsup SeI\T, S
N —>o00 |<MN| N —>o00 IMN|
Yo reivy 1K (M|
< limsup SeMT S
N—>o0 |MN|

- Y pkp< ¥ (”q;l)2

FeT\T; FeT\T,

%) _1)2
-y (anm) B(m).

m=t+1

where ¢ (m) denotes the number of monic irreducible polynomials with degree m in
Fylx] .
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Since all irreducible polynomials with degree m can divide x4 — x, which has no
multiple roots, thus m¢ (m) < ¢ and

G:\G)\M > —1)2 —1)2
lilmsup|( :\G) NIS 3 (n m) < (;1 >
N—o0 | M| mer M4 q'(q—1)

Note that G(\ My € G\ My and G(\My = G (N My — (G \ G) [\ Mu,
which imply that

G(A\M Gi(\M
limsup|m—N| < limsup|tm—N| < D(Gy).
N—o00 |MN| N—o0 |MN|
and
G(\M Gi(\M G:\G M
timinf G OMNL el GOMNT e GO M
N—o0 |MN| N—oo |MN| N —o00 |MN|
(n—1)2
> D(Gt)— ———.
q'(g—1)
forall t € N. Let ¢ tend to oo, from Lemma 2.1, we can conclude that
G\M
fim GOMN] D(Gy)
N—o0 |MN| r—>00
U\ 1 1
= lim [] Z(.)(—)f(l——)”‘f
t_)oofeTt i—o 1 qr qr
t k—1 n 1 1
— 1 . i 1__ n—i
i 115 (1)
[e’s) —1
=TT (2 (M) ora——r)™
i] g™ qm '
m=1 =0
This completes the proof. U
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