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Abstract. Let Fq Œx� be the polynomial ring over the finite field Fq containing q elements. We
compute the probability that n polynomials in Fq Œx� are k-wise relatively coprime, using the
concept of natural density. As a special case, we get the probability that n polynomials in Fq Œx�
are pairwise coprime.

2010 Mathematics Subject Classification: 11B05; 11T06; 11C08; 60B15.

Keywords: natural density, k-wise relatively coprime, irreducible polynomial, q-zeta function

1. INTRODUCTION AND MAIN RESULTS

Let N be the set of all positive integers. Dirichlet [2] first discovered an interesting
result that relates the probability that two randomly chosen integers are relative prime
to the Riemann’s zeta function, and the probability turns out to be

lim
N!1

jf.m;n/ 2N2 j1�m;n�N;gcd.m;n/D 1gj
N 2

D ��1.2/D
6

�2
;

where gcd.m;n/ denotes the greatest common divisor of m and n, and �.s/ is the
Riemann’s zeta function. This result was generalized to the case of several integers,
that is, the probability of n randomly chosen integers to be coprime is given by

lim
N!1

jf.m1; : : : ;mn/ 2Nn j1�m1; : : : ;mn �N;gcd.m1; : : : ;mn/D 1gj
N n

D ��1.n/: (1.1)

In [7], Kubota and Sugita gave a rigorous probabilistic interpretation to Dirichlet’s
theorem. Other probability problems over integers were also considered: L. Tóth [12]
obtained that the probability of n positive integers to be pairwise coprime is

Q
p.1�

1
p
/n�1.1C n�1

p
/, where p is a prime number; Hu [4] showed that the probability of

n positive integers to be k-wise relatively prime is
Q
p.
Pk�1
mD0

�
n
m

�
. 1
p
/m.1� 1

p
/n�m/.

For deeper links between probability theory and number theory, please refer to Ten-
enbaum [11], Kubilius [6] and Kac [5].
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This notation of probability with respect to the uniform distribution over infinite
sets Nn;n2N; is also known as natural density, which can be defined for any subset
A as

D.A/D lim
N!1

jA\f1;2; � � � ;N gnj

N n
;

provided the limit exists, where j � j denotes the cardinality of the corresponding set.
In [8], Maze, Rosenthal and Wagner computed the natural density of the set of k�n
unimodular integer matrices for any positive integers k � n, where a k � n integer
matrix is called unimodular if it can be extended to an invertible n�n matrix over
the integers. Recently, Guo and Yang [3] generalized this result to the matrices of
polynomials over finite fields.

Let Fq be the finite field consisting of q elements, and FqŒx� be the polynomial
ring over Fq , where q is a prime power. To define the concept of natural density
for certain subsets, we need to enumerate polynomials in FqŒx�. For convenience,
denote the elements in Fq by a0 D 0;a1; � � � ;aq�1. Let ˙ be the set of all vectors
˛ D .am0

;am1
; � � �/ with mi 2 f0;1; � � � ;q � 1g and mi D 0 for sufficiently large i .

Then there is a one-to-one map

� W˙ !ZC DN[f0g; �.am0
;am1

; � � �/D

1X
jD0

miq
i :

For all j 2ZC, we set

fj .x/D

1X
iD0

ami
xi ; with �.am0

;am1
; � � �/D j:

Then FqŒx�D ffj .x/ j j 2ZCg.
From now on, we fix a prime power q and a positive integer n � 2. Denote M D

.FqŒx�/n for convenience and let MN be the subset of M consisting of vectors with
entries taken from ff0;f1; � � � ;fN g: For any subset S �M, we define the natural
density of S in M as

D.S/D lim
N!1

jS \MN j

jMN j
:

Using a probabilistic method, Sugita and Takanobu [10] determined the probab-
ility of two polynomials over Fp to be coprime for a prime p. Recently, Morrison
[9], Benjamin and Bennett [1] computed the probability that n polynomials over Fq
are coprime, which is 1� q1�n. They used natural density methods and Euclidean
algorithm respectively. Then it is natural to consider the questions: what is the prob-
ability that n polynomials in FqŒx� are pairwise coprime? Generally, what is the
probability that n polynomials in FqŒx� are k-wise relatively coprime?

Our main purpose in this paper is to compute the probabilities mentioned above.
More precisely, we determined the natural density of the set of n-dimensional vectors



NATURAL DENSITY OF RELATIVE COPRIME POLYNOMIALS 483

over FqŒx� whose entries are k-pairwise coprime, for any positive integer k � n. Our
methods are conceptional and the main idea comes from [8] and [3].

Theorem 1. Let k be a positive integer and k � n. Denote

G D f.g1; � � � ;gn/ 2M j gcd.gi1 ; � � � ;gik /D 1; 8 1� i1 < � � �< ik � ng:

Then the natural density of G is

1Y
mD1

�k�1X
iD0

 
n

i

!
.
1

qm
/i .1�

1

qm
/n�i

��.m/
; (1.2)

where �.m/ is the number of monic irreducible polynomials with degree m in FqŒx�.

Remark 1. The result of Theorem 1 can be understood as follows: the probability
that n polynomials in FqŒx� are k-wise relatively coprime is

1Y
mD1

�k�1X
iD0

 
n

i

!
.
1

qm
/i .1�

1

qm
/n�i

��.m/
:

Take k D n, we get that the probability of n polynomials in FqŒx� being coprime is
the

Q1
mD1 .1�

1
qmn /

�.m/: To see what this means, we introduce the following q-zeta
function

�q.n/ WD
Y
f

.1�
1

qndeg.f /
/�1 D

1Y
mD1

.1�
1

qnm
/��.m/; (1.3)

where f goes through all monic irreducible polynomials (not including the constant
polynomials, as usual) in FqŒx�. Recall the following interesting equation

Y
f

.1� tdeg.f //�1 D

1X
lD0

ql t l D
1

1�qt
: (1.4)

For more details, see [9] and [3]. Putting t D q�n in (1.4), we get

��1q .n/D 1�
1

qn�1
: (1.5)

Combining the equations (1.3) and (1.5), we get that the probability of n polynomials
in FqŒx� being coprime is ��1q .n/D 1� 1

qn�1 , which is just one of the main results of
[9]. In particular, when nD 2, the probability that 2 polynomials in FqŒx� are coprime
is 1� 1

q
, which is one of the main results of [1].

Taking k D 2 in Theorem 1, we have the following corollary.
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Corollary 1. Denote E D f.g1; � � � ;gn/ 2M jgcd.gi ;gj /D 1; 8 1� i < j � ng.
Then

D.E/D

1Y
mD1

�
.1�

1

qm
/n�1.1C

n�1

qm
/
��.m/

: (1.6)

Similarly, the value in (1.6) can be interpreted as the probability that n polynomials
in FqŒx� are pairwise coprime.

2. RESULTS

In this section, we will give the proof of Theorem 1. Before this, we need some
preparations.

Fix a positive integer k � n. Let T be a finite set of monic irreducible polynomials
in FqŒx�, denote

GT D f.g1; � � � ;gn/ 2M
ˇ̌
f − gcd.gi1 ; � � � ;gik /;

8 f 2 T;1� i1 < � � �< ik � ng:

Clearly we have G D
T
T GT . Denote by hf i the ideal generated by f 2 FqŒx�.

Lemma 1. Let GT be defined as above, then we have

D.GT /D
Y
f 2T

k�1X
iD0

 
n

i

!
.

1

qdeg.f /
/i .1�

1

qdeg.f /
/n�i :

Proof. Denote f .T / D
Q
f 2T f and dT D deg.f .T //. Given g 2 FqŒx� let Ng be

its image in FqŒx�=hf .T / i. Then for any positive integer N , we have the canonical
maps

� W MN ! .FqŒx�=hf
.T /
i/n; .g1; � � � ;gn/ 7! . Ng1; � � � ; Ngn/;

and

' W
�
FqŒx�=hf

.T /
i

�n
!

� Y
f 2T

FqŒx�=hf i
�n
!

Y
f 2T

�
FqŒx�=hf i

�n
;

where the first part of ' is induced from the isomorphism

FqŒx�=hf
.T /
i Š

Y
f 2T

FqŒx�=hf i;

a consequence of the Chinese Remainder Theorem and the second part of ' is an
obvious isomorphism of vector spaces.

First suppose that N DmqdT �1 for some m 2N. Then it is easy to see

ffl.x/ j0� l �N g D ffs.x/x
dT Cft .x/ j0� s �m�1;0� t � q

dT �1g:

For any fixed 0� s �m�1, the following projection is one-to-one:

ffs.x/x
dT Cft .x/ j0� t � q

dT �1g �! FqŒx�=hf
.T /
i;
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and the canonical projection

ffl.x/ j0� l �N g �! FqŒx�=hf
.T /
i

is m-to-one. Thus the projection map � is mn-to-one.
For any f 2 T , let 'f be the canonical projection from .FqŒx�=hf .T / i/n to

.FqŒx�=hf i/n via '. Given any A 2MN , we see that A 2GT if and only if at most
k�1 entries of 'f ı�.A/ is zero for all f 2 T . Noticing that jFqŒx�=hf ij D qdeg.f /,
it is easy to deduce that

j' ı�.MN /j D
Y
f 2T

k�1X
iD0

 
n

i

!
.qdeg.f /

�1/n�i :

As a result we have

jGT
\

MN j Dm
n
j' ı�.MN /j

D .mqdT /n
Y
f 2T

k�1X
iD0

 
n

i

!
.

1

qdeg.f /
/i .1�

1

qdeg.f /
/n�i :

Now let N be any positive integer. There exist m;r 2 ZC such that N C 1 D
mqdT C r , where 0 � r < qdT and m, r are not both 0. For convenience, set eN D
mqdT �1. Then by the definition of the natural density, we have

D.GT /D lim
N!1

jGT \MN j

jMN j

D lim
N!1

jGT
T

MeN jC jGT T.MN �MeN /j
jMN j

:

Note that jMN �MeN j � rn.N C1/n�1, that is

lim
N!1

jGT
T
.MN �MeN /j
jMN j

� lim
N!1

rn.N C1/n�1

.N C1/n
D 0:

So, we obtain

D.GT /D lim
N!1

jGT
T

MeN j
.N C1/n

D lim
N!1

.mqdT /n
Q
f 2T

Pk�1
iD0

�
n
i

�
. 1
qdeg.f / /

i .1� 1
qdeg.f / /

n�i

.N C1/n

D

Y
f 2T

k�1X
iD0

 
n

i

!
.

1

qdeg.f /
/i .1�

1

qdeg.f /
/n�i :
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This completes the proof. �

Proof of Theorem 1.1. For any irreducible polynomial f 2 FqŒx�, denote

Kf D f.g1; � � � ;gn/
ˇ̌
f jgcd.gi1 ; � � � ;gik /;1� i1 < � � �< ik � ng:

Let qf D qdeg.f /, then by Lemma 2.1 we have

D.Kf /D 1�D.Gff g/

D 1�

k�1X
iD0

 
n

i

!
.
1

qf
/i .1�

1

qf
/n

� 1� .1�
n�1

qf
/.1C

n�1

qf
/

D .
n�1

qf
/2:

Let Tt be the set of all monic irreducible polynomials with degree no more than t ,
and denote bT the set of all monic irreducible polynomials in FqŒx�. For convenience,
we set Gt DGTt

. Since

.Gt nG/�
[

f 2 OT nTt

Kf ;

we have

limsup
N!1

j.Gt nG/
T

MN j

jMN j
� limsup

N!1

j.
S
f 2 OT nTt

Kf /
T

MN j

jMN j

� limsup
N!1

P
f 2 OT nTt

jKf
T

MN j

jMN j

�

X
f 2 OT nTt

limsup
N!1

jKf
T

MN j

jMN j

D

X
f 2 OT nTt

D.Kf / <
X

f 2 OT nTt

.
n�1

qf
/2

D

1X
mDtC1

.n�1/2

q2m
�.m/;

where �.m/ denotes the number of monic irreducible polynomials with degree m in
FqŒx� .
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Since all irreducible polynomials with degreem can divide xq
m

�x, which has no
multiple roots, thus m�.m/� qm and

limsup
N!1

j.Gt nG/
T

MN j

jMN j
�

1X
mDtC1

.n�1/2

mqm
�
.n�1/2

qt .q�1/
:

Note that G
T

MN � Gt
T

MN and G
T

MN D Gt
T

MN � .Gt nG/
T

MN ,
which imply that

limsup
N!1

jG
T

MN j

jMN j
� limsup

N!1

jGt
T

MN j

jMN j
�D.Gt /:

and

liminf
N!1

jG
T

MN j

jMN j
� liminf
N!1

jGt
T

MN j

jMN j
� limsup
N!1

.Gt nG/
T

MN

jMN j

�D.Gt /�
.n�1/2

qt .q�1/
;

for all t 2N: Let t tend to1, from Lemma 2.1, we can conclude that

lim
N!1

jG
T

MN j

jMN j
D lim
t!1

D.Gt /

D lim
t!1

Y
f 2Tt

k�1X
iD0

 
n

i

!
.
1

qf
/i .1�

1

qf
/n�i

D lim
t!1

tY
mD1

k�1X
iD0

 
n

i

!
.
1

qm
/i .1�

1

qm
/n�i

D

1Y
mD1

�k�1X
iD0

 
n

i

!
.
1

qm
/i .1�

1

qm
/n�i

��.m/
:

This completes the proof. �
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[2] G. L. Dirichlet, Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen
Königlich Preuss, Akad. Wiss., 1849.

[3] X. Guo and G. Yang, “The probability of rectangular unimodular matrices over Fq Œx�,” Linear
Algebra Appl., vol. 438, pp. 2657–2682, 2013.

[4] J. Hu, “The probability that random positive integers are k-wise relatively prime,” Int. J. Number
Theory, vol. 09, 2013.

[5] M. Kac, Statistical independence in probability, analysis and number theory, ser. The Carus Math-
ematical Monographs. New York: Mathematical Association of America, John Wiley and Sons,
Inc., 1959, vol. 16.

[6] J. Kubilius, “Probabilistic methods in the theory of numbers,” Amer. Math. Soc. Transl. (2), vol. 19,
pp. 47–85, 1962.

[7] H. Kubota and H. Sugita, “Probabilistic proof of limit theorems in number theory by means of
adeles,” Kyushu J. Math., vol. 56, pp. 391–404, 2002.

[8] G. Maze, J. Rosenthal, and U. Wagner, “Natural density of rectangular unimodular integer
matrices,” Linear Algebra Appl., vol. 434, pp. 1319–1324, 2011.

[9] K. E. Morrison, “Random polynomials over finite fields,”
http://www.calpoly.edu/�kmorriso/Research/RPFF.pdf, 1999.

[10] H. Sugita and S. Takanobu, “The probability of two Fq-polynomials to be coprime,” Adv. Stud.
Pure Math., vol. 49, pp. 455–478, 2007.

[11] G. Tenenbaum, Introduction to analytic and probabilistic number theory, ser. Cambridge Studies
in Advanced Mathematics. Cambridge: Cambridge University Press, 1995, vol. 46.
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