

A note on a series containing the Laguerre polynomials

 ${\rm HU~e\text{-}ISSN~1787\text{-}2413}$

DOI: 10.18514/MMN.2015.1050

Y. S. Kim, A. K. Rathie, and R. B. Paris

A NOTE ON A SERIES CONTAINING THE LAGUERRE POLYNOMIALS

Y. S. KIM, A. K. RATHIE, AND R. B. PARIS

Received 05 November, 2013

Abstract. Expressions for the summation of the series involving the Laguerre polynomials

$$S(\pm \nu, \pm j) \equiv e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1 \pm \nu \pm j)_n}$$

for any non-negative integer j are obtained in terms of generalized hypergeometric functions. These results provide alternative, and in some cases simpler expressions to those recently obtained in the literature.

2010 Mathematics Subject Classification: 33C15; 33C20

Keywords: Laguerre polynomials, generalized hypergeometric functions, generalized Kummer summation theorem

1. Introduction

The generalized Laguerre polynomials $L_n^{(\nu)}(x)$ are encountered in many branches of pure and applied mathematics. They form an orthogonal set on $[0,\infty)$ with the weight function $x^{\nu}e^{-x}$, with the first three polynomials given by

$$\begin{split} L_0^{(\nu)}(x) &= 1, \\ L_1^{(\nu)}(x) &= 1 - x + \nu, \\ L_2^{(\nu)}(x) &= \frac{1}{2}x^2 - (\nu + 2)x + \frac{1}{2}(\nu + 1)(\nu + 2). \end{split}$$

In general, $L_n^{(\nu)}(x)$ can be represented as a terminating confluent hypergeometric function ${}_1F_1$ in the form

$$L_n^{(\nu)}(x) = \frac{(\nu+1)_n}{n!} {}_1F_1(-n;\nu+1;x).$$

Here $(a)_n$ denotes the Pochhammer symbol, or rising factorial, defined by $(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)}$.

© 2015 Miskolc University Press

In [2], Kim *et al.* obtained summation formulas for the two series involving the generalized Laguerre polynomial $L_n^{(\nu)}(x)$ given by

$$\sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1 \pm \nu + j)_n}$$

for integer j, where $-5 \le j \le 5$. Recently, Brychkov [1] has extended these results for any integer j. The aim of this note is to derive alternative expressions for the summation of the series

$$S(\pm \nu, \pm j) \equiv e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1 \pm \nu \pm j)_n}$$

for any non-negative integer j. Our results are different from, and in some cases simpler, than those obtained in [1].

2. The series
$$S(\nu, \pm j)$$

We start with the transformation [2, (3.5)]

$$e^{-x} \sum_{n=0}^{\infty} \frac{(a_1)_n \dots (a_p)_n}{(b_1)_n \dots (b_q)_n} (-xy)^n L_n^{(v)}(x)$$

$$= \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} {}_{p+2} F_q \begin{bmatrix} -n, -n-v, a_1, \dots, a_p \\ b_1, \dots, b_q \end{bmatrix}; y , \quad (2.1)$$

where p and q are non-negative integers and $_pF_q$ denotes the generalized hypergeometric function. In this, if we take $p=0, q=1, b_1=1+\nu+j$ and y=-1, then

$$e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1+\nu+j)_n} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} {}_2F_1 \begin{bmatrix} -n, -n-\nu \\ 1+\nu+j \end{bmatrix}; -1$$
(2.2)

The ${}_2F_1$ series on the right-hand side of (2.2) can be evaluated with the help of the generalized Kummer summation theorem [3]

$${}_{2}F_{1}\begin{bmatrix} a,b\\ 1+a-b+j \end{bmatrix}; -1 = \frac{2^{-a}\Gamma(\frac{1}{2})\Gamma(b-j)\Gamma(1+a-b+j)}{\Gamma(b)\Gamma(\frac{1}{2}a-b+\frac{1}{2}j+\frac{1}{2})\Gamma(\frac{1}{2}a-b+\frac{1}{2}j+1)} \times \sum_{r=0}^{j} (-1)^{r} {j \choose r} \frac{\Gamma(\frac{1}{2}a-b+\frac{1}{2}j+\frac{1}{2}r+\frac{1}{2})}{\Gamma(\frac{1}{2}a-\frac{1}{2}j+\frac{1}{2}r+\frac{1}{2})}$$
(2.3)

for $j = 0, 1, 2, \dots$

After some straightforward simplification, we obtain

$$S(\nu, j) \equiv e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1 + \nu + j)_n}$$

$$= \frac{(-1)^{j} 2^{2\nu+j} \Gamma(1+\nu)}{\Gamma(1+2\nu+j)} \sum_{r=0}^{j} (-1)^{r} {j \choose r} \left\{ \frac{\Gamma(\nu+\frac{1}{2}j+\frac{1}{2}r+\frac{1}{2})}{\Gamma(\frac{1}{2}-\frac{1}{2}j+\frac{1}{2}r)} \right.$$

$$\times_{4} F_{5} \left[\frac{\frac{1}{2}+\frac{1}{2}\nu, 1+\frac{1}{2}\nu, \frac{1}{2}+\nu+\frac{1}{2}j+\frac{1}{2}r, \frac{1}{2}+\frac{1}{2}j-\frac{1}{2}r}{\frac{1}{2}, \frac{1}{2}+\frac{1}{2}\nu+\frac{1}{2}j, 1+\frac{1}{2}\nu+\frac{1}{2}j, \frac{1}{2}+\nu+\frac{1}{2}j, 1+\nu+\frac{1}{2}j}; -x^{2} \right]$$

$$- \frac{4x(1+\nu)}{(1+\nu+j)(1+2\nu+j)} \frac{\Gamma(\nu+\frac{1}{2}j+\frac{1}{2}r+1)}{\Gamma(\frac{1}{2}r-\frac{1}{2}j)}$$

$$\times_{4} F_{5} \left[\frac{1+\frac{1}{2}\nu, \frac{3}{2}+\frac{1}{2}\nu, 1+\nu+\frac{1}{2}j+\frac{1}{2}r, 1+\frac{1}{2}j-\frac{1}{2}r}{\frac{3}{2}, 1+\frac{1}{2}\nu+\frac{1}{2}j, \frac{3}{2}+\frac{1}{2}\nu+\frac{1}{2}j, 1+\nu+\frac{1}{2}j, \frac{3}{2}+\nu+\frac{1}{2}j}; -x^{2} \right] \right\} (2.4)$$

for $j = 0, 1, 2, \dots$

Again, in (2.1), if we take p = 0, q = 1, $b_1 = 1 + v - j$ and y = -1, then

$$e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1+\nu-j)_n} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} {}_2F_1 \left[\begin{array}{c} -n, -n-\nu \\ 1+\nu-j \end{array}; -1 \right]. \tag{2.5}$$

The ${}_2F_1$ series on the right-hand side of (2.5) can be evaluated with the help of the known result [3]

$${}_{2}F_{1}\begin{bmatrix} a,b\\ 1+a-b-j \end{cases}; -1 = \frac{2^{-a}\Gamma(\frac{1}{2})\Gamma(1+a-b-j)}{\Gamma(\frac{1}{2}a-b-\frac{1}{2}j+\frac{1}{2})\Gamma(\frac{1}{2}a-b-\frac{1}{2}j+1)} \times \sum_{r=0}^{j} \binom{j}{r} \frac{\Gamma(\frac{1}{2}a-b-\frac{1}{2}j+\frac{1}{2}r+\frac{1}{2})}{\Gamma(\frac{1}{2}a-\frac{1}{2}j+\frac{1}{2}r+\frac{1}{2})}$$
(2.6)

for j = 0, 1, 2, ... and, after some simplification, we obtain

$$S(\nu, -j) \equiv e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1+\nu-j)_n}$$

$$= \frac{2^{2\nu-j} \Gamma(1+\nu-j)}{\Gamma(1+2\nu-j)} \sum_{r=0}^{j} {j \choose r} \left\{ \frac{\Gamma(\nu-\frac{1}{2}j+\frac{1}{2}r+\frac{1}{2})}{\Gamma(\frac{1}{2}-\frac{1}{2}j+\frac{1}{2}r)} \right\}$$

$$\times {}_{2}F_{3} \left[\frac{1}{2} + \nu - \frac{1}{2}j + \frac{1}{2}r, \frac{1}{2} + \frac{1}{2}j - \frac{1}{2}r \atop \frac{1}{2}, \frac{1}{2} + \nu - \frac{1}{2}j, 1 + \nu - \frac{1}{2}j \right]$$

$$- \frac{4x\Gamma(\nu-\frac{1}{2}j+\frac{1}{2}r+1)}{(1+2\nu-j)\Gamma(\frac{1}{2}r-\frac{1}{2}j)} {}_{2}F_{3} \left[\frac{1+\nu-\frac{1}{2}j+\frac{1}{2}r, 1+\frac{1}{2}j-\frac{1}{2}r}{\frac{3}{2}, 1+\nu-\frac{1}{2}j, \frac{3}{2}+\nu-\frac{1}{2}j} ; -x^{2} \right]$$

$$(2.7)$$

for $j = 0, 1, 2, \dots$

3. The series
$$S(-\nu, \pm i)$$

Further, if we take p = 0, q = 1, $b_1 = 1 - v + j$ and y = -1 in (2.1), we find

$$e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1-\nu+j)_n} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} {}_2F_1 \begin{bmatrix} -n, -n-\nu \\ 1-\nu+j \end{bmatrix}; -1 \end{bmatrix}.$$
(3.1)

The ${}_2F_1$ series on the right-hand side of (3.1) can be evaluated by (2.3) to produce the result after some simplification

$$S(-\nu,j) \equiv e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1-\nu+j)_n}$$

$$= \frac{(-2)^j}{j!} \sum_{r=0}^j (-1)^r {j \choose r} \left\{ \frac{\Gamma(-\frac{1}{2}\nu+\frac{1}{2}j+\frac{1}{2}r+\frac{1}{2})}{\Gamma(-\frac{1}{2}\nu-\frac{1}{2}j+\frac{1}{2}r+\frac{1}{2})} \right.$$

$$\times {}_3F_4 \left[\begin{array}{c} 1, \frac{1}{2} + \frac{1}{2}\nu + \frac{1}{2}j - \frac{1}{2}r, \frac{1}{2} - \frac{1}{2}\nu + \frac{1}{2}j + \frac{1}{2}r}{\frac{1}{2} + \frac{1}{2}j, 1 + \frac{1}{2}j, \frac{1}{2} - \frac{1}{2}\nu + \frac{1}{2}j, 1 - \frac{1}{2}\nu + \frac{1}{2}j}; -x^2 \right]$$

$$- \frac{4x}{(j+1)(1-\nu+j)} \frac{\Gamma(-\frac{1}{2}\nu+\frac{1}{2}j+\frac{1}{2}r+1)}{\Gamma(-\frac{1}{2}\nu-\frac{1}{2}j+\frac{1}{2}r)}$$

$$\times {}_3F_4 \left[\begin{array}{c} 1, 1 + \frac{1}{2}\nu + \frac{1}{2}j - \frac{1}{2}r, 1 - \frac{1}{2}\nu + \frac{1}{2}j + \frac{1}{2}r \\ 1 + \frac{1}{2}j, \frac{3}{2} + \frac{1}{2}j, 1 - \frac{1}{2}\nu + \frac{1}{2}j, \frac{3}{2} - \frac{1}{2}\nu + \frac{1}{2}j \end{array}; -x^2 \right] \right\}$$
(3.2)

for $j = 0, 1, 2, \dots$

Finally, if we take p = 0, q = 1, $b_1 = 1 - v - j$ and y = -1 in (2.1), we find

$$e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1-\nu-j)_n} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} {}_2F_1 \left[\begin{array}{c} -n, -n-\nu \\ 1-\nu-j \end{array}; -1 \right]. \tag{3.3}$$

The ${}_2F_1$ series on the right-hand side of (3.3) can be evaluated by (2.6) to produce the result after some simplification

$$S(-\nu, -j) \equiv e^{-x} \sum_{n=0}^{\infty} \frac{x^n L_n^{(\nu)}(x)}{(1-\nu-j)_n}$$

$$= 2^{-j} \sum_{r=0}^{j} {j \choose r} \left\{ {}_2F_3 \begin{bmatrix} \frac{1}{2} - \frac{1}{2}\nu - \frac{1}{2}j + \frac{1}{2}r, \frac{1}{2} + \frac{1}{2}\nu + \frac{1}{2}j - \frac{1}{2}r \\ \frac{1}{2}, \frac{1}{2} - \frac{1}{2}\nu - \frac{1}{2}j, 1 - \frac{1}{2}\nu - \frac{1}{2}j \end{cases} ; -x^2 \right]$$

$$- \frac{2x(\nu + j - r)}{\nu + j - 1} {}_2F_3 \begin{bmatrix} 1 - \frac{1}{2}\nu - \frac{1}{2}j + \frac{1}{2}r, 1 + \frac{1}{2}\nu + \frac{1}{2}j - \frac{1}{2}r \\ \frac{3}{2}, 1 - \frac{1}{2}\nu - \frac{1}{2}j, \frac{3}{2} - \frac{1}{2}\nu - \frac{1}{2}j \end{cases} ; -x^2 \right]$$
(3.4)

for $j = 0, 1, 2, \dots$

4. CONCLUDING REMARKS

To conclude we make a brief comparison of the results (2.4), (2.7), (3.2) and (3.4) with those obtained in [1]. The summations $S(\nu, \pm j)$ derived by Brychkov were expressed respectively in terms of finite sums of ${}_2F_3(-x^2)$ functions and Bessel functions of the first kind. The summations $S(-\nu, \pm j)$ were expressed respectively in terms of finite sums of four ${}_4F_3(-x^2)$ functions and four ${}_6F_7(-x^2)$ functions, including the Jacobi polynomials of zero argument. Our expressions in (3.2) and (3.4) involve simpler finite sums of two ${}_3F_4(-x^2)$ and two ${}_2F_3(-x^2)$ functions, respectively.

Finally, we mention that the summations $S(\pm \nu, \pm j)$ have been verified numerically with the help of *Mathematica*.

ACKNOWLEDGEMENT

One of the authors (YSK) acknowledges the support of the Wonkwang University Research Fund (2014).

REFERENCES

- [1] Y. A. Brychkov, "Two series containing the Laguerre polynomials," *Integral Transforms and Special Functions*, vol. 24, no. 11, pp. 911–915, 2013.
- [2] Y. S. Kim, A. K. Rathie, and R. B. Paris, "On a new class of summation formulae involving the Laguerre polynomial," *Integral Transforms and Special Functions*, vol. 23, no. 6, pp. 435–444, 2012.
- [3] M. A. Rakha and A. K. Rathie, "Generalizations of classical summation theorems for the series $_2F_1$ and $_3F_2$ with applications," *Integral Transforms and Special Functions*, vol. 22, no. 11, pp. 823–840, 2011.

Authors' addresses

V S Kim

Department of Mathematics Education, Wonkwang University, Iksan, Korea *E-mail address:* yspkim@wonkwang.ac.kr

A. K. Rathie

Department of Mathematics, Central University of Kerala, Kasaragad 671123, Kerala, India *E-mail address:* akrathie@cukerala.edu.in

R. B. Paris

School of Engineering, Computing and Applied Mathematics, University of Abertay, Dundee DD1 $1\mathrm{HG}$, UK

E-mail address: r.paris@abertay.ac.uk