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Abstract. Expressions for the summation of the series involving the Laguerre polynomials

X LY (x)
1I£vtj),

o0

S(Ev,£j)=e"" Z

n=0

for any non-negative integer j are obtained in terms of generalized hypergeometric functions.

These results provide alternative, and in some cases simpler expressions to those recently ob-
tained in the literature.
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1. INTRODUCTION

The generalized Laguerre polynomials L ’(1\)) (x) are encountered in many branches

of pure and applied mathematics. They form an orthogonal set on [0, c0) with the

weight function x¥e ™, with the first three polynomials given by

LY () =1,
Lgv)(x) =1l—-x+v,

LY (x) = %xz —(W+2)x+ %(V + 1)V +2).

In general, LS,V) (x) can be represented as a terminating confluent hypergeometric
function 1 F; in the form

v+1
Lfl")(x) = (n—')" 1F1(=n;v+1;x).

Here (a), denotes the Pochhammer symbol, or rising factorial, defined by

@n = Fa
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In [2], Kim ef al. obtained summation formulas for the two series involving the
lized L lynomial L (x) gi
generalized Laguerre polynomial L; ' (x) given by

= w1y (%)
(v + ))n

for integer j, where —5 < j < 5. Recently, Brychkov [1] has extended these results
for any integer j. The aim of this note is to derive alternative expressions for the
summation of the series
ot ny®
x" Ly (x
SEv.£j)=e*) AL ()
= (1£vxj),

for any non-negative integer j. Our results are different from, and in some cases
simpler, than those obtained in [1].

2. THE SERIES S(v, %)

We start with the transformation [2, (3.5)]

o0

—x (@)n...(ap)n _ ny )
e Z—(bl)n---(bq)n( xy)" Ly (x)

n=0

. (=x)" n,—n-—v,a a
_ B —n,—n—V,t1,...,4p |
=> — p+2Fq[ br.....by ’y}’ @

where p and g are non-negative integers and , F; denotes the generalized hypergeo-
metric function. In this, if we take p =0,¢ =1,b; = 14+v+ j and y = —1, then

e KLY N (=) [ —n.—n—v 1}
e = 211 N
]
—(A+v+ i —on! I+v+j
The , F series on the right-hand side of (2.2) can be evaluated with the help of the
generalized Kummer summation theorem [3]
- [ a.b . ] 274r (3 rb—jHrl+a—b+j)
211 .oy T = . R
Ita—b+] F®)M(za—b+3j+3)(a=b+35j+1)

J - 1, pal: 1.1
XZ(—D’(])F(ZG L JycR)
r=0

2.2)

r) réGa-Ltji+ir+d)
for j =0,1,2,....
After some straightforward simplification, we obtain

S, j)=e* i AL,
’ = (1+v+))n
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:(_1)j22v+jr(1+v)z( )r( ) Fw+3j+3r+3)

F(1+2U+]) F(——§j+§r)
Ly, 1+ 3V, +v+ +irn i +3j—3r
x4F5|:1 2 12 1 2 ZJ 2 21] 2 1.;—x2:|
5.5 1t3 v+21, +3 v+2], +V+2], +Vv+3J
4x(14v) Frw+3ij+ir+1)
A4+v+ )1 +2v+ ) r(zr__J)
x4F5[3 11+ v,2+%v1+v+211+ r1—|—2]—— ._xz]} (2.4)
S A+3v+37.5+3v+35) +v+21, +v+3)
for j =0,1,2,....

Again, in (2.1), if wetake p =0,g =1,b; =1 +v—j and y = —1, then

0 ny® n
e XL () )" [ —n—n—v
_— F —1]. 2.5
‘ nZ=0(1+v—j)n ,,Z=0 2 14— )

The , F series on the right-hand side of (2.5) can be evaluated with the help of the
known result [3]

‘ 1]_ 274r () (1+a—b—j)
Ita=b—j " | rda-b-Lj+Hrda—b-1;+1

Xi(j)mza G IR AN
=\ TGa—zj+3r+3)

for j =0,1,2,... and, after some simplification, we obtain

0 ny®
_ x" Ly (x)
Sw,—j)=e* +
=) ,,Z_ (T+v—))n
r'v— 2j+lr+%)

_22”_jF(1+v—])
(1 +2v—) Z() rd-1j+1n

+V—‘]+ 3T, + J—— 2
><2F3|: 2 ,—x]
1 2—|—v— ]1—{—1}—5]

SN US TRt 3[1+”—%J+%rv1+%j—%r._xz} 2.7)
(1+20= I Gr=3)) yltv—gi3+v—gj '

for j =0,1,2,....
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3. THE SERIES S(—v,=%j)
Further, if we take p =0,¢g =1,by =1—v+j and y = —1in (2.1), we find

oo

e L) (- x) n—v
Y T ] ] S

n=0

The , F; series on the right-hand side of (3.1) can be evaluated by (2.3) to produce
the result after some simplification

_ =2 i(_l)r (j ) I(—3v+3]i+3r+3%)
J! r F(—%v—%j—i—%r—k%)

1 .__ 1_1 .
w3 Fy 11,2+ 11+2J___r,2 U+_2_J+ ir 2
5+ ]l—i-zj, sv+5 ]1 v+21

4x F(—3v+3j+3r+1)
G+DU=v+)) r=Lv-1j+1r)

Li+dv+dli—Loa-Llyylip Ly
X3F4[1 T N N A I T (3.2)
+3/.5+3) 2V T2/, 3732V +3)

for j =0,1,2,....
Finally, if we take p =0,g =1,b;y =1—v—j and y = —1 in (2.1), we find

- xL%c) R G L R

The , F; series on the right-hand side of (3.3) can be evaluated by (2.6) to produce
the result after some simplification

0(1_U_J)n
N 11, 1l 1l 1,415 1
=277 ({,){21’3[2 21v12J1+2f’.21+21v+211. 2r;—xz}
=0 22272V 72 TV T2
2x(v+j—r) [ ST AR I YO (NS YRS i
e PV I S S T S (U ESl | BE R
vtj-1 3 l=3v=3/.573v—3J

for j =0,1,2,....
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4. CONCLUDING REMARKS

To conclude we make a brief comparison of the results (2.4), (2.7), (3.2) and (3.4)
with those obtained in [1]. The summations S(v, 4 ) derived by Brychkov were
expressed respectively in terms of finite sums of , F3(—x?) functions and Bessel
functions of the first kind. The summations S(—v, &) were expressed respectively
in terms of finite sums of four 4 F3(—x?) functions and four ¢ F7(—x2) functions,
including the Jacobi polynomials of zero argument. Our expressions in (3.2) and
(3.4) involve simpler finite sums of two 3F4(—x2) and two 5 F3 (—xz) functions,
respectively.

Finally, we mention that the summations S(%v, % j) have been verified numeric-
ally with the help of Mathematica.

ACKNOWLEDGEMENT

One of the authors (YSK) acknowledges the support of the Wonkwang University
Research Fund (2014).

REFERENCES

[1] Y. A. Brychkov, “Two series containing the Laguerre polynomials,” Integral Transforms and Spe-
cial Functions, vol. 24, no. 11, pp. 911-915, 2013.

[2] Y. S. Kim, A. K. Rathie, and R. B. Paris, “On a new class of summation formulae involving the
Laguerre polynomial,” Integral Transforms and Special Functions, vol. 23, no. 6, pp. 435-444,
2012.

[3] M. A. Rakha and A. K. Rathie, “Generalizations of classical summation theorems for the series
2 F1 and 3 F» with applications,” Integral Transforms and Special Functions, vol. 22, no. 11, pp.
823-840, 2011.

Authors’ addresses

Y. S. Kim
Department of Mathematics Education, Wonkwang University, Iksan, Korea
E-mail address: yspkim@wonkwang.ac.kr

A. K. Rathie
Department of Mathematics, Central University of Kerala, Kasaragad 671123, Kerala, India
E-mail address: akrathie@cukerala.edu.in

R. B. Paris

School of Engineering, Computing and Applied Mathematics, University of Abertay, Dundee DD1
1HG, UK

E-mail address: r.paris@abertay.ac.uk



