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Abstract. The Cayley graph construction provides a natural grid structure on a finite vector space
over a field of prime or prime square cardinality, where the characteristic is congruent to 3 modulo
4, in addition to the quadratic residue tournament structure on the prime subfield. Distance from
the null vector in the grid graph defines a Manhattan norm. The Hermitian inner product on
these spaces over finite fields behaves in some respects similarly to the real and complex case.
An analogue of the Cauchy-Schwarz inequality is valid with respect to the Manhattan norm. With
respect to the non-transitive order provided by the quadratic residue tournament, an analogue of
the Cauchy-Schwarz inequality holds in arbitrarily large neighborhoods of the null vector, when
the characteristic is an appropriate large prime.
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1. MANHATTAN NORMS AND GRID GRAPHS

We consider the finite fields Fp and Fp2 of prime and prime square cardinality,
where p � 3 mod 4. The field Fp2 has a natural graph structure with the field ele-
ments as vertices, two distinct vertices u;´ being adjacent if .´� u/4 D 1. The
subfield Fp of Fp2 then induces a subgraph in which x and y are adjacent if and only
if .y�x/2 D 1: The graph Fp2 is isomorphic to the Cartesian square C 2

p D Cp�Cp,
where Cp is a p-cycle and within Fp2 the induced subgraph Fp is itself a p-cycle.
Clearly the graph Fp2 is not planar, but can be drawn as a grid on the torus.

For any connected graph whose vertex set is a group, the distance of any vertex
´ from the identity element of the group is called the norm of ´, denoted N.´/. In
general, distances and norms measured in connected subgraphs induced by subgroups
can be larger than distances and norms measured with reference to the whole graph.
However, with respect to the distance-preserving subgraph induced by Fp in Fp2 , the
norm of any ´ 2 Fp is the same as its norm with respect to the whole graph Fp2 : this
is simply the length of the shortest path from 0 to ´ in the cycle induced by Fp.
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For q D p or q D p2, the n-dimensional vector space F n
q is also endowed with the

Cartesian product graph structure Fq� � � ��Fq isomorphic to C n
p or C 2n

p . The norm
of a vector vD .v1; : : : ;vn/ in F n

q is then equal to the sum N.v1/C�� �CN.vn/ and
we also write N.v/ for this vector norm.

The Gaussian integers ZŒi � also constitute a graph in which u and ´ are adjacent
if and only if .´�u/4 D 1.

It is easy to see that the norm in this infinite Manhattan grid satisfies the triangle
and submultiplicative inequalities

N.uC´/�N.u/CN.´/

N.u´/�N.u/N.´/

To emphasize that the norms on Fp2 , F n
p2 and ZŒi � are understood with reference

to the specific grid graphs defined above, we call these norms Manhattan norms.
Throughout this paper we think of Fp2 as the ring quotient ZŒi �=.p/.

2. GRAPH QUOTIENTS AND CAYLEY GRAPHS

Given a graph G (undirected, with possible loops) on vertex set V and an equi-
valence relation � on V , the quotient graph G=� is defined as follows: the vertices
of G=� are the equivalence classes of �, and classes A;B are adjacent if for some
a 2 A, b 2 B , the elements a;b are adjacent in G. Note that the distance of A to B
in the quotient graph is at most equal to, but possibly less than the minimum of the
distances a to b for all a 2 A, b 2 B . Note also that G=� can have loops even if G
has not.

Given a group G with identity element e and a set � of group elements that gen-
erates G, the (left) Cayley graph C.G;� / of G with respect to � has vertex set G,
elements a;b 2G being considered adjacent if ab�1 or ba�1 belongs to � . For each
congruence� of the group G, corresponding to some normal subgroup H , � yields
a generating set �� of G=� consisting with those classes of� that intersect � . The
graph quotient of C.G;� / by the equivalence � coincides with the Cayley graph
of the quotient graph G=� with respect to ��. For R � G inducing a connected
subgraph ŒR� in C.G;� /, denote by dR.x;y/ the distance function of the subgraph
ŒR�. Denoting by xH the H -coset of any x 2 G, this relates to norms in C.G;� /

and C.G;� /=� as follows: for all x 2R,

dR.x;e/�N.x/�N.xH/

Both inequalities can be strict. However, we have:

Cayley Graph Quotient Lemma. Let a group G with identity e be generated by
� � G, and consider any normal subgroup H with corresponding congruence �.
There is a set R � G having exactly one element in common with each congruence
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class modulo H , and such that for every x 2R

dR.x;e/DN.x/DN.xH/

Proof. We can define the unique (representative) element r.A/ 2 R\A for each
coset A by induction on the distance d.H;A/ of A from H in C.G;� /=�. Let
r.H/D e. Assuming r.A/ defined for all A with d.H;A/ � m, let a coset B have
distance mC 1 from H . Choose any coset A adjacent to B with d.H;A/D m and
elements a 2 A, b 2 B that are adjacent in C.G;� /. Let r.B/D ba�1r.A/. �

We can apply the above lemma in the case where G DZŒi �, � D f1; ig and H D
pZŒi �D fpaCpbi W a;b 2Zg for a prime integer p� 3 mod 4. Now C.G;� / and
C.G;� /=� are the Manhattan grid graphs on ZŒi � and ZŒi �=H D Fp2 , respectively.
Referring to the set R of representatives in the lemma, for anyH -cosets X;Y let x;y
be the unique elements in X \R, Y \R. As xy 2 XY , we have N.XY / � N.xy/.
By the submultiplicative inequality in ZŒi � we have N.xy/ � N.x/N.y/. Using the
lemma we haveN.x/N.y/DN.X/N.Y /. This yields a submultiplicative inequality
in Fp2 and a similar reasoning on the coset XCY yields a triangle inequality:

Triangle and Submultiplicative Inequalities in Fp2 . For all u;´ in Fp2

N.uC´/�N.u/CN.´/

N.u´/�N.u/N.´/

This indicates that Manhattan distance provides a well-behaved notion of neigh-
borhood of 0 in the finite fields Fp2 .

3. SQUARES IN Fp AND NON-TRANSITIVE ORDER

For each prime p � 3 mod 4 the quadratic residue tournament on Fp is the dir-
ected graph with vertex set Fp in which there is an arrow from vertex x to vertex y if
y�x is a non-zero square in Fp, in which case we write x <p y. We write x �p y

if x <p y or x D y. The relation �p is reflexive, anti-symmetric but not transitive,
and for every x ¤ y exactly one of x �p y or y �p x holds. Using Dirichlet’s the-
orem on primes in arithmetic progressions, Kustaanheimo showed [4] that for every
positive integer k, there is a prime p � 3 mod 4, such that �p is a transitive (and
linear) order relation on f0;1; : : : ;kg � Fp, that is, all positive integers up to k are
quadratic residues mod p. Obviously k cannot exceed .p� 1/=2. Implications of
[4] and related questions were investigated by Järnefelt, Kustaanheimo, Quist [3, 5],
in particular with a view to discrete models in physics, also in subsequent application-
oriented work between the 1950’s (Coish [1]) and the 1980’s (Nambu [6]). For further
references see [2]. In particular [4] implies that for every positive integer k, there is
a prime p � 3 mod 4, such that all ´ 2 Fp2 with N.´/� k are squares in Fp2 . (Note
that all elements of the prime subfield Fp are squares in Fp2 .) To emphasise the ana-
logy of the relation �p with the ordinary inequality relation � among numbers, we
say that a non-zero ´ 2 Fp2 is positive if ´ 2 Fp and 0�p ´.
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4. INNER PRODUCTS COMPARED IN NON-TRANSITIVE ORDER

The only non-trivial automorphism of the field Fp2 associates to each ´ 2 Fp2 its
conjugate ´. The inner product v �w of vectors vD .v1; : : : ;vn/ and wD .w1; : : : ;wn/

in F n
p2 is defined as the scalar v1w1C �� �C vnwn 2 Fp2 . This inner product is left

and right distributive over vector addition, satisfies v �wDw �v, c.v �w/D .cv/ �wD
v � .cw/ for all c 2 Fp2 . However, while v � v belongs to the prime subfield Fp, v � v
is not necessarily positive, and can be 0 even if v¤ 0. Still, a conditional version of
positive definiteness holds locally:

Theorem 1. For every k � 1 there is a prime p � 3 mod 4, such that for all
n � 1 and for all vectors v 2 F n

p2 of Manhattan norm N.v/ � k, we have 0 �p v � v
with equality if and only if vD 0.

Proof. By Kustaanheimo’s result in [4] there is a prime integer p� 3 mod 4 such
that 0;1; : : : ;2k3 are all quadratic residues mod p. For v D .v1; : : : ;vn/ in F n

p2 , let

vj D aj Cbj i , where i2D�1. IfN.v/� k then for all j ,N.aj /� k andN.bj /� k,
vj vj D a

2
j Cb

2
j belongs to the set of squares f0; : : : ;2k2g. Since vj can be non-zero

for at most k indices 1 � j � n only, the sum of the corresponding terms a2
j C b

2
j

belongs to the set of squares f0;1; : : : ;2k3g: �

Note that for all vectors v;w 2 F n
p2

.v �w/.w �v/D .v �w/.v �w/ 2 Fp and

.v �v/.w �w/ 2 Fp:

If v and w are proportional, i.e. if there exists a scalar c in Fp2 such that v D cw
or wD cv, then the above two products are equal. Generally, they are related in the
quadratic residue tournament of Fp as follows.

Theorem 2 (Cauchy-Schwarz Inequality). For every k � 1 there is a prime p�
3 mod 4, such that for all n� 1 and for all vectors v;w 2 F n

p2 of Manhattan norm at
most k,

.v �w/.w � v/�p .v � v/.w �w/:

Proof. For nD 1 the inequality holds trivially as the two sides are equal. Assume
n� 2, vD .v1; : : : ;vn/;wD .w1; : : : ;wn/. For all 1� i � n, N.vi /� k, N.wi /� k.
By Kustaanheimo’s result [4] there is a prime p � 3 mod 4 such that all positive
integers up to 4k6 are quadratic residues modulo p. For each of the

�
n
2

�
pairs fi;j g �

f1; : : : ;ng, i ¤ j , by the triangle and submultiplicative inequalities in Fp2

NŒ.viwj �vjwi /.viwj �vjwj /�� .k
2
Ck2/2 D 4k4

Thus the element

.viwj viwjCvjwivjwi /�.viwj vjwiCvjwiviwj /D .viwj �vjwi /.viwj �vjwj /
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is a square of Manhattan norm at most 4k4 in Fp, and it is non-zero for at most�
k
2

�
� k2 pairs fi;j g. Summing over all pairs fi;j g, all but at most

�
k
2

�
� k2 terms

vanish in the sumX
Œ.viwj viwj Cvjwivjwi /� .viwj vjwi Cvjwiviwj /�

which therefore has Manhattan norm at most 4k6 and it must also be a square in Fp.
But this sum is equal to the difference of products

nX
iD1

vivi

nX
jD1

wjwj �

nX
iD1

viwi

nX
jD1

vjwj D .v �v/.w �w/� .v �w/.w �v/

which is consequently a square in Fp. �

Remark. From the proof it is clear that, in analogy with the classical Cauchy-
Schwarz inequality, for vectors v;w of norm not exceeding k in F n

p2 , where p is
related to k as stipulated above, the Cauchy-Schwarz inequality with respect to �p

holds with equality if and only if viwj �vjwi D 0 for all i;j , i.e. if and only if v;w
are proportional.

We note that the inequality established above is conditional, it holds only in a
specified Manhattan neighborhood of the null vector. Every non-zero element of Fp

can be written as a sum of two squares, in particular there are a;b 2 Fp, such that
a2Cb2 D�1. For ´D aCbi we have ´´D�1. As soon as n� 2, in F n

p2 let

vD .a;b;0; : : : ;0/ and wD .b´;�a´;0; : : : ;0/

The inequality .v �w/.w �v/ �p .v �v/.w �w/ fails because the left-hand side is 0 and
the right-hand side is �1. In fact if n � 3, the inequality can be invalidated with
vectors v;w in F n

p as follows. Taking again a;b 2 Fp with a2Cb2 D�1, let

vD .1;a;b;0; : : : ;0/ and wD .1;0;0;0; : : : ;0/

However, the Cauchy-Schwarz inequality holds unconditionally in the
2-dimensional case for vectors with components in Fp:

Special case of F 2
p . Let p be a prime congruent 3 modulo 4. For all vectors v;w

in F 2
p

.v �w/.w � v/�p .v � v/.w �w/:

Proof. Now the conjugation appearing in the inner products is the identity. Written
in components,

.v �v/.w �w/� .v �w/.w �v/D .v2
1Cv

2
2/.w

2
1Cw

2
2/� .v1w1Cv2w2/

2
D

D v2
1w

2
2Cv

2
2w

2
1 �2v1w1v2w2 D .v1w2�v2w1/

2

�
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5. MANHATTAN NORM OF INNER PRODUCT

The Manhattan norm can be seen to be submultiplicative not only on the ring ZŒi �
and its quotient field Fp2 , but on all vector spaces F n

p2 , with respect to the inner
product:

Cauchy-Schwarz Inequality for Manhattan Norm on F n
p2 . Consider any prime

p � 3 mod 4 and let n� 1. For all v;w 2 F n
p2

N.v �w/�N.v/N.w/:

Proof. Let vD .v1; : : : ;vn/;wD .w1; : : : ;wn/2 F n
p2 . Then v �wD

P
vjwj . Clearly

N.´/D N.´/ for any ´ 2 Fp2 . By the triangle and submultiplicative inequalities in
Fp2 we have

N.v �w/DN
�P

vjwj

�
�
P
N
�
vjwj

�
�
P
N.vj /N.wj /�

�
P
N.vj /

P
N.wj /DN.v/N.w/

�

Remark. The inequality N.v �w/�N.v/N.w/ is easily interpreted and continues
to hold for v;w in the module .ZŒi �=mZŒi �/n for any positive integer m. As soon as
m is composite, or a prime not congruent to 3 modulo 4, the ring ZŒi �=mZŒi � fails to
be an integral domain.
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