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1. INTRODUCTION

In theoretical chemistry, the physico-chemical properties of chemical compounds
are often modelled by means of molecular–graph–based structure–descriptors, which
are also referred to as topological indices [14].

Let G be a simple connected graph with vertex set V.G/ and edge set E.G/. The
vertex version of the Wiener index is the first reported distance-based topological
index which was introduced in 1947 by Wiener [16, 17], who used it for modeling
the shape of organic molecules and for calculating several of their physico-chemical
properties. The Wiener index W.G/ of G is defined as:

W.G/D
X

fu;vg�V.G/

dG.u;v/;

where dG.u;v/ is the shortest path distance between vertices u and v in G. Details
on the Wiener index can be found in [7, 8, 12, 14, 15].

Edge versions of the Wiener index based on the distance between all pairs of edges
in a simple connected graph G were introduced in 2009 [9]. Two possible distances
between the edges g D uv and f D ´t of a graph G can be considered. Each of
them gives rise to a corresponding edge-Wiener index. The first distance is the one
based on the distance between the corresponding vertices in the line graph of G and
obviously, its related edge-Wiener index is equal to the ordinary Wiener index of the
line graph of G. The second distance dejG.g;f / between the edges g D uv and
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f D ´t of the graph G is defined as [9]:

dejG.g;f /D

�
0 g D f

maxfdG.u;´/;dG.u; t/;dG.v;´/;dG.v; t/g g ¤ f

Related to this distance, the second edge-Wiener indexWe.G/ of G is defined as [9]:

We.G/D
X

fg;f g�E.G/

dejG.g;f /:

We refer the reader to [6, 10] for more information on the edge-Wiener indices.
The first edge-Wiener index of some composite graphs was computed before [1,

2, 4]. In this paper, we are interested in the type of relationship that exists between
the second edge-Wiener index of the join and corona product of graphs and their
components. Results are applied for several classes of graphs by specializing com-
ponents in these product graphs. So throughout the paper, by the edge-Wiener index
of a graph G, we mean the second version, We.G/ and by distance between two
edges g and f in G, we mean the second distance dejG.g;f /.

2. PRELIMINARIES

LetNG.u/ denote the neighborhood of a vertex u inG, i.e., the set of all vertices of
G adjacent with u. The degree of u inG is the cardinality ofNG.u/ and is denoted by
degG.u/. Let �.G/ and �.G/ denote the number of triangles in G and the number
of subgraphs of G isomorphic to the 4-vertex complete graph K4, respectively. It is
easy to see that

�.G/D
1

3

X
uv2E.G/

jNG.u/\NG.v/j;

�.G/D
1

12

X
uv2E.G/

X
´2NG.u/\NG.v/

jNG.u/\NG.v/\NG.´/j:

Corresponding to each triangle in G, there are 3 pairs of adjacent edges which are
at distance 1 in G. So the number of such pairs of edges in G is equal to 3�.G/.
Also, corresponding to each subgraph of G isomorphic to K4, there are 3 pairs of
nonadjacent edges which are at distance 1 in G. So the number of such pairs of
edges in G is equal to 3�.G/. Hence, the total number of pairs of edges which are
at distance 1 in G is equal to 3.�.G/C�.G// :

Let x be a vertex of G and g D uv be an edge of G. We define the distance
DG.x;g/ between the vertex x and the edge g of the graph G as [5]:

DG.x;g/DmaxfdG.x;u/;dG.x;v/g:
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The vertex-edge Wiener index Wve.G/ of G is defined as the sum of such distances
over all vertices x 2 V.G/ and edges g 2E.G/ [5]:

Wve.G/D
X

x2V.G/

X
g2E.G/

D.x;gjG/:

This index was studied in more details in [1, 3] under the name Max.G/. We refer
the reader to these references for more information on the vertex-edge Wiener indices
and for explicit formulas for Wve.G/ of several classes of graphs.

3. MAIN RESULTS

Throughout this section, let G1 and G2 be two simple connected graphs and ni

and ei denote the numbers of vertices and edges of Gi , respectively, where i 2 f1;2g.
Our aim is to compute the edge-Wiener index of join and corona product of G1 and
G2.

3.1. Join

The join G1CG2 of graphs G1 and G2 is defined as the graph with the vertex set
V.G1/[V.G2/ and the edge set

E.G1CG2/DE.G1/[E.G2/[S;

where S D fu1u2 ju1 2 V.G1/;u2 2 V.G2/g . All distinct vertices of G1CG2 are
either at distance 1 or 2. The vertices at distance 2 are precisely those of G1 that
are not adjacent in G1, and those of G2 that are not adjacent in G2. So all distinct
edges of G1CG2 are either at distance 1 or 2. The join of two graphs is also known
as their sum. Its definition can be extended inductively to more than two graphs in a
straightforward manner. It is a commutative operation and hence both its components
will appear symmetrically in any formula including distance-based invariants.

Theorem 1. Let G1 and G2 be two simple connected graphs. Then

We.G1CG2/D 2

 
n1n2

2

!
C2

 
e1

2

!
C2

 
e2

2

!
C e1n2.2n1�3/Cn1e2.2n2�3/

� e1e2�3.n2C1/�.G1/�3.n1C1/�.G2/�3.�.G1/C�.G2// :

Proof. Let Q be the set of all pairs of edges of G1CG2. We partition Q into six
disjoint sets as follows:
Q1 D ffg;f gjg;f 2E.G1/g;
Q2 D ffg;f gjg;f 2E.G2/g;
Q3 D ffg;f gjg 2E.G1/;f 2E.G2/g;
Q4 D ffg;f gjg 2E.G1/;f 2 Sg;
Q5 D ffg;f gjg 2E.G2/;f 2 Sg;
Q6 D ffg;f gjg;f 2 Sg.
The edge-Wiener index of G1CG2 is obtained by summing the contributions of all
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pairs of edges over those six sets. We proceed to evaluate their contributions in order
of increasing complexity.

The case of Q3 is the simplest. Let fg;f g 2Q3, where g D u1v1 2 E.G1/ and
f D u2v2 2E.G2/. Then

dejG1CG2
.g;f /DmaxfdG1CG2

.u1;u2/;dG1CG2
.u1;v2/;dG1CG2

.v1;u2/;

dG1CG2
.v1;v2/g

Dmaxf1;1;1;1g D 1:

There are e1e2 such pairs of edges in Q3 and each of them contributes 1 to the edge-
Wiener index. Hence, the total contribution of pairs from Q3 is equal to e1e2.

The set Q6 contains pairs of edges from S . Let fg;f g 2 Q6 and g D u1u2,
f D v1v2, where u1;v1 2 V.G1/, u2;v2 2 V.G2/. Then

dejG1CG2
.g;f /DmaxfdG1CG2

.u1;v1/;dG1CG2
.u1;v2/;dG1CG2

.u2;v1/;

dG1CG2
.u2;v2/g

DmaxfdG1CG2
.u1;v1/;1;1;dG1CG2

.u2;v2/g:

It is easy to see that, if u1 D v1;u2v2 2E.G2/ or u2 D v2;u1v1 2E.G1/ or u1v1 2

E.G1/;u2v2 2E.G2/ then dejG1CG2
.g;f /D 1, otherwise dejG1CG2

.g;f /D 2.
The total number of pairs of edges in Q6 is equal to

�
n1n2

2

�
. Among them there are

n1e2Cn2e1C 2e1e2 pairs that contribute 1 to the edge-Wiener index, and all other
pairs contribute 2. Hence the total contribution of pairs from Q6 is equal to

2

 
n1n2

2

!
�n1e2�n2e1�2e1e2:

Now, we compute the contribution of pairs from Q4. Let fg;f g 2Q4 and g D
u1v1 2E.G1/ and f D ´1u2 2 S , where u1;v1;´1 2 V.G1/, u2 2 V.G2/. Then

dejG1CG2
.g;f /DmaxfdG1CG2

.u1;´1/;dG1CG2
.u1;u2/;dG1CG2

.v1;´1/;

dG1CG2
.v1;u2/g

DmaxfdG1CG2
.u1;´1/;1;dG1CG2

.v1;´1/;1g:

It is easy to see that, if ´1 D u1 or ´1 D v1 or u1´1;v1´1 2 E.G1/ then
dejG1CG2

.g;f /D 1, otherwise dejG1CG2
.g;f /D 2.

The total number of pairs from Q4 is equal to e1n1n2. Among them there are
2e1n2C 3n2�.G1/ pairs that contribute 1 to the edge-Wiener index, and all other
pairs contribute 2. Hence the total contribution of pairs from Q4 is equal to

2e1n1n2�2e1n2�3n2�.G1/:

By symmetry, the total contribution of pairs from Q5 is equal to

2n1n2e2�2n1e2�3n1�.G2/:
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It remains to compute the contributions of Q1 and Q2. Let fg;f g 2Q1, where
g D u1v1, f D ´1t1. Then

dejG1CG2
.g;f /DmaxfdG1CG2

.u1;´1/;dG1CG2
.u1; t1/;dG1CG2

.v1;´1/;

dG1CG2
.v1; t1/g:

By definition of G1 C G2, the distances dG1CG2
.u1;´1/; dG1CG2

.u1; t1/,
dG1CG2

.v1;´1/ and dG1CG2
.v1; t1/ are equal to 0, 1 or 2, so dejG1CG2

.g;f / is
either equal to 1 or 2. The total number of pairs inQ1 is equal to

�
e1

2

�
. As mentioned

before, 3.�.G1/C�.G1// pairs contribute 1 to the edge-Wiener index, and all other
pairs contribute 2. Hence the total contribution of pairs from Q1 is equal to

2

 
e1

2

!
�3.�.G1/C�.G1// :

Again, the total contribution of Q2 is obtained by the symmetry as

2

 
e2

2

!
�3.�.G2/C�.G2// :

Now, the formula of the Theorem follows by adding the contributions of Q1; : : : ;

Q6 and simplifying the resulting expression. �

As expected, G1 and G2 appear symmetrically in the above formula. It is interest-
ing to note that the formula does not depend on the connectivity of G1 and G2. That
allows us to compute the edge-Wiener index of joins of graphs that are not themselves
connected.

3.2. Corona product

The corona product G1 ıG2 of graphs G1 and G2 is obtained by taking one copy
of G1 and n1 copies of G2, and joining all vertices of the i -th copy of G2 to the i -th
vertex ofG1 for i D 1;2; � � � ;n1. Unlike join, corona is a non-commutative operation,
and its component graphs appear in markedly asymmetric roles. More formally, we
denote the copy of G2 related to the vertex x 2 V.G1/ by G2;x and the edge set of
G2;x by S2;x . By definition of G1 ıG2, the distance between two distinct vertices
u;v 2 V.G1 ıG2/ is given by:

dG1ıG2
.u;v/D

8̂̂̂̂
<̂
ˆ̂̂:
dG1

.u;v/ u;v 2 V.G1/

dG1
.u;x/C1 u 2 V.G1/;v 2 V.G2;x/

1 uv 2 S2;x

2 u;v 2 V.G2;x/;uv … S2;x

dG1
.x;y/C2 u 2 V.G2;x/;v 2 V.G2;y/;x ¤ y

Theorem 2. Let G1 and G2 be two simple connected graphs. Then

We.G1 ıG2/DWe.G1/C .n2C e2/
2W.G1/C .n2C e2/Wve.G1/�6n1�.G2/
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�3n1�.G2/C2

 
n1n2

2

!
C2

 
n1e2

2

!
Cn1e1.n2C e2/

Cn1e2.2n1n2�3/:

Proof. It is obvious that the graph G1 ıG2 has e1Cn1e2Cn1n2 edges. We parti-
tion the edge set of G1 ıG2 into three sets. The first one is the edge set of G1, S1 D

E.G1/, the second one contains all edges in all copies of G2, S2 D
S

x2V.G1/S2;x ,
and the third one contains all edges with one end in G1 and the other end in some
copy of G2, S3 D

S
x2V.G1/S3;x , where S3;x D feje D ux;u 2 V.G2;x/g.

Now we start to compute the distances between the edges of these three sets. We
consider the following six cases:
Case 1. fg;f g � S1.
It is obvious that dejG1ıG2

.g;f /D dejG1
.g;f /, so

W1 D

X
fg;f g�S1

dejG1ıG2
.g;f /DWe.G1/:

Case 2. fg;f g � S2; g 2 S2;x and f 2 S2;y .
First, consider the case x D y and let g D u2;xv2;x;f D ´2;xt2;x 2 S2;x . Then

dejG1ıG2
.g;f /DmaxfdG1ıG2

.u2;x;´2;x/;dG1ıG2
.u2;x; t2;x/;dG1ıG2

.v2;x;´2;x/;

dG1ıG2
.v2;x; t2;x/g:

Clearly, the above four distances are equal to 0, 1 or 2. So dejG1ıG2
.g;f /D 1 or 2.

In this case, the vertex x and its related copy, G2;x , form a copy of K1CG2. So by
the same reasoning as in the proof of Theorem 1, we obtain:X

fg;f g�S2;x

dejG1ıG2
.g;f /D 2

 
e2

2

!
�3.�.G2/C�.G2// :

Now let x ¤ y and g D u2;xv2;x and f D u2;yv2;y . Then

dejG1ıG2
.g;f /DmaxfdG1ıG2

.u2;x;u2;y/;dG1ıG2
.u2;x;v2;y/;dG1ıG2

.v2;x;u2;y/;

dG1ıG2
.v2;x;v2;y/g

DmaxfdG1
.x;y/C2;dG1

.x;y/C2;dG1
.x;y/C2;dG1

.x;y/C2g

DdG1
.x;y/C2:

Now,

W2 D

X
fg;f g�S2

dejG1ıG2
.g;f /

D

X
x2V.G1/

X
fg;f g�S2;x

dejG1ıG2
.g;f /C

X
fx;yg�V.G1/

X
g2S2;x

X
f 2S2;y

dejG1ıG2
.g;f /
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D

X
x2V.G1/

 
2

 
e2

2

!
�3.�.G2/C�.G2//

!
C e2

2

X
fx;yg�V.G1/

�
dG1

.x;y/C2
�

D n1

 
2

 
e2

2

!
�3.�.G2/C3�.G2//

!
C e2

2

 
W.G1/C2

 
n1

2

!!
:

Case 3. fg;f g � S3; g 2 S3;x and f 2 S3;y .
If x D y and g D u2;xx, f D v2;xx where u2;x;v2;x 2 V.G2;x/, then

dejG1ıG2
.g;f /DmaxfdG1ıG2

.u2;x;v2;x/;dG1ıG2
.u2;x;x/;dG1ıG2

.x;v2;x/;

dG1ıG2
.x;x/g

DmaxfdG1ıG2
.u2;x;v2;x/;1;1;0g:

If v2;x is adjacent to u2;x inG2;x , then dG1ıG2
.u2;x;v2;x/D 1, so dejG1ıG2

.g;f /D

1, otherwise d.u2;x;v2;x/ D 2, so dejG1ıG2
.g;f / D 2. Hence for each edge g D

u2;xx 2 S3;x , degG2;x
.u2;x/ edges of S3;x are at distance 1 from g and all other

edges are at distance 2. SoX
fg;f g�S3;x

dejG1ıG2
.g;f /

D
1

2

X
u2;x2V.G2;x/

�
degG2;x

.u2;x/C2
�
n2�1�degG2;x

.u2;x/
��

D
1

2
.2e2C2n2.n2�1/�4e2/D n2.n2�1/� e2:

If x ¤ y and g D u2;xx 2 S3;x , f D u2;yy 2 S3;y , then

dejG1ıG2
.g;f /DmaxfdG1ıG2

.u2;x;u2;y/;dG1ıG2
.u2;x;y/;dG1ıG2

.x;u2;y/;

dG1ıG2
.x;y/g

DmaxfdG1
.x;y/C2;dG1

.x;y/C1;dG1
.x;y/C1;dG1

.x;y/g

DdG1
.x;y/C2:

Now,

W3 D

X
fg;f g�S3

dejG1ıG2
.g;f /

D

X
x2V.G1/

X
fg;f g�S3;x

dejG1ıG2
.g;f /C

X
fx;yg�V.G1/

X
g2S3;x

X
f 2S3;y

dejG1ıG2
.g;f /

D

X
x2V.G1/

.n2.n2�1/� e2/C
X

fx;yg�V.G1/

X
g2S3;x

X
f 2S3;y

.dG1
.x;y/C2/

D n1 .n2.n2�1/� e2/Cn
2
2

X
fx;yg�V.G1/

.dG1
.x;y/C2/
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D n1 .n2.n2�1/� e2/Cn
2
2W.G1/C2n

2
2

 
n1

2

!

D 2

 
n1n2

2

!
�n1e2Cn

2
2W.G1/:

Case 4. g 2 S1;f 2 S2.
Let g D u1v1 2 S1, f D u2;xv2;x 2 S2;x , for some x 2 V.G1/. Then

dejG1ıG2
.g;f /DmaxfdG1ıG2

.u1;u2;x/;dG1ıG2
.u1;v2;x/;dG1ıG2

.v1;u2;x/;

dG1ıG2
.v1;v2;x/g

DmaxfdG1
.u1;x/C1;dG1

.u1;x/C1;dG1
.v1;x/C1;

dG1
.v1;x/C1g

DmaxfdG1
.u1;x/;dG1

.v1;x/gC1

DDG1
.x;g/C1:

Now,

W4 D

X
x2V.G1/

X
f 2S2;x

X
g2S1

dejG1ıG2
.g;f /D

X
x2V.G1/

X
f 2S2;x

X
g2S1

�
DG1

.x;g/C1
�

D e2Wve.G1/Cn1e1e2 D e2 .Wve.G1/Cn1e1/ :

Case 5. g 2 S1;f 2 S3

Let g D u1v1 2 S1, f D u2;xx 2 S3;x , where u1;v1;x 2 V.G1/, u2;x 2 V.G2;x/.
Then

dejG1ıG2
.g;f /DmaxfdG1ıG2

.u1;u2;x/;dG1ıG2
.u1;x/;dG1ıG2

.v1;u2;x/;

dG1ıG2
.v1;x/g

DmaxfdG1
.u1;x/C1;dG1

.u1;x/;dG1
.v1;x/C1;dG1

.v1;x/g

DmaxfdG1
.u1;x/;dG1

.v1;x/gC1

DDG1
.x;g/C1:

Now,

W5 D

X
x2V.G1/

X
f 2S3;x

X
g2S1

dejG1ıG2
.g;f /D

X
x2V.G1/

X
f 2S3;x

X
g2S1

.DG1
.x;g/C1/

D n2Wve.G1/Cn1e1n2 D n2 .Wve.G1/Cn1e1/ :

Case 6. g 2 S2;f 2 S3

Let gD u2;xv2;x 2 S2;x;f D ´2;xx 2 S3;x , where x 2 V.G1/ and u2;x;v2;x;´2;x 2

V.G2;x/. Then

dejG1ıG2
.g;f /DmaxfdG1ıG2

.u2;x;´2;x/;dG1ıG2
.u2;x;x/;dG1ıG2

.v2;x;´2;x/;

dG1ıG2
.v2;x;x/g
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DmaxfdG1ıG2
.u2;x;´2;x/;1;dG1ıG2

.v2;x;´2;x/;1g:

By definition of G1 ıG2, the distances dG1ıG2
.u2;x;´2;x/ and dG1ıG2

.v2;x;´2;x/

are equal to 0, 1 or 2. It is easy to see that, if ´2;x D u2;x or ´2;x D v2;x or
u2;x´2;x;v2;x´2;x 2 S2;x , then dejG1ıG2

.g;f /D 1, otherwise dejG1ıG2
.g;f /D 2.

So, for each edge g D u2;xv2;x 2 S2;x , the edges u2;xx;v2;xx;´2;xx 2 S3;x , where
´2;x 2NG2;x

.u2;x/\NG2;x
.v2;x/ are at distance 1 from g and all other edges are at

distance 2. SoX
g2S2;x

X
f 2S3;x

dejG1ıG2
.g;f /

D

X
u2;xv2;x2S2;x

�
2CjNG2;x

.u2;x/\NG2;x
.v2;x/j

C2
�
n2�2�jNG2;x

.u2;x/\NG2;x
.v2;x/j

��
D

X
u2;xv2;x2S2;x

�
2n2�2�jNG2;x

.u2;x/\NG2;x
.v2;x/j

�
D 2e2.n2�1/�3�.G2/:

If g D u2;xv2;x 2 S2;x;f D u2;yy 2 S3;y , where x;y 2 V.G1/ and x ¤ y, then

dejG1ıG2
.g;f /DmaxfdG1ıG2

.u2;x;u2;y/;dG1ıG2
.u2;x;y/;dG1ıG2

.v2;x;u2;y/;

dG1ıG2
.v2;x;y/g

DmaxfdG1
.x;y/C2;dG1

.x;y/C1;dG1
.x;y/C2;dG1

.x;y/C1g

DdG1
.x;y/C2:

Now,

W6 D

X
x;y2V.G1/

X
g2S2;x

X
f 2S3;y

dejG1ıG2
.g;f /

D

X
x2V.G1/

X
g2S2;x

X
f 2S3;x

dejG1ıG2
.g;f /

C

X
x2V.G1/

X
y2V.G1/nfxg

X
g2S2;x

X
f 2S3;y

dejG1ıG2
.g;f /

D

X
x2V.G1/

.2e2.n2�1/�3�.G2//

C

X
x2V.G1/

X
y2V.G1/nfxg

X
g2S2;x

X
f 2S3;y

.dG1
.x;y/C2/

D n1 .2e2.n2�1/�3�.G2//Cn2e2

X
x2V.G1/

X
y2V.G1/nfxg

.dG1
.x;y/C2/

D n1 .2e2.n2�1/�3�.G2//C2n2e2 .W.G1/Cn1.n1�1// :
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Now the formula for the edge-Wiener index of G1 ıG2 follows by adding all six
contributions and simplifying the resulting expression. �

Again, it is interesting to note that the formula of Theorem 2 does not include
any invariants of G2 that depend on its connectivity. It is, hence, possible to apply
Theorem 2 to corona products G1 ıG2 with disconnected G2.

4. EXAMPLES AND COROLLARIES

Now, we can obtain explicit formulas for the edge-Wiener indices of some classes
of graphs by specializing components in joins and coronas. We start by computing
the edge Wiener-index of a suspension of a graph G. For a given graph G, we call
the graph K1CG the suspension of G, where K1 denotes the single vertex graph.

Corollary 1. Let G be a simple graph of order n and size e. Then

We.K1CG/DWe.K1 ıG/D 2

 
nC e

2

!
�3e�6�.G/�3�.G/:

Now the formulas for the wheel graph Wn D K1CCn and for the fan graph
K1CPn follow at once. Both graphs allow alternative representations as K1 ıCn

and K1 ıPn, respectively.

Corollary 2.

We.K1CCn/D

�
15 nD 3

4n2�5n n� 4
I

We.K1CPn/D 4n
2
�9nC5; n� 2:

Our next example is the windmill graph. The windmill graph D.m/
n is the graph

obtained by takingm copies of the complete graphKn with a vertex in common. The
case nD 3 therefore corresponds to the Dutch windmill graph. One can easily see
that the windmill graph is the suspension ofm copies ofKn�1. Also, it is easy to see
that, �.Kn/ D

�
n
3

�
and �.Kn/ D

�
n
4

�
, for n � 1: So using Corollary 1 , we can get

the formula for the edge-Wiener index of the windmill graph D.m/
n .

Corollary 3. For n� 2 and m� 1,

We.D
.m/
n /D

1

4
m

 
n

2

! 
4m

 
n

2

!
�n2
Cn�2

!
:

In particular, the edge-Wiener index of the Dutch windmill graph D.m/
3 is given

by:

Corollary 4. For m� 1,

We.D
.m/
3 /D 3m.3m�2/:
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Now, we turn our attention toward coronas. Coronas sometimes appear in chemical
literature as plerographs of the usual hydrogen-suppressed molecular graphs known
as kenographs; see [13] for definitions and more information. The t -thorny graph
of a given graph G is obtained as G ıK t , where K t denotes the empty graph on t
vertices [11]. For the t -thorny graph of a graph G, we obtain the following formula.

Corollary 5. Let G be a simple connected graph of order n and size e. Then

We.G ıK t /DWe.G/C t
2W.G/C tWve.G/Cnt.ntC e�1/:

Now, we present two formulas for the edge-Wiener indices of the t -thorny cycle
Cn ıK t and the t -thorny path Pn ıK t . We use known results for the edge-Wiener
indices of paths and cycles [9] and our results on the vertex-edge Wiener indices of
these graphs obtained in [1].

Corollary 6.

We.Cn ıK t /D

(
n.tC1/

8
Œn2.tC1/C4n.2tC1/� .tC13/� n is odd

n.tC1/
8

Œn2.tC1/C4n.2tC1/�8� n is even
I

We.Pn ıK t /D

 
nC1

3

!
.tC1/2C .ntCn�1/.nt �1/:

Interesting classes of graphs can also be obtained by specializing the first compon-
ent in the corona product. For example, for a graph G, the graph K2 ıG is called its
bottleneck graph. For the bottleneck graph of a graph G, we obtain the following
formula.

Corollary 7. Let G be a simple graph of order n and size e. Then

We.K2 ıG/D 5.nC e/
2
C2.n�2e/�12�.G/�6�.G/:

Using Corollary 7, the formulas for the bottleneck graph of a cycle K2 ıCn and
the bottleneck graph of a path K2 ıPn are easily obtained.

Corollary 8.

We.K2 ıCn/D

�
162 nD 3

20n2�2n n� 4
I

We.K2 ıPn/D 20n
2
�22nC9:
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