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AsstracT. We succeeded in isolating a special class of concave Young-functions
enjoying the so-calledensity-level propertyln this class there is a proper subset
whose members have each the so-called degree of contraction denatedcabgl

map bijectively the intervald, «0) onto itself. We constructed the fixed point of
each of these functions. Later we proved that every positive numisethe fixed

point of a concave Young-function havitigas degree of contraction. We showed
that every concave Young-function is square integrable with respect to a specific
Lebesgue measure. We also proved that the distance generatedlByritien is

a metric in the set of concave Young-functions and then derived that the concave
Young-functions possessing the density-level property constitute a dense set in the
space of concave Young-functions.

Mathematics Subject Classificatioferimary 47H10, 47H11, 26A18; Secondary
26A06, 26A09, 33B30, 37C25

Keywords: concave Young-functions, degree of contraction, fixed points, dense set

1. INTRODUCTION

Lety : (0,0) — (0, ) be a right-continuous and decreasing function such that
it is integrable on every finite intervg0, x) . It is easily seen that the functiah :
[0, 0) — [0, ), defined by

D (X) = fo o () dt, (1.1)

is a nonnegative, increasing and concave function wiB) = 0. We further assume
that® (o) = oo (® is referred to asoncave Young-functian the literature [4].) We
note that if® is a concave Young-function, then sdi® for all positive constantb.
We shall recall the following definition and result in [1].

Definition A. We say that for the concave Young-functidrihe maximal inequal-
ity is valid with some positive constakt, (depending only o) if for an arbitrary
nonnegative submartingal®,, %), n > 1, the inequality

ED (X)) < Ko (1+ EX,)
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4 N. K. AGBEKO

holds for alln > 1, whereX};, = maxj<x<n X

Theorem B. Let ® be any concave Young-function. In order tidasatisfy the
maximal inequality, it is necessary andfatient that

Ag () = memdt<m
.t
Moreover, ifAg (0) < o0, thenKy = max(® (1), Ap (0)) .

Theorem C([3, p. 205]) Each non-empty subsBtof a metric spac& is a metric
space, the distance i being the same as iX.

We shall say that a concave Young-functibisatisfies the&ensity-level propertif
Ap (o0) < o0. The quantityAg (co) will be referred to aslensity-leveand the function
Ap : [1,00) — [0, o), defined by

X
A= [ £

1t

will be calleddensity-level function
For instance the concave Young-functiohs(x) = VX and®,(x) = In(x+ 1),

defined forx € [0, =), have finite density-levels. The concave Young-function
®3(X) = 2x+ 1 — € X is of infinite density-level. In fact, if we leps(x) stand
for the derivative of functiors (X) , then

A@g(m):fm¢3—mdt2fmgdt=m.
1 t 1t

Theorem B suggests that the set of concave Young-functions that satisfy the density-
level property is a rather broad class.
Define functionAy : (0, o) — (0, o] by

A= [ £ ax
b X
where® € Yeone

It is not difficult to see thaAji)l (b) < o andA:‘D3 (b) = oo, for any numbetb €
(0, o), where functionsb, (x) = X and®3(x) = 2x + 1 — e X are defined for
X € [0, o0).

Remarkl. The functionx™1® (x) is decreasing on the intervifl, o) and

. D(X
0< lim —( ) < 00,
X—00 X

Notation. Y¢onc Will stand for the collection of all concave Young-function®
will denote the set of all function® € Yqncthat satisfy the density-level property.

We note thatA is a proper subset a¥/¢one Since the concave Young-function
@3 : [0,0) — [0, ), defined above by (x) = 2x + 1 — e %, was shown to be of
infinite density-level.
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We recall the following factA functionT from a metric spacéM, o) to itself is
called a contraction if there is an which satisfie® < a < 1 so that

o(TX,T () <ao(Xy)

forall x, y € M.
We also recall the following well-known principle.

Contraction Mapping Principle ([5]). LetT be a contraction on a complete met-
ric space(M, o). Then there is a unique pointe M (called fixed poin) such that
T (X) = x. Furthermore, ifxg is any point inM and we define,,.1 = T (x,), then
Ilmn_)oo Xn = X

In this communication we study, among others, the closurg& ohder the compo-
sition operation. In a sense, Theorems 1 and 2 show that the concave Young-functions
with the density-level property behave like left and right ideals with respect to the
composition operation. We also realize that not every funcliecn A admits a fixed
point. The investigation in this direction leads us to isolate a proper sisef
A such that every functio® € A; possesses the so-callddgree of contractian
which is closely related to the fixed point @fif it exists. We show that every con-
cave Young-function is square integrable with respect to a specific given Lebesgue
measure, and we prove that the natural distance defined hytherm satisfies the
metric axioms inY¢one We then demonstrate that the sulhgigbroves to be a dense
set inYcone

2. THE CLOSURE OF A UNDER ADDITION AND COMPOSITION OPERATIONS
Remark2. For every numbes € (0, o) we have thatp (s) < @ (S).

Proor. Fix arbitrarily two numbers € (0, o) andb € (0, s). Then by applying
twice the fact thap decreases ofd, ) , we have that

S b S
q’(s)zfo*"“)dt:fo ¢(t)dt+fb¢(t)dt2b¢(b)+(8—b)90(8)

> by (s) +(s—b)p(s) = sp(9),
as required. O

The following remark is an immediate consequence of Theorem B.

Remark3. Let ® € Yeone If @ € A, thend (X) < Ky (1 + X) for all x € (0, ),
whereKy = max(® (1), Ap (0)) .

Remark4. The composition of two concave Young-functions is also a concave
Young-function.

The following two lemmas are trivial.

Lemma 1. For any numbetb € (0, o) and function® € Y.one We have that
b® € A if and only if® € A. Moreover,App (X) = bAp (X), X € [1, ).
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Lemma 2. Let functionsd, and®; € Yoncbe arbitrary. Thenbd; and®, € A if
and only if®q + @, € A. Furthermore,
A(D1+(I)2 (X) = A“Dl (X) + ACDz (X) s Xe€ [1’ OO) .

Theorem 1. Let functions®; and @, € Yonc be arbitrary. If @, € A, then
Dq 0Dy € A.

Proor. Write ¢; for the derivative ofd; (i € {1, 2}). Compute the density-level of
the compositionb; o @-.

oo, (00) = floo @2 (X) 1 (D2 (X))dx

X

< o1 (@2 (D) fl 2200 4y (@2 (1) Ag, (00) < o,

X
via the monotonicity of functiogp;. O
Remarks. Let ® € Y¢one. Then ford to belong taA it is necessary that
tIim e()=0.

Proor. Assume thatd € A but lim_. ¢ (t) = lp > 0. Pick an arbitrarily fixed
numbert € (1, ). Then

t
00 > Ag (c0) > f &Xx)dxz ¢ (t)log(t) > lglog(t).
1
Passing to the limit, it will follow thato = Ag (e0) < oo, which is absurd. This
completes the proof. O

The following remark suggests thatdf € Y¢one then eitherAy (b) = oo for all
b € (0, 0), or Ay (b) < co for all b € (0, ).

Remark6. Let ® € Ycone ThenAy (b) < oo for every constanb € (0, co) \ {1} if
and only if Ag (c0) < co.

Proor. A simple computation shows that
1 (X) .
o0 Ap () + [ EZdx ifb<1
Ao = [ (2 b
X Ap () - [[Rdx if b> 1,
which yields the result. O

Theorem 2. Let functions®; and @, € Yonc be arbitrary. If ®; € A, then
D1 0Dy € A.
Proor. We first show that

_ (T 2 e1 (P2(1)
Ao, () = f(bzl(l) @ (1) dt
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whereq)El is the inverse function ab, (whose existence is guaranteed by the conti-
nuity of @5).
In fact, by definition we have that

oy () = [ 2%
1 X
Now, settingx = @, (t) we observe thadx = ¢, (t) dt and thus
* g2 (1) @1 (P2(1))
o () = [ £ el
' 0;1(1) D2 (1)
Next, compute the density-level of the compositino ®,. Remark 1 implies that

o () - [ 2002020

_ f T P2 (0) p2 () 1 (P2 1))
1 t D, (1)

<c f * p2(t) 1 (P2(1))
T Jayi) D5 (1)
wherec = 1/@51 () (the second equality holds because of the claim shown above),
which was to be proven. m]
Corollary 1. Let® € Y oncanda € (0,1) be arbitrary. Thend, € A, where the
function®, : [0, ) — [0, o) is defined by, (X) = ®* (X) = (P (X))*.
Proposition 1. Let® € Yoncbe arbitrary and fix any numbese (0, ). Then
1@ (X) — @ ()l < ¢(5) X -yl
for all numbersx, y € [s, ).

dt = cAp, (),

Proor. Pick numbers, y € [s, o) arbitrarily. Via the monotonicity o it follows
that

1D (X) = @ ()] = max(P (X), (y)) - min(P(x), P (y))
= ® (max(x, y)) — ® (min(x, y)).
Hence the monotonicity af yields that

max(x.y) _
(%) — D (5)] = f P00t (9 maxti ) - min(x ) = ¢ (9l
min(Xx, y
This was to be proved. O

We shall similarly show the following proposition.
Proposition 2. Let® € A be arbitrary and fix any numbese [1, ). Then
Ao (X) = Ao ()] < ¢ (9) IX—yl
for all numbersx, y € [s, ).
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Proor. Pick numbers, y € [s, o) arbitrarily. Via the monotonicity of; it fol-
lows that

1As (X) — Ao ()] = max(As (X), Ao () — min(Ag (X), Ao (1))
= Ap (Mmax(x, y)) — Ap (MIN(X, y))

M) (1) (9)
=f 20t < £ x -yl < (9 Ix-ul,
min(X, y)

becausé ¢ (t) is a decreasing function. O

Proposition 3. LetX, y € (0, 0) andA € Yeonc (With A # @) be arbitrary. Then

zuAp@(X) SUpCD(y)|<SUpI®(X) @ (y)l,

provided thasupy, @ (t) < oo for all t € (0, o).
Proor. We first note that
() <I2(X) - Q)+ @(y) and @ (y) <[P (X) — P (y)l + P (X).
Taking the supremum we can easily observe that

sup® (x) < supl® (x) — @ (y)| + sup® (y)
deA deA deA
and

zuAp<1> (y) < SUp|<I>(X) O (y)| + SUp<I> (X).

Combining these inequalities we have that

—sup|®(x) - <I>(y)|<SUp<D(X) SUD®(y)<SUDI®(X) @ (y)l,
deA deA

which yields the result. ]

We know thakk®d € Yoncfor any fixedd € Yoncand allk > 1. Then

0 ifx=0
@ (X) > kd ’
ez ppenr- TG

meaning that there is no real functigifx) such thaid (x) < g (x) for all ® € Yconc
andx € [0, ). Nevertheless, this is possible for their suitably normalised forms, as
shown in the following lemma.

Lemma 3. The functiors : [0, «0) — [0, ), defined by

S(¥ = sup (@) (%),
DeYconc
has the following properties:

(1) S(O)=0andS (1) = 1.
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(2) Sis anon-decreasing function such that
@) e <SX

forall ® € Y oncandx € [0, o).
(3) The identity
sup L+o()t=1

DeYconc
holds.
(4) For every numbek € [0, o), the chain of inequalitiex < S (X) < x+1 holds
true.

(5) We have thalimy_,., x 1S (x) = 1 andlimy_,. S (X) = co.

Proor. The first part is obvious. We show tha{x) is a hon-decreasing function.
In fact, pick arbitrarily two numbergi;andx, € [0, oo) with x; < Xp. By the mono-
tonicity we have thatb (x;) < @ (x2). If we normalize this inequality suitably and
then take the supremum on both sides oveba#t Y ,nc We can then observe that
S(x1) £ S(x2). ThusS is a non-decreasing function. To show the identity in the
third part we begin by establishing the inequality+ @ (1))~* < 1, which holds for
every® € Yeone Thensug.y  (1+® (1) < 1. We also know that~® € Yconc
for any fixed integek > 1. Hence

(14K o@D) " < sup L+ DD).
DeYconc

Passing to the limit we observe that jim.(1 + k1®(1))"! = 1. Consequently
SURpey,. (1 + ® (1))! = 1. The fourth part will be proved if we show th&t(x) <
x+ 1 andS(x) > xfor all x € [0, ). In fact, take arbitrarily a functio® € Y¢one
Clearly the equation of the tangent line @f at the point(1, ® (1)) is given by
y=¢@Q(x-1)+®(@), x € [0,). Via the concavity ofd, it is obvious that
d(X) < o()(x—1)+ ®(1), x € [0,00). Hence by Remark 2 we hawe(x) <
e(DX+ (1) < d(1)(x+ 1), X € [0,00). This implies thatS(x) < x+ 1, for all

x € [0, o0). Finally fix arbitrarily a function® € Ycone Then the function, defined on
[0, ) by X + @ (X) (for any fixed® € Ycond, also belongs td/¢one. HeNce

X+ @ (X) X
1+0(1)  1+0(1)’

Now taking the supremum ovdr € Y.onc the third part leads to the desired inequal-
ity S(X) > x. To complete the proof we just point out that the fifth part becomes
obvious because of the fourth part. O

Lemma 4. The functiorH : [1, «) — [0, o) defined by
H (¥ = sup(¢ (1)@ (%)
QeA

S(x) > X € [0,00).
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is increasing and has the property that
HX) -H@)I <Ix-yl
forall x, y € [1, ).
3. THE FIXED POINTS OF A CLASS OF CONCAVE Y OUNG-FUNCTIONS

We shall introduce the following notion (probably new, at least in the author’s
opinion). Some series of examples will justify that it is well founded.

Definition 1. Let ® € A be arbitrary. The number* € (0, ) will be called the
degree of contraction of functiah if there is some constant> 1 such that both the

identities )
00 @/ C
f £O 4t -1 and f 20 4t~ o)
ot ot

hold simultaneously. (In this case we shall say thaadmits the numbec* as its
degree of contraction.)

Examplel. For® (x) = Vx+ 1 -1, x € [0, ), the degree of contraction df is
equal to-—2€— ~ 0.7240616609 with

A-2e2+1
(ez _ 1)2 2/(€+1)-1

a= e (@+1)+2 _ oe2/(E+1)+1 4 1
Example2. For any fixed numbep € (0, 1), the degree of contraction of the
1

~ 3.175019732

function®p (X) = xP, x € [0, ) , is equal to(ﬁ))lTp with @ = ﬁ
Example3. The degree of contraction of the function lpg+ 1), x € [0, 0),
equalsie— 1) with o« = =1, ~ 3864191634

Proposition 4. Let® € A admit the numbec* as its degree of contraction. Then
p(c) <L
Proor. By Definition 1, there is a number > 1 such that both the identities
00 t aC* t
f "0—()dt =1 and f (’0—()dt =p(c)
et ot
hold simultaneously. Consequently we have that

T P P T

aC

because o o (8
0< f 20 4t < oo
acC* t

by the assumption and the monotonicity of the functidi (t) on the interva(0, o).
This was to be proved. O
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On the one hand it is not filicult to verify that 1 is the degree of contraction of
function® (x) = VX, x € [0, o), with & = 4, and 1 is the unique solution of equation
® (x) = xon interval [1 o) . On the other hand, we know, for instance, in Example 3,
that(e — 1)1 is the degree of contraction of function I6g+ 1) . Nevertheless,

lo i+1 =lo (i);ti
9le-1 —O9eT1) et
The question thus arises which are those functibns A that are contractions.
We shall provide a proper subset@fenjoying this property.

Theorem 3. Let ® € Y onc and c* be any positive number. In order that the
equality® (c*) = ¢* hold, it is necessary and fgicient that the range of the function
D|[c o0) : [C*, 00) = [0, 0), defined by the fotmula

(D|[C*,00) (X) = (D (X) s
should equal the intervdLt*, ).

Proor. Suppose tha®|[c: ) (C*) = ®(c*) = c*. Obviously ® is a bijection on
[0, 0) . Hence it follows thatb|c ) is an injection ong’, o) . Sinced|j¢- o) is con-
tinuous on €, o)and tends increasingly t®, we have that the range of function
Dl 00) €qUAls P (C*), 00) = [C*, 00), by assumption. Conversely, assume that the
range ofd|i ) equals intervald’, o), but, on the contrary, there is some number
y € (C", ) such thatd (y) = Dl ) (¥) = C*. By the assumption it is obvious that
function @|(¢ ) is surjective on¢’, o) . Moreover,®|[: .. maps bijectively the in-
terval [c*, o) onto itself because it is also an injection. The monotonicit$p gields
that® (c*) = Dl o) (C*) < D (y) = ¢*. However, by the bijective property dfjjc- ),
we have tha® (c*) > c*. Consequently the inequality < c* follows. This, however,
is absurd. Therefore, we can conclude on the validity of the argument. O

Notation. Az will stand for the collection of all function® € A mapping bijec-
tively the intervalc*, «) onto itself, where* is the degree of contraction df.

Theorem 4. Let ® € A; with ¢ its degree of contraction. Endow the interval
[c*, o0) with the metri (-, ) : [c*, o0)x[C*, o0) — [0, o) defined by (X, y) = [X—yl.
Thend is a contraction over the metric spade*, ), o).

Moreover, the numbec* is the unique solution of the equatiai(x) = x on
[c*, o).

Proor. We first note that the paffc*, =), o) is a complete metric space. Com-
bining Propositions 1 and 4 we can easily derive thad a contraction on the metric
space([c*, =), o). But sinced (c*) = c¢* (via Theorem 3), we deduce, referring to
the Contraction Mapping Principle, that the degree of contractiamthe unique so-
lution to the equatiod (X) = x on the interval §*, o) . This completes the proof.o
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Theorem 5. For every numbeb € (0, o) there can be found some functidg €
Aj with degree of contractioh. Furthermore, numbeb is the unique solution of
equation®y, (X) = x on the intervalb, ).

Proor. Let b € (0, ) be any number and define the functitba (t) = Vbt t €
[0, ) . Clearly, the derivative oby, (t) is expressed by (t) = t € (0, ). On the
one hand, an easy calculation shows that

fb9”(t)dt—«/‘f —dt «/‘leo(\/_ \;) 1,

(t) 4b_ ~ l ~
f: At = \/_f dt = ¢ (b)

i. e., numbeb is the degree of contractlon @fb. On the other hand, an easy substi-
tution leads to

2«/”

and

®y (b) = Vb2 = b,
Then Theorem 3 implies that, € A;. Consequently Theorem 4 entails tidat is a
contraction over the metric spafd, «), o) and moreover, numbdris the unique
solution of equationb, (X) = x on [b, =), with o being the metric induced by the
absolute value function. This concludes the proof. O

To end this section we should like to point out that the set
{® € Yeonc\ A : © admits a positive fix point
is a non-empty set. In fact, it is not hard to check that the funcipdefined by
®(x) = 5 + YXwhenevex € [0, ), belongs tQYconc\ A and®d (4) = 4

4. |s THE SET A DENSE IN Yconc?

We shall answer this question in thifiamative.

Theorem 6. For any concave Young-functidr there exists a sequen@®,) c A
such that(®,) converges pointwise @, i. e.,lim,_. ®n(X) = ® (X) whenevelx €
[0, o).

Proor. Fix arbitrarily an indexn > 1 and definab,, (x) = @Y™ (x), x € [0, o).
Obviously, (®,) ¢ Yconc because of Remark 4. So, on the one hand, Corollary 1
yields that(®,,) c A. On the other hand, we can easily see in the limit that

lim @, (x) = lim OV (%) = @ (X)
for everyx € [0, ). Therefore, we conclude on the validity of the theorem. 10O
Lemmab. Let® € Yeone Then there are constan@yp > 0 andBg > 0 such that

Ao(e) By < [ +(‘1))2 < Co + Ao ().
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Proor. An integration by parts leads to
[F20 q [20], "0 ["eO4 g, @y
o (t+1) t+1 | o t+1 o t+1
(1)

where 0< By := liMe 20 < 00, as2® < 20 for all t € (0, ). On the one hand,

o) . (e “ (1) fo(t)

On the other hand, by the monotonicity of functiglt) and by the change of vari-
ables, we have that

@ (t) e(t+1) “o(x)
j; 310t fo t+1 dt‘j; — IX= Ao (). (4.3)

Consequently if we combine (4.1)—(4.3), one can observe that

i o) o (1) N
Ao () ~Bo < | (Hl)zdtsfot it + By + Ap ().

This leads to the desired result. O

Lemma 5 suggests that the quantf5§/° (3(82dt and the density-level\, (c0) are
equivalent, in the sense that they are both either finite or infinite. This gives rise to
the following essential result.

Lemma 6. Let® € Yoncbe arbitrary. Then
2
R CIC)

o (x+1)*

Proor. Clearly,
“(® (x))2 Y@ (><))2 “(® (X))2
jo‘ (x+ 1)* dx= j(; (x+ 1)* X+£ (x+ 1)* dx
L@ (%) (@ (X))
sj(; (x+1)4dx+£ @ dx
Integration by parts yields

® (@ (¥)? (1) ()P (X) Q(1) 291 (2)
jl‘ x4d_3+3£—x3 dx33+ 3 ,

(I)(X) . .
because (x) and—=> are decreasing functions. O

Now endow the half line [x) with a o-algebraM containing the Borel sets.
Define a Lebesgue measwre M — [0, o) by setting

u (0. %) = %(1—@)
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for all x € [0, ). Let L? := L?(][0, «), M, u) be the collection of all (measurable)
square integrable functions. We know (see [6, p. 326], Remark 11.37) that the pair
(L2, d) is not a metric space unless we identify functions whidfedionly on a set of
measure zero, where the mappihgL? x L? — [0, ) is defined by

00 2
d(f,g) = \/f (f-9)?du = \/f (f(zz+i)(4X)) dx

By Lemma 6, we observe thaf.onc ¢ L?. Unfortunately, we note that this does not
guarantee that the pd¥/.onc d) is a metric space, for the reason mentioned above.
Nevertheless, we shall prepare the ground for showing(Ma. d) is actually a
metric space.

Wheneverd € YqncWrite Go for the graph ofd on [0, ), i. €.,

Go = {(X, @ (X) : x € [0, 00)}
. alb . .
and writeG," for the graph ofb on the interval §, b), i. e.,
GAP = {(x, () : x € (a b)},
wherea < b are any non-negative numbers.

Lemma 7. Let® and¥ € Y.oncbe arbitrary with distinct graphs. Then
l{x € (0,00) 1 @ (x) =¥ (X} <1,
where|B| stands for the cardinality dB wheneveB is a set.
Proor. Suppose on the contrary that
l{x € (0,00) : @ (x) =¥ (X}l > 2.
Write
X1 = inf {x € (0,0) : ®(X) = ¥ (X)}
and
Xo = inf{x € (0,00) \ {X1} : D(X) = ¥ (X)}.
It is clear that 0< x; < X and®(x) = ¥Y(X), i € {1, 2. We point out that
the two graphs are continuous. We show that the graph of one of the fundtions
andV¥ lies above the graph of the other on the intelf@alx;). In fact, without loss
of generality we may assume on the contrary @%Lf‘l lies both above and below

Ggl'xl. Then necessarily the two graphs must cross each other in the interior of interval
(O, x1), i. e. there is someg € (0, x;) such thatd (xg) = ¥ (Xg). This, however, is

in contradiction with the minimality ofk;. Hence we can assume tr@g”xl lies
aboveGJ™. By the continuity and the fact that (x) = ¥ (x1) we note thaGe

crosse<sy at point(xy, @ (x1)). Nevertheless, since both and¥ are unbounded
increasing functions an@ (x) = ¥ (x2), the graphGe must cross the grapBy at
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point (X2, ® (x2)). This means thab must be convex on the intervgl;, X), which
is absurd since these functions are concave. m]

Corollary 2. Let® and¥ € Yoncbe arbitrary. Then among the following three
assertions exactly one fulfills
(1) {xe[0,00): D (X) =¥ (X)} =[0, ).
(2) {x€ (0, ) : D(X) # ¥ (x)} = (0, ).
(3) There is a unique numbes € (0, o) with @ (x*) = ¥ (x*) such that

{x€(0,00) \ {x'}: @ (x) # ¥ (X)} = (0, 00) \ {x'}.

Lemma 8. Let® and¥ € Y¢oncbe arbitrary. Then in order thab (x) = ¥ (x) for
all x € [0, o0) it is necessary and glcient that

f (@ —W¥)2du =0.
[0.0)

Proor. We first note that the sficiency is obvious. To show the necessity let us

assume that
f (® - W¥)?du = 0.
[0,00)
Then, on the one hand,

H(IX€[0,09) 1 @ () = ¥ (9 = (0,00 = 5
so that necessarilx € [0, o) : @ (X) = ¥ (X)} # @. On the other hand
u({xe (0,00): ®(X) =¥ (X)}) =0.

Note that both the setisx € [0, o) : @ (X) = ¥ (X)} and {x € (0, ) : ® (X) # ¥ (X)}
cannot be non-empty at the same time (because of Corollary 2). Consequently,

{xe (0, 00) : ®(X) ¥ (X)) =
and, thereforg{x € [0, o) : @ (X) = ¥ (X)} = [0, ). O
We are now in the position to state the result hereby.

Proposition 5. The mapping : YconcX Yconc — [0, ), defined by

00 2
d(®, ¥) = \/j[‘ = \P)Z \/f (@ (z())(+‘;§X)) dx,

satisfies the metric axioms, i. e. for any three functidns®, and®3 € Yonc
(1) d(®;1, ®7) > 0andd (@1, @) = 0if and only if®1 = @5,
(2) d(@1, @2) = d(D2, D1).
(3) d(®1, ©2) < d (D1, P3) +d(D3, D2).

The pair(Ycone d) is @ metric space and then by referring to Theorem C the pair
(A, d) is also a metric space.
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Theorem 7. Let® € Y¢oncand write®,, = @™ n > 1. Then

lim f ®2dy = f d2dy.
=% J[0,00) [0,00)

Proor. For every index > 1, define®;, := (@, (1)) 1 ®,. Clearly(®n) € Yeone
(see Corollary 1) and hen¢®;,) c A because of Lemma 1. Via Theorem 6 it follows
that sequenc@d,,) converges t@ pointwise, which in turn entails that sequerid)
converges t¢®d (1)) X @ pointwise. Write the functioZ (x) := X+ 1, X € [0, ). We
obtain (by Lemma 3) that

sup®d;, () < S(x) <Z(x), X € [0, o).

n>1

Now, on the one hand, a simple computation showsZhatL?. On the other hand,
we can deduce from Lemma 6 th@,) c L? and thug®;)) c L. Therefore, the
Dominated Convergence Theorem guarantees that

lim f CD“;]Zd,u = (D (1))‘2 f CI>2d,u.
n=co J[0,c0) [0,00)

Now we remark that for every index> 1,

[ ofdu-@@? [ ofde
[0,00) [0,00)

Passing to the limit we can conclude that

lim f d2dy = f @%du.
n=co J[0,c0) [0,00)

This was to be proven. O
Theorem 8. The subsefA is a dense set iV cone

Proor. Let® € Y oncbe arbitrary. For every index> 1, setd? := (@, (1))~ @,
where®d,, = ®V(™1), We need to prove that

lim d(®, ) = lim f (@ — dp)?du = 0.
Nn—oo Nn—oo [0,00)

In fact, fix arbitrarily an index > 1. Then

f (@ — ®p)?du = f D2du + f O%du - 2 f ODndu. (4.4)
[0,00) [0,00) [0,00) [0,00)

Then Lemma 3 entails that
((D (1))—(2n+1)/(n+1) DD, < Z(2n+1)/(n+l) < 22,
sinceZ (x) > 1 for all x € [0, o) and the sequendé®:!) tends increasingly to 2. On
the other hand,
lim (@ (1) D @ (x) @ (x) = (@ (1)) 2 0? (X)
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for all x € [0, o0). Then by means of The Dominated Convergence Theorem it follows
that

2n+1

lim f OO = lim (@ (2))CrD/(+1) f (@) * oWrdy  (4.5)
[0,00) e )

nN—oo [0,00
= f @%du.
[0,00)

Finally we note that
lim f ®2dy = f ®%dy, (4.6)
= J[0,e0) [0,00)

by Theorem 7. Therefore, combining the results established in (4.4)—(4.6), we get
limp-e d (@, @y) = 0. We can thus conclude on the validity of the theorem. O

If the integral representation (1.1) is such that its derivative is a right-continuous
function, tending increasingly to infinity and assumes the value zero at the origin,
then we speak afonvex Young-functiorisee, e. g. [2]). Clearly the inverse of every
convex Young-function is a concave Young-function (aimk vers.

A convex Young-functionV is said to satisfy the growth condition if

Sup‘P (Bx)
x>0 \P(X)
for some numbeg > 1 which is equivalent to
X (X)
ETCN
with  being the derivative of. (The quantityp is referred to as the power 8f.)

< 00

pP<oo

Open problem 1. Let® € Y oncbe arbitrary. In order thatb (x) = xP, x € [0, o)
for somep € (0, 1) it is necessary and gicient that both® € A; and its inverse
@1 satisfy the growth condition together with the propebty* (1) = 1.

Open problem 2. The converse of Remark 5 holds true.
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