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A. We succeeded in isolating a special class of concave Young-functions
enjoying the so-calleddensity-level property. In this class there is a proper subset
whose members have each the so-called degree of contraction denoted byc∗, and
map bijectively the interval [c∗,∞) onto itself. We constructed the fixed point of
each of these functions. Later we proved that every positive numberb is the fixed
point of a concave Young-function havingb as degree of contraction. We showed
that every concave Young-function is square integrable with respect to a specific
Lebesgue measure. We also proved that the distance generated by theL2-norm is
a metric in the set of concave Young-functions and then derived that the concave
Young-functions possessing the density-level property constitute a dense set in the
space of concave Young-functions.
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1. I

Let ϕ : (0,∞) → (0,∞) be a right-continuous and decreasing function such that
it is integrable on every finite interval(0, x) . It is easily seen that the functionΦ :
[0,∞)→ [0,∞) , defined by

Φ (x) =

∫ x

0
ϕ (t) dt, (1.1)

is a nonnegative, increasing and concave function withΦ (0) = 0. We further assume
thatΦ (∞) = ∞ (Φ is referred to asconcave Young-functionin the literature [4].) We
note that ifΦ is a concave Young-function, then so isbΦ for all positive constantsb.
We shall recall the following definition and result in [1].

Definition A. We say that for the concave Young-functionΦ the maximal inequal-
ity is valid with some positive constantKΦ (depending only onΦ) if for an arbitrary
nonnegative submartingale(Xn, Fn), n ≥ 1, the inequality

EΦ
(
X∗n

) ≤ KΦ (1 + EXn)
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4 N. K. AGBEKO

holds for alln ≥ 1, whereX∗n = max1≤k≤n Xk.

Theorem B. Let Φ be any concave Young-function. In order thatΦ satisfy the
maximal inequality, it is necessary and sufficient that

AΦ (∞) :=
∫ ∞

1

ϕ (t)
t

dt < ∞.
Moreover, ifAΦ (∞) < ∞, thenKΦ = max(Φ (1) ,AΦ (∞)) .

Theorem C([3, p. 205]). Each non-empty subsetB of a metric spaceX is a metric
space, the distance inB being the same as inX.

We shall say that a concave Young-functionΦ satisfies thedensity-level propertyif
AΦ (∞) < ∞. The quantityAΦ (∞) will be referred to asdensity-leveland the function
AΦ : [1,∞)→ [0,∞) , defined by

AΦ (x) =

∫ x

1

ϕ (t)
t

dt,

will be calleddensity-level function.
For instance the concave Young-functionsΦ1 (x) =

√
x andΦ2 (x) = ln (x + 1) ,

defined forx ∈ [0, ∞) , have finite density-levels. The concave Young-function
Φ3 (x) = 2x + 1 − e−x is of infinite density-level. In fact, if we letϕ3 (x) stand
for the derivative of functionΦ3 (x) , then

AΦ3 (∞) =

∫ ∞

1

ϕ3 (t)
t

dt ≥
∫ ∞

1

2
t
dt = ∞.

Theorem B suggests that the set of concave Young-functions that satisfy the density-
level property is a rather broad class.

Define functionA∗
Φ

: (0,∞)→ (0,∞] by

A∗Φ (b) =

∫ ∞

b

ϕ (x)
x

dx,

whereΦ ∈ Yconc.
It is not difficult to see thatA∗

Φ1
(b) < ∞ andA∗

Φ3
(b) = ∞, for any numberb ∈

(0,∞), where functionsΦ1 (x) =
√

x and Φ3 (x) = 2x + 1 − e−x are defined for
x ∈ [0,∞).

Remark1. The functionx−1Φ (x) is decreasing on the interval(0,∞) and

0 ≤ lim
x→∞

Φ (x)
x

< ∞.
Notation. Yconc will stand for the collection of all concave Young-functions.A

will denote the set of all functionsΦ ∈ Yconc that satisfy the density-level property.
We note thatA is a proper subset ofYconc, since the concave Young-function

Φ3 : [0,∞) → [0,∞) , defined above byΦ3 (x) = 2x + 1 − e−x, was shown to be of
infinite density-level.
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We recall the following fact:A functionT from a metric space(M, %) to itself is
called a contraction if there is anα which satisfies0 ≤ α < 1 so that

% (T (x) ,T (y)) ≤ α % (x, y)

for all x, y ∈ M.
We also recall the following well-known principle.

Contraction Mapping Principle ([5]). LetT be a contraction on a complete met-
ric space(M, %) . Then there is a unique pointx ∈ M (called fixed point) such that
T (x) = x. Furthermore, ifx0 is any point inM and we definexn+1 = T (xn) , then
limn→∞ xn = x.

In this communication we study, among others, the closure ofA under the compo-
sition operation. In a sense, Theorems 1 and 2 show that the concave Young-functions
with the density-level property behave like left and right ideals with respect to the
composition operation. We also realize that not every functionΦ ∈ A admits a fixed
point. The investigation in this direction leads us to isolate a proper subsetA1 of
A such that every functionΦ ∈ A1 possesses the so-calleddegree of contraction,
which is closely related to the fixed point ofΦ if it exists. We show that every con-
cave Young-function is square integrable with respect to a specific given Lebesgue
measure, and we prove that the natural distance defined by theL2-norm satisfies the
metric axioms inYconc. We then demonstrate that the subsetA proves to be a dense
set inYconc.

2. T  A     

Remark2. For every numbers ∈ (0,∞) we have thatsϕ (s) < Φ (s) .

P. Fix arbitrarily two numberss ∈ (0,∞) andb ∈ (0, s) . Then by applying
twice the fact thatϕ decreases on(0,∞) , we have that

Φ (s) =

∫ s

0
ϕ (t) dt =

∫ b

0
ϕ (t) dt +

∫ s

b
ϕ (t) dt ≥ bϕ (b) + (s− b)ϕ (s)

> bϕ (s) + (s− b)ϕ (s) = sϕ (s) ,

as required. �

The following remark is an immediate consequence of Theorem B.
Remark3. Let Φ ∈ Yconc. If Φ ∈ A, thenΦ (x) ≤ KΦ (1 + x) for all x ∈ (0,∞) ,

whereKΦ = max(Φ (1) ,AΦ (∞)) .
Remark4. The composition of two concave Young-functions is also a concave

Young-function.
The following two lemmas are trivial.

Lemma 1. For any numberb ∈ (0,∞) and functionΦ ∈ Yconc, we have that
bΦ ∈ A if and only ifΦ ∈ A. Moreover,AbΦ (x) = bAΦ (x) , x ∈ [1,∞) .
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Lemma 2. Let functionsΦ1 andΦ2 ∈ Yconc be arbitrary. ThenΦ1 andΦ2 ∈ A if
and only ifΦ1 + Φ2 ∈ A. Furthermore,

AΦ1+Φ2 (x) = AΦ1 (x) + AΦ2 (x) , x ∈ [1,∞) .

Theorem 1. Let functionsΦ1 and Φ2 ∈ Yconc be arbitrary. If Φ2 ∈ A, then
Φ1 ◦ Φ2 ∈ A.

P. Write ϕi for the derivative ofΦi (i ∈ {1, 2}). Compute the density-level of
the compositionΦ1 ◦ Φ2.

AΦ1◦Φ2 (∞) =

∫ ∞

1

ϕ2 (x)ϕ1 (Φ2 (x))
x

dx

≤ ϕ1 (Φ2 (1))
∫ ∞

1

ϕ2 (x)
x

dx = ϕ1 (Φ2 (1)) AΦ2 (∞) < ∞,

via the monotonicity of functionϕ1. �

Remark5. Let Φ ∈ Yconc. Then forΦ to belong toA it is necessary that

lim
t→∞ϕ (t) = 0.

P. Assume thatΦ ∈ A but limt→∞ ϕ (t) = l0 > 0. Pick an arbitrarily fixed
numbert ∈ (1,∞) . Then

∞ > AΦ (∞) ≥
∫ t

1

ϕ (x)
x

dx≥ ϕ (t) log(t) > l0 log(t) .

Passing to the limit, it will follow that∞ = AΦ (∞) < ∞, which is absurd. This
completes the proof. �

The following remark suggests that ifΦ ∈ Yconc, then eitherA∗
Φ

(b) = ∞ for all
b ∈ (0,∞) , or A∗

Φ
(b) < ∞ for all b ∈ (0,∞) .

Remark6. Let Φ ∈ Yconc. ThenA∗
Φ

(b) < ∞ for every constantb ∈ (0,∞) \ {1} if
and only ifAΦ (∞) < ∞.

P. A simple computation shows that

A∗Φ (b) =

∫ ∞

b

ϕ (x)
x

dx =


AΦ (∞) +

∫ 1
b
ϕ(x)

x dx if b < 1

AΦ (∞) −
∫ b

1
ϕ(x)

x dx if b > 1,

which yields the result. �

Theorem 2. Let functionsΦ1 and Φ2 ∈ Yconc be arbitrary. If Φ1 ∈ A, then
Φ1 ◦ Φ2 ∈ A.

P. We first show that

AΦ1 (∞) =

∫ ∞

Φ−1
2 (1)

ϕ2 (t)ϕ1 (Φ2 (t))
Φ2 (t)

dt,
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whereΦ−1
2 is the inverse function ofΦ2 (whose existence is guaranteed by the conti-

nuity of Φ2).
In fact, by definition we have that

AΦ1 (∞) =

∫ ∞

1

ϕ1 (x)
x

dx.

Now, settingx = Φ2 (t) we observe thatdx = ϕ2 (t) dt and thus

AΦ1 (∞) =

∫ ∞

Φ−1
2 (1)

ϕ2 (t)ϕ1 (Φ2 (t))
Φ2 (t)

dt.

Next, compute the density-level of the compositionΦ1 ◦ Φ2. Remark 1 implies that

AΦ1◦Φ2 (∞) =

∫ ∞

1

ϕ2 (t)ϕ1 (Φ2 (t))
t

dt

=

∫ ∞

1

Φ2 (t)
t

ϕ2 (t)ϕ1 (Φ2 (t))
Φ2 (t)

dt

≤ c
∫ ∞

Φ−1
2 (1)

ϕ2 (t)ϕ1 (Φ2 (t))
Φ2 (t)

dt = cAΦ1 (∞) ,

wherec = 1/Φ−1
2 (1) (the second equality holds because of the claim shown above),

which was to be proven. �

Corollary 1. Let Φ ∈ Yconc andα ∈ (0,1) be arbitrary. ThenΦα ∈ A, where the
functionΦα : [0,∞)→ [0,∞) is defined byΦα (x) = Φα (x) = (Φ (x))α .

Proposition 1. LetΦ ∈ Yconc be arbitrary and fix any numbers ∈ (0,∞). Then

|Φ (x) − Φ (y)| ≤ ϕ (s) |x− y|
for all numbersx, y ∈ [s,∞) .

P. Pick numbersx, y ∈ [s,∞) arbitrarily. Via the monotonicity ofΦ it follows
that

|Φ (x) − Φ (y)| = max(Φ (x) , Φ (y)) −min(Φ (x) , Φ (y))

= Φ (max(x, y)) − Φ (min(x, y)) .

Hence the monotonicity ofϕ yields that

|Φ (x) − Φ (y)| =
∫ max(x, y)

min(x, y)
ϕ (t) dt ≤ ϕ (s) (max(x, y) −min(x, y)) = ϕ (s) |x− y| .

This was to be proved. �

We shall similarly show the following proposition.

Proposition 2. LetΦ ∈ A be arbitrary and fix any numbers ∈ [1,∞). Then

|AΦ (x) − AΦ (y)| ≤ ϕ (s) |x− y|
for all numbersx, y ∈ [s,∞) .
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P. Pick numbersx, y ∈ [s,∞) arbitrarily. Via the monotonicity ofAΦ it fol-
lows that

|AΦ (x) − AΦ (y)| = max(AΦ (x) , AΦ (y)) −min(AΦ (x) , AΦ (y))

= AΦ (max(x, y)) − AΦ (min(x, y))

=

∫ max(x, y)

min(x, y)

ϕ (t)
t

dt ≤ ϕ (s)
s
|x− y| ≤ ϕ (s) |x− y| ,

becauset−1ϕ (t) is a decreasing function. �

Proposition 3. Let x, y ∈ (0,∞) and∆ ⊂ Yconc (with ∆ , ∅) be arbitrary. Then∣∣∣∣sup
Φ∈∆

Φ (x) − sup
Φ∈∆

Φ (y)
∣∣∣∣ ≤ sup

Φ∈∆
|Φ (x) − Φ (y)| ,

provided thatsupΦ∈∆ Φ (t) < ∞ for all t ∈ (0,∞) .

P. We first note that

Φ (x) ≤ |Φ (x) − Φ (y)| + Φ (y) and Φ (y) ≤ |Φ (x) − Φ (y)| + Φ (x) .

Taking the supremum we can easily observe that

sup
Φ∈∆

Φ (x) ≤ sup
Φ∈∆
|Φ (x) − Φ (y)| + sup

Φ∈∆
Φ (y)

and
sup
Φ∈∆

Φ (y) ≤ sup
Φ∈∆
|Φ (x) − Φ (y)| + sup

Φ∈∆
Φ (x) .

Combining these inequalities we have that

− sup
Φ∈∆
|Φ (x) − Φ (y)| ≤ sup

Φ∈∆
Φ (x) − sup

Φ∈∆
Φ (y) ≤ sup

Φ∈∆
|Φ (x) − Φ (y)| ,

which yields the result. �

We know thatkΦ ∈ Yconc for any fixedΦ ∈ Yconc and allk ≥ 1. Then

sup
Φ∈Yconc

Φ (x) ≥ sup
k≥1

kΦ (x) =


0 if x = 0,

∞ if x ∈ (0,∞) ,

meaning that there is no real functiong (x) such thatΦ (x) ≤ g (x) for all Φ ∈ Yconc

andx ∈ [0,∞). Nevertheless, this is possible for their suitably normalised forms, as
shown in the following lemma.

Lemma 3. The functionS : [0,∞)→ [0,∞), defined by

S (x) = sup
Φ∈Yconc

(Φ (1))−1 Φ (x) ,

has the following properties:

(1) S (0) = 0 andS (1) = 1.
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(2) S is a non-decreasing function such that

(Φ (1))−1 Φ (x) ≤ S (x)

for all Φ ∈ Yconc andx ∈ [0,∞).
(3) The identity

sup
Φ∈Yconc

(1 + Φ (1))−1 = 1

holds.
(4) For every numberx ∈ [0,∞), the chain of inequalitiesx ≤ S (x) ≤ x+1 holds

true.
(5) We have thatlimx→∞ x−1S (x) = 1 and limx→∞ S (x) = ∞.

P. The first part is obvious. We show thatS (x) is a non-decreasing function.
In fact, pick arbitrarily two numbersx1andx2 ∈ [0,∞) with x1 < x2. By the mono-
tonicity we have thatΦ (x1) < Φ (x2). If we normalize this inequality suitably and
then take the supremum on both sides over allΦ ∈ Yconc we can then observe that
S (x1) ≤ S (x2). ThusS is a non-decreasing function. To show the identity in the
third part we begin by establishing the inequality(1 + Φ (1))−1 ≤ 1, which holds for
everyΦ ∈ Yconc. Then supΦ∈Yconc

(1 + Φ (1))−1 ≤ 1. We also know thatk−1Φ ∈ Yconc

for any fixed integerk ≥ 1. Hence
(
1 + k−1Φ (1)

)−1 ≤ sup
Φ∈Yconc

(1 + Φ (1))−1 .

Passing to the limit we observe that limk→∞(1 + k−1Φ (1))−1 = 1. Consequently
supΦ∈Yconc

(1 + Φ (1))−1 = 1. The fourth part will be proved if we show thatS (x) ≤
x + 1 andS (x) ≥ x for all x ∈ [0,∞). In fact, take arbitrarily a functionΦ ∈ Yconc.
Clearly the equation of the tangent line ofΦ at the point(1, Φ (1)) is given by
y = ϕ (1) (x − 1) + Φ (1), x ∈ [0,∞). Via the concavity ofΦ, it is obvious that
Φ (x) ≤ ϕ (1) (x − 1) + Φ (1), x ∈ [0,∞). Hence by Remark 2 we haveΦ (x) ≤
ϕ (1) x + Φ (1) < Φ (1) (x + 1), x ∈ [0,∞). This implies thatS (x) < x + 1, for all
x ∈ [0,∞). Finally fix arbitrarily a functionΦ ∈ Yconc. Then the function, defined on
[0,∞) by x + Φ (x) (for any fixedΦ ∈ Yconc), also belongs toYconc. Hence

S (x) ≥ x + Φ (x)
1 + Φ (1)

≥ x
1 + Φ (1)

, x ∈ [0,∞) .

Now taking the supremum overΦ ∈ Yconc, the third part leads to the desired inequal-
ity S (x) ≥ x. To complete the proof we just point out that the fifth part becomes
obvious because of the fourth part. �

Lemma 4. The functionH : [1,∞)→ [0,∞) defined by

H (x) = sup
Φ∈A

(ϕ (1))−1 Φ (x)
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is increasing and has the property that

|H (x) − H (y)| ≤ |x− y|
for all x, y ∈ [1,∞) .

3. T        Y-

We shall introduce the following notion (probably new, at least in the author’s
opinion). Some series of examples will justify that it is well founded.

Definition 1. Let Φ ∈ A be arbitrary. The numberc∗ ∈ (0,∞) will be called the
degree of contraction of functionΦ if there is some constantα > 1 such that both the
identities ∫ ∞

c∗

ϕ (t)
t

dt = 1 and
∫ αc∗

c∗

ϕ (t)
t

dt = ϕ(c∗)

hold simultaneously. (In this case we shall say thatΦ admits the numberc∗ as its
degree of contraction.)

Example1. For Φ (x) =
√

x + 1− 1, x ∈ [0,∞) , the degree of contraction ofΦ is
equal to 4e2

e4−2e2+1 ≈ 0.7240616609 with

α =

(
e2 − 1

)2
e2/(e2+1)−1

e4/(e2+1)+2 − 2e2/(e2+1)+1 + 1
≈ 3.175019732.

Example2. For any fixed numberp ∈ (0, 1) , the degree of contraction of the

functionΦp (x) = xp, x ∈ [0,∞) , is equal to
(

p
1−p

) 1
1−p with α = 1

p1/(1−p) .

Example3. The degree of contraction of the function log(x + 1) , x ∈ [0,∞) ,
equals(e− 1)−1 with α = e−1

e1/e−1
≈ 3.864191634.

Proposition 4. Let Φ ∈ A admit the numberc∗ as its degree of contraction. Then
ϕ (c∗) < 1.

P. By Definition 1, there is a numberα > 1 such that both the identities
∫ ∞

c∗

ϕ (t)
t

dt = 1 and
∫ αc∗

c∗

ϕ (t)
t

dt = ϕ
(
c∗

)

hold simultaneously. Consequently we have that

1 =

∫ ∞

c∗

ϕ (t)
t

dt =

∫ αc∗

c∗

ϕ (t)
t

dt +

∫ ∞

αc∗

ϕ (t)
t

dt >
∫ αc∗

c∗

ϕ (t)
t

dt = ϕ
(
c∗

)

because

0 <
∫ ∞

αc∗

ϕ (t)
t

dt < ∞
by the assumption and the monotonicity of the functiont−1ϕ (t) on the interval(0,∞).
This was to be proved. �
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On the one hand it is not difficult to verify that 1 is the degree of contraction of
functionΦ (x) =

√
x, x ∈ [0,∞) , with α = 4, and 1 is the unique solution of equation

Φ (x) = x on interval [1,∞) .On the other hand, we know, for instance, in Example 3,
that(e− 1)−1 is the degree of contraction of function log(x + 1) . Nevertheless,

log

(
1

e− 1
+ 1

)
= log

( e
e− 1

)
,

1
e− 1

.

The question thus arises which are those functionsΦ ∈ A that are contractions.
We shall provide a proper subset ofA enjoying this property.

Theorem 3. Let Φ ∈ Yconc and c∗ be any positive number. In order that the
equalityΦ (c∗) = c∗ hold, it is necessary and sufficient that the range of the function
Φ|[c∗,∞) : [c∗,∞)→ [0,∞) , defined by the fotmula

Φ|[c∗,∞) (x) = Φ (x) ,

should equal the interval[c∗,∞).

P. Suppose thatΦ|[c∗,∞) (c∗) = Φ (c∗) = c∗. Obviously Φ is a bijection on
[0,∞) . Hence it follows thatΦ|[c∗,∞) is an injection on [c∗,∞) . SinceΦ|[c∗,∞) is con-
tinuous on [c∗,∞)and tends increasingly to∞, we have that the range of function
Φ|[c∗,∞) equals [Φ (c∗) ,∞) = [c∗,∞) , by assumption. Conversely, assume that the
range ofΦ|[c∗,∞) equals interval [c∗,∞) , but, on the contrary, there is some number
y ∈ (c∗,∞) such thatΦ (y) = Φ|[c∗,∞) (y) = c∗. By the assumption it is obvious that
functionΦ|[c∗,∞) is surjective on [c∗,∞) . Moreover,Φ|[c∗,∞) maps bijectively the in-
terval [c∗,∞) onto itself because it is also an injection. The monotonicity ofΦ yields
thatΦ (c∗) = Φ|[c∗,∞) (c∗) < Φ (y) = c∗. However, by the bijective property ofΦ|[c∗,∞),
we have thatΦ (c∗) ≥ c∗.Consequently the inequalityc∗ < c∗ follows. This, however,
is absurd. Therefore, we can conclude on the validity of the argument. �

Notation. A1 will stand for the collection of all functionsΦ ∈ A mapping bijec-
tively the interval[c∗,∞) onto itself, wherec∗ is the degree of contraction ofΦ.

Theorem 4. Let Φ ∈ A1 with c∗ its degree of contraction. Endow the interval
[c∗,∞) with the metric% (·, ·) : [c∗,∞)×[c∗,∞)→ [0,∞) defined by% (x, y) = |x− y| .
ThenΦ is a contraction over the metric space([c∗,∞) , %) .

Moreover, the numberc∗ is the unique solution of the equationΦ (x) = x on
[c∗,∞).

P. We first note that the pair([c∗,∞) , %) is a complete metric space. Com-
bining Propositions 1 and 4 we can easily derive thatΦ is a contraction on the metric
space([c∗,∞) , %). But sinceΦ (c∗) = c∗ (via Theorem 3), we deduce, referring to
the Contraction Mapping Principle, that the degree of contractionc∗ is the unique so-
lution to the equationΦ (x) = x on the interval [c∗,∞) . This completes the proof.�
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Theorem 5. For every numberb ∈ (0,∞) there can be found some functionΦb ∈
A1 with degree of contractionb. Furthermore, numberb is the unique solution of
equationΦb (x) = x on the interval[b,∞).

P. Let b ∈ (0,∞) be any number and define the functionΦb (t) =
√

bt, t ∈
[0,∞) . Clearly, the derivative ofΦb (t) is expressed byϕ (t) =

√
b

2
√

t
, t ∈ (0,∞). On the

one hand, an easy calculation shows that∫ ∞

b

ϕ (t)
t

dt =
√

b
∫ ∞

b

1

2t
√

t
dt =

√
b lim

x→∞

(
1√
b
− 1√

x

)
= 1,

and ∫ 4b

b

ϕ (t)
t

dt =
√

b
∫ 4b

b

1

2t
√

t
dt =

1
2

= ϕ (b)

i. e., numberb is the degree of contraction ofΦb. On the other hand, an easy substi-
tution leads to

Φb (b) =
√

b2 = b.

Then Theorem 3 implies thatΦb ∈ A1. Consequently Theorem 4 entails thatΦb is a
contraction over the metric space([b,∞) , %) and moreover, numberb is the unique
solution of equationΦb (x) = x on [b,∞), with % being the metric induced by the
absolute value function. This concludes the proof. �

To end this section we should like to point out that the set
{
Φ ∈ Yconc\ A : Φ admits a positive fix point

}

is a non-empty set. In fact, it is not hard to check that the functionΦ, defined by
Φ (x) = x

2 +
√

x wheneverx ∈ [0,∞) , belongs toYconc\ A andΦ (4) = 4.

4. I   A   Yconc?

We shall answer this question in the affirmative.

Theorem 6. For any concave Young-functionΦ, there exists a sequence(Φn) ⊂ A
such that(Φn) converges pointwise toΦ, i. e., limn→∞Φn (x) = Φ (x) wheneverx ∈
[0,∞).

P. Fix arbitrarily an indexn ≥ 1 and defineΦn (x) = Φn/(n+1) (x) , x ∈ [0,∞) .
Obviously, (Φn) ⊂ Yconc because of Remark 4. So, on the one hand, Corollary 1
yields that(Φn) ⊂ A. On the other hand, we can easily see in the limit that

lim
n→∞Φn (x) = lim

n→∞Φn/(n+1) (x) = Φ (x)

for everyx ∈ [0,∞). Therefore, we conclude on the validity of the theorem. �

Lemma 5. LetΦ ∈ Yconc. Then there are constantsCΦ > 0 andBΦ ≥ 0 such that

AΦ (∞) − BΦ ≤
∫ ∞

0

Φ (t)

(t + 1)2
dt ≤ CΦ + AΦ (∞) .
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P. An integration by parts leads to
∫ ∞

0

Φ (t)

(t + 1)2
dt =

[−Φ (t)
t + 1

]∞

0
+

∫ ∞

0

ϕ (t)
t + 1

dt =

∫ ∞

0

ϕ (t)
t + 1

dt− BΦ, (4.1)

where 0≤ BΦ := limt→∞ Φ(t)
t+1 < ∞, asΦ(t)

t+1 < Φ(t)
t for all t ∈ (0,∞). On the one hand,

∫ ∞

0

ϕ (t)
t + 1

dt =

∫ 1

0

ϕ (t)
t + 1

dt +

∫ ∞

1

ϕ (t)
t + 1

dt ≤
∫ 1

0

ϕ (t)
t + 1

dt + AΦ (∞) . (4.2)

On the other hand, by the monotonicity of functionϕ (t) and by the change of vari-
ables, we have that∫ ∞

0

ϕ (t)
t + 1

dt ≥
∫ ∞

0

ϕ (t + 1)
t + 1

dt =

∫ ∞

1

ϕ (x)
x

dx = AΦ (∞) . (4.3)

Consequently if we combine (4.1)–(4.3), one can observe that

AΦ (∞) − BΦ ≤
∫ ∞

0

Φ (t)

(t + 1)2
dt ≤

∫ 1

0

ϕ (t)
t + 1

dt + BΦ + AΦ (∞) .

This leads to the desired result. �

Lemma 5 suggests that the quantity
∫ ∞
0

Φ(t)
(t+1)2 dt and the density-levelAΦ (∞) are

equivalent, in the sense that they are both either finite or infinite. This gives rise to
the following essential result.

Lemma 6. LetΦ ∈ Yconc be arbitrary. Then
∫ ∞

0

(Φ (x))2

(x + 1)4
dx< ∞.

P. Clearly,
∫ ∞

0

(Φ (x))2

(x + 1)4
dx =

∫ 1

0

(Φ (x))2

(x + 1)4
dx+

∫ ∞

1

(Φ (x))2

(x + 1)4
dx

≤
∫ 1

0

(Φ (x))2

(x + 1)4
dx+

∫ ∞

1

(Φ (x))2

x4
dx.

Integration by parts yields
∫ ∞

1

(Φ (x))2

x4
dx =

Φ (1)
3

+
2
3

∫ ∞

1

ϕ (x) Φ (x)

x3
dx≤ Φ (1)

3
+

2ϕ (1) Φ (1)
3

,

becauseϕ (x) and Φ(x)
x are decreasing functions. �

Now endow the half line [0,∞) with a σ-algebraM containing the Borel sets.
Define a Lebesgue measureµ :M→ [0,∞) by setting

µ ([0, x)) =
1
3

(
1− 1

(x + 1)3

)
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for all x ∈ [0,∞). Let L2 := L2(
[
0,∞),M, µ) be the collection of all (measurable)

square integrable functions. We know (see [6, p. 326], Remark 11.37) that the pair
(L2,d) is not a metric space unless we identify functions which differ only on a set of
measure zero, where the mappingd : L2 × L2→ [0,∞) is defined by

d ( f , g) =

√∫

[0,∞)
( f − g)2 dµ =

√∫ ∞

0

( f (x) − g (x))2

(x + 1)4
dx.

By Lemma 6, we observe thatYconc ⊂ L2. Unfortunately, we note that this does not
guarantee that the pair(Yconc,d) is a metric space, for the reason mentioned above.
Nevertheless, we shall prepare the ground for showing that(Yconc, d) is actually a
metric space.

WheneverΦ ∈ Yconc write GΦ for the graph ofΦ on [0,∞), i. e.,

GΦ = {(x,Φ (x)) : x ∈ [0,∞)}
and writeGa||b

Φ
for the graph ofΦ on the interval [a, b), i. e.,

Ga||b
Φ

= {(x,Φ (x)) : x ∈ (a, b)} ,
wherea < b are any non-negative numbers.

Lemma 7. LetΦ andΨ ∈ Yconc be arbitrary with distinct graphs. Then

|{x ∈ (0,∞) : Φ (x) = Ψ (x)}| ≤ 1,

where|B| stands for the cardinality ofB wheneverB is a set.

P. Suppose on the contrary that

|{x ∈ (0,∞) : Φ (x) = Ψ (x)}| ≥ 2.

Write
x1 = inf {x ∈ (0,∞) : Φ (x) = Ψ (x)}

and
x2 = inf {x ∈ (0,∞) \ {x1} : Φ (x) = Ψ (x)} .

It is clear that 0< x1 < x2 and Φ (xi) = Ψ (xi), i ∈ {1, 2}. We point out that
the two graphs are continuous. We show that the graph of one of the functionsΦ

andΨ lies above the graph of the other on the interval(0, x1). In fact, without loss
of generality we may assume on the contrary thatG0||x1

Φ
lies both above and below

G0||x1
Ψ

. Then necessarily the two graphs must cross each other in the interior of interval
(0, x1), i. e. there is somex0 ∈ (0, x1) such thatΦ (x0) = Ψ (x0). This, however, is
in contradiction with the minimality ofx1. Hence we can assume thatG0||x1

Φ
lies

aboveG0||x1
Ψ

. By the continuity and the fact thatΦ (x1) = Ψ (x1) we note thatGΦ

crossesGΨ at point(x1, Φ (x1)). Nevertheless, since bothΦ andΨ are unbounded
increasing functions andΦ (x2) = Ψ (x2), the graphGΦ must cross the graphGΨ at
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point (x2, Φ (x2)). This means thatΦ must be convex on the interval(x1, x2), which
is absurd since these functions are concave. �

Corollary 2. Let Φ andΨ ∈ Yconc be arbitrary. Then among the following three
assertions exactly one fulfills

(1) {x ∈ [0,∞) : Φ (x) = Ψ (x)} = [0, ∞) .
(2) {x ∈ (0, ∞) : Φ (x) , Ψ (x)} = (0, ∞) .
(3) There is a unique numberx∗ ∈ (0,∞) with Φ (x∗) = Ψ (x∗) such that

{
x ∈ (0,∞) \ {x∗} : Φ (x) , Ψ (x)

}
= (0,∞) \ {x∗} .

Lemma 8. LetΦ andΨ ∈ Yconcbe arbitrary. Then in order thatΦ (x) = Ψ (x) for
all x ∈ [0,∞) it is necessary and sufficient that∫

[0,∞)
(Φ − Ψ)2 dµ = 0.

P. We first note that the sufficiency is obvious. To show the necessity let us
assume that ∫

[0,∞)
(Φ − Ψ)2 dµ = 0.

Then, on the one hand,

µ ({x ∈ [0,∞) : Φ (x) = Ψ (x)}) = µ ([0,∞)) =
1
3

so that necessarily{x ∈ [0,∞) : Φ (x) = Ψ (x)} , ∅. On the other hand

µ ({x ∈ (0,∞) : Φ (x) , Ψ (x)}) = 0.

Note that both the sets{x ∈ [0,∞) : Φ (x) = Ψ (x)} and {x ∈ (0,∞) : Φ (x) , Ψ (x)}
cannot be non-empty at the same time (because of Corollary 2). Consequently,

{x ∈ (0, ∞) : Φ (x) , Ψ (x)} = ∅

and, therefore,{x ∈ [0,∞) : Φ (x) = Ψ (x)} = [0, ∞). �

We are now in the position to state the result hereby.

Proposition 5. The mappingd : Yconc× Yconc→ [0,∞), defined by

d (Φ, Ψ) =

√∫

[0,∞)
(Φ − Ψ)2 dµ =

√∫ ∞

0

(Φ (x) −Ψ (x))2

(x + 1)4
dx,

satisfies the metric axioms, i. e. for any three functionsΦ1, Φ2 andΦ3 ∈ Yconc

(1) d (Φ1, Φ2) ≥ 0 andd (Φ1, Φ2) = 0 if and only ifΦ1 = Φ2.
(2) d (Φ1, Φ2) = d (Φ2, Φ1) .
(3) d (Φ1, Φ2) ≤ d (Φ1, Φ3) + d (Φ3, Φ2) .

The pair(Yconc, d) is a metric space and then by referring to Theorem C the pair
(A, d) is also a metric space.
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Theorem 7. LetΦ ∈ Yconc and writeΦn = Φn/(n+1), n ≥ 1. Then

lim
n→∞

∫

[0,∞)
Φ2

ndµ =

∫

[0,∞)
Φ2dµ.

P. For every indexn ≥ 1, defineΦ∗n := (Φn (1))−1 Φn. Clearly(Φn) ⊂ Yconc

(see Corollary 1) and hence
(
Φ∗n

) ⊂ A because of Lemma 1. Via Theorem 6 it follows
that sequence(Φn) converges toΦ pointwise, which in turn entails that sequence

(
Φ∗n

)
converges to(Φ (1))−1 Φ pointwise. Write the functionZ (x) := x+ 1, x ∈ [0,∞). We
obtain (by Lemma 3) that

sup
n≥1

Φ∗n (x) ≤ S (x) ≤ Z (x) , x ∈ [0,∞) .

Now, on the one hand, a simple computation shows thatZ ∈ L2. On the other hand,
we can deduce from Lemma 6 that(Φn) ⊂ L2 and thus

(
Φ∗n

) ⊂ L2. Therefore, the
Dominated Convergence Theorem guarantees that

lim
n→∞

∫

[0,∞)
Φ∗2n dµ = (Φ (1))−2

∫

[0,∞)
Φ2dµ.

Now we remark that for every indexn ≥ 1,∫

[0,∞)
Φ2

ndµ = (Φ (1))2
∫

[0,∞)
Φ∗2n dµ.

Passing to the limit we can conclude that

lim
n→∞

∫

[0,∞)
Φ2

ndµ =

∫

[0,∞)
Φ2dµ.

This was to be proven. �

Theorem 8. The subsetA is a dense set inYconc.

P. Let Φ ∈ Yconcbe arbitrary. For every indexn ≥ 1, setΦ∗n := (Φn (1))−1 Φn,
whereΦn = Φn/(n+1). We need to prove that

lim
n→∞d (Φ, Φn) = lim

n→∞

∫

[0,∞)
(Φ − Φn)2 dµ = 0.

In fact, fix arbitrarily an indexn ≥ 1. Then∫

[0,∞)
(Φ − Φn)2 dµ =

∫

[0,∞)
Φ2

ndµ +

∫

[0,∞)
Φ2dµ − 2

∫

[0,∞)
ΦΦndµ. (4.4)

Then Lemma 3 entails that

(Φ (1))−(2n+1)/(n+1) ΦΦn ≤ Z(2n+1)/(n+1) ≤ Z2,

sinceZ (x) ≥ 1 for all x ∈ [0, ∞) and the sequence
(

2n+1
n+1

)
tends increasingly to 2. On

the other hand,

lim
n→∞ (Φ (1))−(2n+1)/(n+1) Φ (x) Φn (x) = (Φ (1))−2 Φ2 (x)
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for all x ∈ [0,∞). Then by means of The Dominated Convergence Theorem it follows
that

lim
n→∞

∫

[0,∞)
ΦΦndµ = lim

n→∞ (Φ (1))(2n+1)/(n+1)
∫

[0,∞)
(Φ (1))−

2n+1
n+1 Φ

2n+1
n+1 dµ (4.5)

=

∫

[0,∞)
Φ2dµ.

Finally we note that

lim
n→∞

∫

[0,∞)
Φ2

ndµ =

∫

[0,∞)
Φ2dµ, (4.6)

by Theorem 7. Therefore, combining the results established in (4.4)–(4.6), we get
limn→∞ d (Φ, Φn) = 0. We can thus conclude on the validity of the theorem. �

If the integral representation (1.1) is such that its derivative is a right-continuous
function, tending increasingly to infinity and assumes the value zero at the origin,
then we speak ofconvex Young-functions(see, e. g. [2]). Clearly the inverse of every
convex Young-function is a concave Young-function (andvice versa).

A convex Young-functionΨ is said to satisfy the growth condition if

sup
x>0

Ψ (βx)
Ψ (x)

< ∞

for some numberβ > 1 which is equivalent to

sup
x>0

xψ (x)
Ψ (x)

:= p < ∞

with ψ being the derivative ofΨ. (The quantityp is referred to as the power ofΨ.)

Open problem 1. LetΦ ∈ Yconcbe arbitrary. In order thatΦ (x) = xp, x ∈ [0,∞)
for somep ∈ (0, 1) it is necessary and sufficient that bothΦ ∈ A1 and its inverse
Φ−1 satisfy the growth condition together with the propertyΦ−1 (1) = 1.

Open problem 2. The converse of Remark 5 holds true.

A
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