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1. I

Banach’s fixed point theorem is one of the most useful results in fixed point theory.
In a metric space setting it can be briefly stated as follows.

Theorem B. Let (X, d) be a complete metric space andT : X → X a strict
contraction, i. e., a map satisfying

d(T x,Ty) ≤ αd(x, y), ∀ x, y ∈ X, (1.1)

where0 < α < 1 is a constant. ThenT has a unique fixed point inX.

Theorem B, together with its local variants, has many applications in solving non-
linear functional equations, but has one drawback the contraction condition (1.1)
forcesT to be continuous on the entireX.

In 1968, Kannan [6] obtained a fixed point theorem for mappingsT that need not
be continuous.

Theorem K. Let (X,d) be a complete metric space andT : X→ X a mapping for
which there existsa ∈

(
0, 1

2

)
such that

d(T x,Ty) ≤ a
[
d(x,T x) + d(y,Ty)

]
, for all x, y ∈ X . (1.2)

ThenT has a unique fixed point inX.

Example1. Let X be the set of reals with the usual norm andT : X→ X given by
T x = 0 if x ∈ (−∞,2], andT x = −1

2 if x ∈ (2,∞). ThenT satisfies (1.2) witha = 1
5

andT is not continuous.
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Following Kannan’s theorem, a great many papers were devoted to obtaining fixed
point theorems for various contractive conditions that do not require the continuity of
T, see, for example, Rus [11].

One of the most general contractive conditions obtained in this way, for which the
Picard iteration still converges to the unique fixed point, was given byĆirić [4].

Theorem C1. Let (X,d) be a complete metric space andT : X → X a mapping
such that

d(T x,Ty) ≤ h ·max{d(x, y),d(x,T x), d(y,Ty),d(x,Ty),d(y,T x)} (1.3)

for all x, y ∈ X and for some constant0 < h < 1.
ThenT has a unique fixed point inX.

Remarks.1◦ As shown by Rhoades [10, Theorem 2], a contractive mapping satis-
fying (1.3) is still continuousat the fixed point.

2◦ The fixed point theorems for contractive definitions of the form (1.1)–(1.3)
were unified by many authors, see for example Berinde [1], Rus [11]. For a recent
comparison of various contractive type conditions we refer to Mésźaros [7].

3◦ The set 0T(x) = {x,T x,T2x, . . . } is calledthe orbitof T relative tox. It is shown
in [12] that condition (1.3), in fact, ensures that the orbits ofT are bounded.

For anyT : X→ X andx, y ∈ X, whereX is a metric space, let us put

B(x, y) = d(x, y);

K(x, y) =
1
2

[
d(x,T x) + d(y,Ty)

]
;

C(x, y) = max{d(x, y), d(x,T x), d(y,Ty),d(x,Ty), d(y,T x)} .
The following theorem formally unifies Banach’s, Kannan’s andĆirić’s fixed point

theorems.

Theorem G. Let (X,d) be a complete metric space andT : X → X a mapping
satisfying

d(T x,Ty) ≤ λE(x, y) for all x, y ∈ X , (1.4)

whereλ is a constant,0 < λ < 1, andE(x, y) is any of the expressionsB(x, y), K(x, y)
andC(x, y).

ThenT has a unique fixed point.

Remarks.1◦ Theorem G above can be extended by considering a functionϕ :
�+ → �+ (�+ denotes the set of nonnegative numbers) which preserves some essen-
tial properties of the function

ϕ(t) = λt, t ∈ �+ (0 < λ < 1) (1.5)

appearing in (1.4) and by replacing condition (1.4) by a more general one:

d(T x,Ty) ≤ ϕ(E(x, y)) for all x, y ∈ X . (1.6)
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2◦ One of the first results of this kind was obtained by Browder [3]. The function
ϕ involved in such fixed point theorems is usually calledcomparison functionand is
supposed to satisfy at least the following two conditions:

(iϕ) ϕ is nondecreasing, i. e.,t1 < t2⇒ ϕ(t1) ≤ ϕ(t2);
(iiϕ) The sequence{ϕn(t)} converges to zero for everyt ∈ �+, whereϕn stands for

thenth iterate ofϕ.

Example2. It is easy to check that a comparison functionϕ needs to be neither
linear nor continuous, by consideringϕ1(t) = t

1+t , t ∈ �+ andϕ2(t) = t
2 if 0 ≤ t < 1

andϕ2(t) = t − 1
3 if t ≥ 1.

To prove our main result we shall need the following Lemma.

Lemma 1. If ϕ satisfies(iϕ) and (iiϕ) and is such that

t ≤ ϕ(t) for a certain t ∈ �+, (1.7)

thent = 0.

P. Suppose the contrary, i. e., there existst > 0 such that (1.7) is satisfied.
Then, by induction, in view of (iiϕ), we get

t ≤ ϕn(t) , n ≥ 1.

By virtue of (iiϕ), this implies thatt ≤ ϕn(t)→ 0 asn→ ∞, a contradiction. �

2. C    -

All fixed point theorems stated in the previous section deal with a self-mapping of
a metric space. However, in many applications of fixed point theory, either a mapping
of a closed subsetK of X is not a self-mapping ofK or it is very difficult to verify the
invariance conditionT(K) ⊂ K.

It was thus an open problem for more than 20 years to extend Theorem C1 from
self-mappingsT : K → K satisfying (1.3) to the corresponding nonself-mappings
T : K → X, whereK , X. Recently,Ćirić [5] solved this problem by considering
an additional boundary condition, also known as Rothe’s boundary condition, which,
however, restricts his results to a Banach space setting.

Theorem C2. Let E be a Banach space,K a nonempty closed subset ofE, and
∂K the boundary ofK. LetT : K → E be a nonself-mapping satisfying(1.3) for all
x, y ∈ K. If

T(∂K) ⊂ K, (2.1)

thenT has a unique fixed point inK.

Very recently, Theorem C2 was extended by Rakočevíc [9] to a common fixed
point theorem. Radovanovic [8] also considered a similar but more particular con-
tractive condition.
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The main aim of this paper is to unify the results ofĆirić and Rakǒcevíc, as well
as many other related results, in the framework of a very general common fixed point
theorem.

3. M 

Let E be a normed linear space. Forx, y ∈ E we shall denote by

seg[x, y] = {z ∈ E : z = (1− t)x + ty , 0 ≤ t ≤ 1}
the segment of extremitiesx andy. The proof of the next lemma is straightforward,
see Rakǒcevíc [9].

Lemma 2. If u ∈ E andz ∈ seg[x, y], then

‖u− z‖ ≤ max{‖u− x‖ , ‖u− y‖} .
Now we can state the main result of this paper.

Theorem 1. Let E be a Banach space,K a nonempty closed subset ofE and∂K
the boundary ofK. Let S : K → E and T : E → E, T : K → K. Suppose that
∂K , ∅, T is continuous, and thatS andT satisfy the following conditions:

1◦ There exists a continuous comparison functionϕ such that, for everyx, y ∈ K,

d(S x,Sy) ≤ ϕ(M(x, y)) , (3.1)

where

M(x, y) = max{d(T x,Ty),d(T x,S x),d(Ty,Sy),d(T x,Sy),d(Ty,S x)}; (3.2)

2◦ T andS are weakly commutative, i. e.,

d(TS x,S T x) ≤ d(T x,S x), for every x ∈ K, (3.3)

and, moreover,

S(K) ∩ K ⊂ T(K) , (3.4)

S(∂K) ⊂ K (3.5)

and
T(∂K) ⊃ ∂K . (3.6)

ThenT and S have a unique common fixed point, provided thatT and S have
bounded orbits.

P. Let x0 ∈ ∂K. ThenS x0 ∈ K by (3.5) and by (3.4) it results that there exists
x1 ∈ K such thatT x1 = S x0.

ConsiderS x1. If S x1 ∈ K, (3.4) again implies there existsx2 ∈ K such that
T x2 = S x1. If S x1 < K, then by (3.6) there existsx2 ∈ ∂K such thatT x2 ∈ ∂K ∩
seg [T x1,S x1]. Hence, by induction, we construct a sequence{xn} of points inK as
follows.
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If S xn ∈ K, thenT xn+1 = S xn for somexn+1 ∈ K, by (3.4). IfS xn < K, then, by
(3.6), we can pickxn+1 ∈ ∂K such that

T xn+1 ∈ ∂K ∩ seg [T xn,S xn] .

We shall prove that both{T xn} and{S xn} are Cauchy sequences.
Let us first prove that

T xn+1 , S xn⇒ T xn = S xn−1 . (3.7)

Suppose the contrary, that is,T xn , S xn−1. Thenxn ∈ ∂K and (3.5) impliesS xn ∈ K,
i. e. T xn+1 = S xn, a contradiction. This proves (3.7).
By setting

B(n, k) = {T xj ,S xj : n ≤ j ≤ n + k},
b(n, k) = diam(B(n, k)) ,

B(n) = {T xj ,S xj : n ≤ j} ,
b(n) = diam(B(n)) ,

we obtain thatb(n, k) ↑ b(n) ask → ∞ and {b(n)} is a decreasing sequence with
positive terms, henceb = limn→∞ b(n) exists.

In order to prove that{T xn} and{S xn} are Cauchy sequences we must show that
b = 0. We claim that

b(n, k) ≤ ϕ(b (n− 2, k + 2)
)
, n ≥ 2 , k ≥ 0 , (3.8)

and consider the following three cases.

Case1. b(n, k) = d(T xi ,S xj) with n ≤ i, j ≤ n + k.

If T xi = S xi−1, then, by (3.1), we get

b(n, k) = d(S xi−1,S xj) ≤ ϕ(M (xi−1, x j)
) ≤ ϕ(b (n− 2, k + 2)

)

becauseϕ is monotonically increasing.
If T xi , S xi−1, thenT xi−1 = S xi−2 and

T xi ∈ seg
[
T xi−1,S xi−1

]
= seg

[
S xi−2,S xi−1

]
.

Thus,

b(n, k) = d(T xi ,S xj) ≤ max
{
d(S xi−2,S xj), d(S xi−1,S xj)

}

≤ max
{
ϕ
(
M (xi−2, x j)

)
, ϕ

(
M (xi−1, x j)

)}

= ϕ
(
max

{
M(xi−2, x j),M(xi−1, x j)

}) ≤ ϕ(b (n− 2, k + 2)
)
.

Case2. b(n, k) = d(T xi ,T xj) with n ≤ i, j ≤ n + k.

If T xj = S xj−1, then Case 2 reduces to Case 1. IfT xj , S xj−1, then as in Case 1
we haveT xj−1 = S xj−2 and

T xj ∈ ∂K ∩ seg [S xj−2,S xj−1] .
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Hence,
b(n, k) = d(T xi ,T xj) ≤ max

{
d (T xi ,S xj−2), d(T xi ,S xj−1)

}

and so Case 2 also reduces to Case 1.

Case3. b(n, k) = d(S xi ,S xj), with n ≤ i, j ≤ n + k.

Then
b(n, k) = d(S xi ,S xj) ≤ ϕ(M (xi , x j)

) ≤ ϕ(b (n, k)
)
,

which by Lemma 1 impliesb(n, k) = 0. Hence, due toS xi = T xi , b(n, k) =

d(S xj ,T xi), which means Case 1. Therefore, (3.8) is proved.
Now, having in view the continuity ofϕ, we letk→ ∞ in (3.8), and obtain

b(n) ≤ ϕ(b (n− 2)
)
.

Letting n → ∞ in the previous inequality we obtainb ≤ ϕ(b) which, by Lemma 1,
impliesb = 0. This shows that both{T xn} and{S xn} are Cauchy sequences.

As T xn ∈ K andK is a closed subset of the Banach spaceE, we conclude that

lim
n→∞T xn = p ∈ K .

Since
d(T xn,S xn) ≤ b(n)→ 0 as n→ ∞

we also have limS xn = p. As T is continuous, we obtain

lim
n→∞T(S xn) = T

(
lim
n→∞S xn

)
= T p ∈ K ,

and in view of the weak commutativity (3.3), we have

d(S T xn,T p) ≤ d(S T xn,TS xn) + d(TS xn,T p) ≤
≤ d(T xn,S xn) + d(TS xn,T p)→ 0 , asn→ ∞ . (3.9)

This shows that
lim
n→∞(S T)(xn) = T p, (3.10)

and therefore, by (3.9) and (3.10), we have

M(T xn, p)→ d(T p,S p) as n→ ∞
and

d(T p,S p) ≤ ϕ(d (T p,S p)
)
,

which, again by Lemma 1, yieldsd (T p,S p) = 0, i. e.,

T p = S p. (3.11)

We shall prove thatS p(and alsoT p) is a common fixed point forS andT. Indeed,
by (3.11) and (3.3) it results that

TS p= S T p= S S p. (3.12)
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Now, by (3.1), (3.11), and (3.12), we have

d(S S p,S p) ≤ ϕ(M (S p, p)
)

= ϕ(d(S S p,S p)),

which yieldsS S p= S p. It follows from (3.12) thatS pis a fixed point ofT as well.
To prove the uniqueness, relation (3.1) is used. �

Remarks.1◦ ForT = 1E (the identity map) andϕ given by (1.5), from Theorem 1
we obtain Theorem C2 of́Cirić.

2◦ Forϕ(t) = λt with 0 < λ < 1, Theorem 1 implies Theorem 2 of Rakočevíc [9].
It is known (see Lemma 4.3.1 in [11]) that if T is a generalized strictϕ-contraction,
i. e., T satisfies (1.6) withE(x, y) ≡ C(x, y), andϕ is a strict comparison function,
thenT has bounded orbits.

It is, however, an open question whether or not two mappingsS andT satisfying
(3.1) have bounded orbits.

3◦ By considering other comparison functions in Theorem 1, we obtain various
related fixed point theorems as well as common fixed point theorems. Moreover, all
the results in Rakǒcevíc [9] can be extended in a similar way. We restrict our study
to Theorem 3.

4◦ The continuity assumption ofT in Theorem 1 can be weakened to obtain a more
general result similar to Theorem 3 of Rakočevíc [9].

Theorem 2. Let E be a Banach space,K a nonempty closed subset ofE, and
∂K , ∅ the boundary ofK. LetS : K → E, T : E→ E, andT : K → K.

Suppose thatTm is continuous for some fixed positive integerm, S andT satisfy
(3.1), (3.4), (3.5), (3.6), and, moreover,T andS commute, i. e.,

TS x= S T x for every x ∈ K .

ThenS andT have a unique common fixed point inK, provided thatT andS have
bounded orbits.

P. Let {xn}, S xn andT xn be constructed as in the proof of Theorem 1. Hence,

lim
n→∞S xn = lim

n→∞T xn = p ∈ K.

For everyn ≥ 1, we have

d
(
TmS xn,S Tm−1p

)
= d

(
S Tmxn,S Tm−1p

) ≤
≤ ϕ(M (Tmxn,T

m−1p)
)

= ϕ
(
max

{
d(TmT xn,T

mp),d(TmT xn,T
mS xn),

d(Tmp,S Tm−1p),d(TmT xn,S Tm−1p),d(Tmp,TmS xn)
})
.

Then, by the continuity ofTm,

d(Tmp,S Tm−1p) ≤ ϕ(d (Tmp,S Tm−1p)
)
,
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and henceTmp = S Tm−1p, by Lemma 1. So, similarly to the method used in the
proof of Theorem 1, it can be shown thatTmp is a common fixed point ofT andS.
The uniqueness is proved by using the contraction condition (3.1). �

p
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