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pings is given. It contains, as particular cases, many classical and recent results in
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1. INTRODUCTION

Banach’s fixed point theorem is one of the most useful results in fixed point theory.
In a metric space setting it can be briefly stated as follows.

Theorem B. Let (X,d) be a complete metric space afid: X — X a strict
contraction, i. e., a map satisfying
d(TxTy) <ad(X,y), VY XyeX (1.1)
where0 < « < 1is a constant. Thefl has a unique fixed point iX.

Theorem B, together with its local variants, has many applications in solving non-
linear functional equations, but has one drawback the contraction condition (1.1)
forcesT to be continuous on the entie

In 1968, Kannan§] obtained a fixed point theorem for mappingshat need not
be continuous.

Theorem K. Let(X, d) be a complete metric space afid X — X a mapping for
which there exista € (O, %) such that

dTxTy) <al[d(x, TX) +d(y,Ty)], forall xyeX. (1.2)
ThenT has a unique fixed point iK.

Examplel. Let X be the set of reals with the usual norm dand X — X given by
Tx=0if X € (-00,2], andTx = —3 if X € (2,00). ThenT satisfies (1.2) witta = 1
andT is not continuous.
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Following Kannan'’s theorem, a great many papers were devoted to obtaining fixed
point theorems for various contractive conditions that do not require the continuity of
T, see, for example, Ru&]].

One of the most general contractive conditions obtained in this way, for which the
Picard iteration still converges to the unique fixed point, was giveﬁib'x’z [4].

Theorem C1. Let (X, d) be a complete metric space aiid: X — X a mapping
such that

d(Tx Ty) < h-max{d(x,y),d(x, TX),d(y, Ty), d(X, Ty), d(y, T X)} (1.3)

for all x,y € X and for some constaft< h < 1.
ThenT has a unique fixed point iX.

Remarks.1° As shown by Rhoaded ), Theorem 2], a contractive mapping satis-
fying (1.3) is still continuoust the fixed point

2° The fixed point theorems for contractive definitions of the form (1.1)—(1.3)
were unified by many authors, see for example Berifd§leRus [L1]. For a recent
comparison of various contractive type conditions we refer &s#lros [7].

3° The set§(X) = {x, Tx T2x,...}is calledthe orbitof T relative tox. Itis shown
in [12] that condition (1.3), in fact, ensures that the orbitJ aire bounded.

ForanyT : X —» X andx, y € X, whereX is a metric space, let us put

B(x1) = d(x 1)
K(es) = 3 [T+ Tl
Cx.4) = maxid(x. ), dox T9),dy, Ty), d0x To), . TR

The following theorem formally unifies Banach’s, Kannan'’s andc’s fixed point
theorems.

Theorem G. Let (X, d) be a complete metric space amd: X — X a mapping
satisfying
d(Tx Ty) <AE(x,y) forall xyeX, (1.4)

wherel is a constantD < 1 < 1, andE(X, y) is any of the expressioXX, i), K(X, y)
andC(x, y).
ThenT has a unique fixed point.

Remarks.1° Theorem G above can be extended by considering a fungtion
R, — R, (R, denotes the set of nonnegative numbers) which preserves some essen-
tial properties of the function

pt)=at, teR, (0<a<l) (1.5)
appearing in (1.4) and by replacing condition (1.4) by a more general one:
d(Tx Ty) < o(E(x,y)) forall xyeX. (1.6)
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2° One of the first results of this kind was obtained by Brow@r The function
¢ involved in such fixed point theorems is usually calbeinparison functiomnd is
supposed to satisfy at least the following two conditions:

(i) ¢ isnondecreasing, i. &, <tz = ¢(t1) < ¢(t2);
(ii,) The sequencgy"(t)} converges to zero for evetye R.., wherep" stands for
thenth iterate ofyp.

Example2. It is easy to check that a comparison functipmeeds to be neither
linear nor continuous, by considerigg(t) = £+, t € R, andg,(t) = 5if0 <t <1
andgo(t) =t-3ift> 1.

To prove our main result we shall need the following Lemma.

Lemma 1. If ¢ satisfieqi,) and (ii,) and is such that
t < () foracertainte R,, a.7)
thent = 0.

Proor. Suppose the contrary, i. e., there exists 0 such that (1.7) is satisfied.
Then, by induction, in view of (i), we get

t<o"(t), n>1

By virtue of (ii,), this implies that < ¢"(t) — 0 asn — oo, a contradiction. ]

2. CONTRACTIONS THAT ARE NOT SELF-MAPPINGS

All fixed point theorems stated in the previous section deal with a self-mapping of
a metric space. However, in many applications of fixed point theory, either a mapping
of a closed subsdt of X is not a self-mapping df or it is very dificult to verify the
invariance conditio (K) c K.

It was thus an open problem for more than 20 years to extend Theorem C1 from
self-mappingsl : K — K satisfying (1.3) to the corresponding nonself-mappings
T : K > X, whereK # X. Recently,Ciri¢ [5] solved this problem by considering
an additional boundary condition, also known as Rothe’s boundary condition, which,
however, restricts his results to a Banach space setting.

Theorem C2. Let E be a Banach spacdl a nonempty closed subset®Bf and
oK the boundary oK. LetT : K — E be a nonself-mapping satisfyirig.3) for all
X,y € K. If

T(0K) c K, (2.1)

thenT has a unique fixed point iK.
Very recently, Theorem C2 was extended by Rakdt [9] to a common fixed

point theorem. Radovanovi@]also considered a similar but more particular con-
tractive condition.
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The main aim of this paper is to unify the resultsGific and Rakéevic, as well
as many other related results, in the framework of a very general common fixed point
theorem.
3. MAIN RESULT
Let E be a normed linear space. Bgly € E we shall denote by
segik,y] ={ze E:z=(1-t)x+ty, 0<t<1}

the segment of extremitiesandy. The proof of the next lemma is straightforward,
see Rakoevic [9].

Lemma 2. If u € E andz € seg, y], then
llu— 2| < maxju— X[, llu-uyll}.
Now we can state the main result of this paper.

Theorem 1. Let E be a Banach spac& a nhonempty closed subsetBand oK
the boundary oK. LetS : K - EandT : E - E, T : K —» K. Suppose that
oK # @, T is continuous, and the® and T satisfy the following conditions:

1° There exists a continuous comparison functisuch that, for every, y € K,
d(SxSy) < p(M(X.y)), (3.1)
where
M(x, y) = max{d(Tx Ty),d(Tx SX,d(Ty, Sy),d(Tx Sy),d(Ty, SR}, (3.2)
2° T andsS are weakly commutative, i. e.,
d(TSxSTR<A(Tx SX, forevery xeK, (3.3)
and, moreover,

S(K) N K c T(K), (3.4)
S(K) c K (3.5)

and
T(9K) 2 0K . (3.6)

ThenT and S have a unique common fixed point, provided thaand S have
bounded orbits.

Proor. Let Xy € K. ThenS % € K by (3.5) and by (3.4) it results that there exists
X1 € Ksuchthafl x; = S %.

ConsiderSx. If Sx € K, (3.4) again implies there exists € K such that
Tx = Sx. If Sx ¢ K, then by (3.6) there existe € dK such thafT x, € K N
seg [T x, S %]. Hence, by induction, we construct a sequefigg of points inK as
follows.
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If S» € K, thenT x,.1 = S, for somexy,1 € K, by (3.4). IfSx, ¢ K, then, by
(3.6), we can pickk,.1 € dK such that

Tx1 € K Nseg[l %, S %]

We shall prove that bottT x,} and{S »,} are Cauchy sequences.
Let us first prove that

TXw1#S% = TX =S %-1. (3.7)

Suppose the contrary, thatiBx, # S %-1. Thenx, € dK and (3.5) implie$S x, € K,
i. €. Tx1 = Sk, a contradiction. This proves (3.7).
By setting

B(n,k) ={Tx,Sx:n<j<n+Kk,
b(n, k) = diam@®B(n, k)),

B(n) ={Tx;,Sx:n<j},

b(n) = diam(B(n)),

we obtain that(n,k) T b(n) ask — oo and{b(n)} is a decreasing sequence with
positive terms, hende = lim,,_,, b(n) exists.

In order to prove tha{T x,} and{S %} are Cauchy sequences we must show that
b = 0. We claim that

b(n,k) < p(b(n—-2,k+2),n>2,k>0, (3.8)
and consider the following three cases.
Casel. b(n,k) =d(Tx,Sx)withn<i,j<n+k.
If Tx = Sx_1, then, by (3.1), we get
b(n, K) = d(S %-1, SX) < (M (Xi-1, X})) < ¢(b(n -2,k +2))

because is monotonically increasing.
If T = S¥%_1,thenTX_1 = S%_»and

Tx € seg[TX-1,S%-1] = seg[SX-2,S%-1].
Thus,
b(n, k) = d(T %, S %) < max{d(S %-2, S %), d(S %-1, S X)}
< max{e(M (Xi-2, X})), ¢(M (Xi-1, Xj))}
= p( max{M(%-2, X). M(%-1. X))}) < ¢(b(n - 2.k +2)).
Case2. b(n, k) = d(Tx, Txj)) withn<i,j <n+k.

If Tx; = Sx-1, then Case 2 reduces to Case 1T ¥ # S X_1, then as in Case 1
we haveT x;_1 = S x_» and

Txj € 0K NnsegB X-2,S%-1] .
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Hence,
b(n, k) = d(Tx, Tx) < max{d(Tx,S X-2), d(T %, S X-1)}

and so Case 2 also reduces to Case 1.
Case3. b(n,k) =d(Sx,Sx), withn<i,j <n+k.

Then

b(n, k) = d(S %, S %) < o(M (%, Xj)) < ¢(b(n,k)),

which by Lemma 1 implied(n,k) = 0. Hence, due t&x = Tx, b(nk) =
d(S %, T %), which means Case 1. Therefore, (3.8) is proved.

Now, having in view the continuity ap, we letk — oo in (3.8), and obtain

b(n) < ¢(b(n - 2)).

Lettingn — oo in the previous inequality we obtalm < ¢(b) which, by Lemma 1,
impliesb = 0. This shows that bot{T x,} and{S %} are Cauchy sequences.
AsTx, € K andK is a closed subset of the Banach spBc#e conclude that

r!i_r)rgoTxn =peK.
Since
d(T%,S%)<b(n)—>0 as n—- x
we also have lin® ¥, = p. AsT is continuous, we obtain
lim T(Sx) =T(lim Sx)=TpeK,
and in view of the weak commutativity (3.3), we have
dST», TP <d(ST»x, TSxH)+d(TS%,Tp) <
<d(Tx,S»%)+d(TS»%,Tp) — 0, asn — . (3.9)
This shows that
lim (ST)(x) = Tp, (3.10)
and therefore, by (3.9) and (3.10), we have
M(TX), p) > d(Tp,SP as n—o

and
dTp.SP <¢(d(Tp.SP).
which, again by Lemma 1, yield5(Tp,Sp =0, i. e.,

Tp=Sp. (3.12)

We shall prove tha® p(and alsor p) is a common fixed point fog andT. Indeed,
by (3.11) and (3.3) it results that

TSp=STp=SSp (3.12)
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Now, by (3.1), (3.11), and (3.12), we have

d(SSpPSP <e(M(Spp) =¢dSSpSn),

which yieldsS S p= S p It follows from (3.12) thatS pis a fixed point ofT as well.
To prove the uniqueness, relation (3.1) is used. O

Remarks.1° ForT = 1g (the identity map) ang given by (1.5), from Theorem 1
we obtain Theorem C2 diric.

2° Fore(t) = At with 0 < A < 1, Theorem 1 implies Theorem 2 of Ralavic [9].
It is known (see Lemma 4.3.1 i1]]) that if T is a generalized strigt-contraction,
i. e., T satisfies (1.6) witltE(x,y) = C(X,y), andy is a strict comparison function,
thenT has bounded orbits.

It is, however, an open question whether or not two mappsgadT satisfying
(3.1) have bounded orbits.

3° By considering other comparison functions in Theorem 1, we obtain various
related fixed point theorems as well as common fixed point theorems. Moreover, all
the results in Rakievic [9] can be extended in a similar way. We restrict our study
to Theorem 3.

4° The continuity assumption df in Theorem 1 can be weakened to obtain a more
general result similar to Theorem 3 of R&kwic [9].

Theorem 2. Let E be a Banach spacel a nonempty closed subset Bf and
0K # @ the boundary oK. LetS: K - E, T: E —» E,andT : K — K.

Suppose that ™ is continuous for some fixed positive integerS and T satisfy
(3.1), (3.4), (3.5), (3.6), and, moreoveiT andS commute, i. e.,

TSx=STx forevery xeK.

ThenS and T have a uniqgue common fixed pointkn provided thaflT and S have
bounded orbits.

Proor. Let{xn}, S % andT X, be constructed as in the proof of Theorem 1. Hence,
r!i_r)r;)Sx1 = n'lTlo”n =pekK.
For everyn > 1, we have
d(T™S %, ST™1p) = d(S Ty, S T™ 1p) <
< (M (T™%, ™))
= o(Max{d(T™ %, T™p), d(T™T %, T™S x,),
d(T™p, ST™p), d(T™T %, ST™1p), d(T™p, TS 3)})..
Then, by the continuity of ™,
d(T™p, ST™p) < p(d(T™p. ST *p)),
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and hencel™p = ST™1p, by Lemma 1. So, similarly to the method used in the
proof of Theorem 1, it can be shown thEPp is a common fixed point of andS.
The uniqueness is proved by using the contraction condition (3.1). O
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