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Abstract. A new yellow-red refinement of nonobtuse triangles, combining standard red
and yellow refinements, is proposed. This approach is also adapted for the construction of
nonobtuse global refinement of an initial triangulation in the case when some obtuse triangles
in it are created by a grid generator.
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1. Introduction

In this paper, we consider conforming (planar) triangulations of a polygon into tri-
angles, i.e., the union of all triangles of any particular triangulation is always equal
to our polygon, and any two different triangles in any (particular) triangulation may
only have a common edge, or a common vertex, or no common points (cf. [11]). In
most cases namely such conforming triangulations are used in finite element modelling
and finite element analysis.

A planar triangulation is called nonobtuse if all interior angles in all triangles of
the triangulation are less than or equal to π

2 . This condition was first introduced in
[4] and [15], where it was particularly used to prove the discrete maximum principle
for the piecewise linear finite element approximations to the Poisson equation with
the Dirichlet boundary condition. Later this condition was imposed on the interior
angles between faces of tetrahedra in tetrahedral partitions, and again used to prove
the discrete maximum principle for the finite element solutions to a class of nonlinear
elliptic problems for which the continuous maximum principle holds, see [12]. Ob-
viously, a similar question, under which conditions on the triangulations used the
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b) yellow refinementa) red refinement
Figure 1

discrete maximum principle holds, naturally appears in the case of parabolic prob-
lems. For these problems there are also some other important qualitative properties
closely related to the preservation of the maximum principle, we refer to [5], [6], and
[14] in this respect.

Note that in nonobtuse triangulations, all triangles satisfy the maximum angle
condition with the same constant, π

2 . This condition is very important for the finite
element analysis, since the optimum interpolation properties of the finite elements are
preserved [11, Chapt. 4].

The construction of a conforming triangulation of a polygon into (arbitrary) tri-
angles is, obviously, simple; moreover, there are proofs of the existence of nonobtuse
triangulations of polygons [1], [7]. Thus, having a nonobtuse initial triangulation, and
then applying the red refinement [2] and/or the yellow refinement [9] (see Figure 1),
we can easily build a family of globally refined triangulations where no obtuse angles
occur.

Nevertheless, in practice, the initial (coarse) triangulation of the polygonal domain
is performed by a grid generator, and it is most probable that this initial triangulation
is not nonobtuse. In this paper, we propose, first, a new way of refinement of a sin-
gle nonobtuse triangle, combining the standard yellow and red refinement techniques
(which we will call the yellow-red refinement). Thus, a nonobtuse triangulation can,
in fact, be globally refined using red and/or yellow and/or yellow-red refinements for
its triangles (in any desired combination). Further, evolving the approach used for
yellow-red refinement, we also analyse a possibility of refining globally the given trian-
gulation, initially containing several isolated obtuse triangles (cf. Figure 2), into the
conforming nonobtuse triangulation. In particular, we present the algebraic condi-
tions on the coordinates of vertices of a quadrilateral formed by obtuse and nonobtuse
triangles in the triangulation (where those two triangles are adjacent along the longest
side of the obtuse triangle), under which it is possible to refine the quadrilateral into
nonobtuse subtriangles (cf. Figure 4a). In the partition proposed in this paper, the
midpoints of non-common sides of the initial triangles and the center of the circum-
scribed circle around the obtuse triangle, which is inside of the quadrilateral, are used.
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Thus, if the conditions presented are satisfied for all the obtuse triangles and nonob-
tuse triangles adjacent to them (in the above–described manner), occurring in the
initial triangulation, we can conformly (globally) refine the given initial triangulation
so that the next (refined) triangulation (after one refinement step) already becomes
nonobtuse.

a) obtuse triangle is inside of solution domain b) obtuse triangle is adjacent to the boundary 

Figure 2

It is also worth mentioning here, that the nonobtusity condition is only sufficient
to prove the discrete maximum principle: it is possible to observe the validity of this
principle also in situations when some of the interior angles in the triangulation are
slightly obtuse. This issue, leading to so-called weakened acute type conditions, is
addressed in [13] and [10] in the two- and three-dimensional cases, respectively.

Other known refinements of triangles are green [2], and blue [8], they are used for
local refinement procedures. For a comprehensive survey of the results on the grid
generation issues, we refer to monograph [3].

2. Nonobtuse triangle and yellow-red refinement

2.1. Criterion for a nonobtuse triangle. In this section, we give a simple criterion
for a triangle to be nonobtuse, and introduce the idea of yellow-red refinement.

We present a simple criterion, which employs the coordinates of vertices of a trian-
gle, to decide whether this triangle is nonobtuse. From now on, ABC always stands
for a triangle with vertices A = (xA, yA), B = (xB , yB), and C = (xC , yC) (see
Figure 3).

Lemma 1. Triangle ABC is nonobtuse if and only if the following three inequalities
hold

(xA − 2xB + xC)2 + (yA − 2yB + yC)2 ≥ (xC − xA)2 + (yC − yA)2, (2.1a)

(xC − 2xA + xB)2 + (yC − 2yA + yB)2 ≥ (xB − xC)2 + (yB − yC)2, (2.1b)

(xB − 2xC + xA)2 + (yB − 2yC + yA)2 ≥ (xA − xB)2 + (yA − yB)2. (2.1c)

Proof. Conditions (2.1a)–(2.1c) imply that |BK| ≥ 1
2 |AC|, |AL| ≥ 1

2 |CB|, |CM | ≥
1
2 |AB|, where K, L, M are midpoints of AC, CB, AB, respectively. Geometrically,
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it means that (2.1a) is equivalent to the case when vertex B does not lie inside of
a circle having AC as its diameter (and K as its center), i.e., the angle at B is
nonobtuse; the same holds for vertices A and C, from (2.1b) and (2.1c), respectively
(cf. Figure 3a). ¤

2.2. Yellow-red refinement. The idea of red refinement from [2] (cf. Figure 1a)
consists of the usage of the midpoints of sides of the triangle: connecting them, we
get four subtriangles similar to the original one; red refinement can be applied to any
triangle.

The idea of yellow refinement was recently introduced in [9] for tetrahedra and
their faces. It essentially uses the assumption that the center of the circumscribed
circle of the given triangle lies in the closure of the triangle. Using this center and the
midpoints of sides of the triangle, we get partition into four or six right subtriangles,
depending on the value of the maximum angle in the given triangle (cf. Figure 1b).
Thus, yellow refinement can only be applied to a nonobtuse triangle.

Now, we show that it is also possible to combine both techniques inside of a nonob-
tuse triangle. The idea of such a construction is explained (in terms of Figure 3b)
as follows: let K, L, M be defined as before, the dashed line via point M be the
mid-perpendicular to side AB, points X, Y , Z be the midpoints of AK, BL, KL,
respectively (these three points are also centers of three dotted circles having AK,
BL, and KL as their diameters). If we can take point S from trapezoid AKLB
(⊂ ABC), lying on the mid-perpendicular via M , so that it does not lie inside of all
three (dotted) circles, then triangle ABC is, obviously, decomposed into six nonob-
tuse subtriangles – KLC, KSA, KLS, LSB, SMA, and SMB (the last two are,
moreover, right ones at the vertex M).

Remark 1. In general, there exist many choices for the position of point S. Never-
theless, there may occur a situation when the only possible choice of S is to be at
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point M , and it only happens if ABC is the right triangle. In this case, the yellow-red
refinement coincides with the standard red refinement of triangle ABC.

2.3. Nonobtuse refinements. In this section, we discuss the issue of the construc-
tion of (refined) nonobtuse triangulations from the initially generated one, containing
obtuse triangles; it is, particularly, shown how the yellow-red refinement technique
can be adapted for this purpose.

2.4. Nonobtuse refinement of two adjacent triangles. The approach, used in
Section 2.2, can be adapted to the problem of partitioning the triangulations with
obtuse triangles. For this purpose, we make the following natural observation – we
need not always make the refinement only in a single triangle, we can also perform
the refinement, for example, for a pair of adjacent triangles.

To show how this observation and the yellow-red refinement can be employed, we
assume (in denotations of Figure 4a) that triangle ADB is obtuse at D = (xD, yD)
and triangle ABC is nonobtuse as before. Also, let X = (xX , yX), Y = (xY , yY ), and
Z = (xZ , yZ) be midpoints of AK, BL, and KL, respectively.

Lemma 2. The coordinates of X, Y , and Z are given by the formulae

xX =
3
4
xA +

1
4
xC , yX =

3
4
yA +

1
4
yC ; (2.2a)

xY =
3
4
xB +

1
4
xC , yY =

3
4
yB +

1
4
yC ; (2.2b)

xZ =
1
2
xC +

1
4
xA +

1
4
xB , yZ =

1
2
yC +

1
4
yA +

1
4
yB . (2.2c)

Further, let S = (xS , yS) be the center of the circumscribed circle of ADB, it
stands at the intersection of three mid-perpendiculars to sides AD, DB and AB, and
lies outside of ADB, since it is obtuse.

Lemma 3. The coordinates of S are given by the formulae

xS =
(yB − yD)(x2

A + y2
A − x2

D − y2
D) + (yD − yA)(x2

B + y2
B − x2

D − y2
D)

2 · [(xA − xD)(yB − yD)− (xB − xD)(yA − yD)]
, (2.3a)

yS =
(xD − xB)(x2

A + y2
A − x2

D − y2
D) + (xA − xD)(x2

B + y2
B − x2

D − y2
D)

2 · [(xA − xD)(yB − yD)− (xB − xD)(yA − yD)]
. (2.3b)

The calculation in both lemmas is straightforward, therefore omitted.

Further, the following theorem holds, where | · | denotes the standard distance
between two points in plane.

Theorem 1. Let a triangle ABC, adjacent to an obtuse triangle ADB, be nonobtuse.
If

[(xC − xA)(yA − yB) + (yC − yA)(xB − xA)]×

× [(xS − 1
2
(xC + xA))(yA − yB) + (yS − 1

2
(yC + yA))(xB − xA)] ≤ 0 (2.4)
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Figure 4.

and

|SX| ≥ 1
4
|AC| , |SZ| ≥ 1

4
|AB| , |SY | ≥ 1

4
|BC| , (2.5)

where coordinates of points S, X, Y , and Z are given by (3.1)–(3.2), then subtriangles
KLC, KSA, KLS, LSB, SAP , SPD, SDQ, and SQB are nonobtuse (the last four
are, moreover, right triangles). Above, P and Q are the midpoints of sides AD and
DB, respectively (see Figure 4a).

Proof. Condition (3.3) means that points C and S are in different half-planes with
respect to straight-line KL, i.e., S lies in the trapezoid AKLB. Further, condition
(3.4) means that point S is outside of three circles defined as in Figure 3b. Thus,
all the above mentioned subtriangles make a nonobtuse partition of a quadrilateral
ADBC. ¤

Remark 2. Obviously, the conditions of Theorem 5 cannot be fulfilled in a general
case. For example, in Figure 4b, two adjacent (obtuse and nonobtuse) triangles are
such that the point S is completely outside of the quadrilateral made by the triangles.
Therefore, a partition of the quadrilateral in the manner, proposed in Theorem 5, is
not possible.

Remark 3. One of the other possibilities to get nonobtuse triangles, particularly, for
the case of Figure 4b, would be to use a swapping of diagonals in the quadrilateral.
Thus, in the decomposition of ADBC we can employ two triangles ACD and BCD
(which could be both nonobtuse) instead of ABC and ABD. However, the analysis of
such an approach, is beyond the scope of the present paper.
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2.5. On nonobtuse refinements of coarse triangulations. In this subsection,
we shortly discuss how the ideas from the previous subsection can be used to make
the nonobtuse triangulation from the coarse triangulation, with obtuse triangles in it,
built by the grid generator.

So far, various refinement techniques proposed – red, yellow, and yellow-red –
are only applied to the single triangle. As we mentioned above, the red refinement,
applied to the obtuse triangle, gives obtuse subtriangles; the other two techniques can
only be applied to nonobtuse triangles by their definitions. However, the yellow-red
technique can be used for the union of adjacent triangles, one of which is obtuse and
the other is nonobtuse, as it was shown in Section 3.1.

Thus, we can make a refinement of the initial (generated) triangulation in the
following manner. Using the criterion of Section 2.1, we check whether a triangle taken
from the mesh is nonobtuse; and, thus, mark all obtuse triangles. If the (marked)
obtuse triangle is adjacent to the boundary along its longest edge (see Figure 2b), we
let the perpendicular from the interior vertex of this triangle onto the boundary, and
add a new node and two right-angled triangles to the triangulation.

Further, if we have an obtuse triangle inside of the solution domain (see Figure 2a),
we consider the quadrilateral formed by it and adjacent to it and try to apply the
technique of Section 3.1.

Remark 4. A similar question – how to build nonobtuse tetrahedral triangulations
from triangulations containing some tetrahedra with obtuse interior angles between
faces, naturally appears in the three-dimensional case. To the authors’ knowledge
this is an open problem. Another related open question is how to make local nonob-
tuse refinements of planar and tetrahedral triangulations. It is also interesting to
make research on which geometrical properties of triangulations in the two- and three-
dimensional cases provide the validity of the discrete maximum principle for parabolic
problems.

3. Numerical experiments

Numerical experiments on the effectivity of the proposed technique have been per-
formed using Matlab in Intel 700 MgHz/128 RAM. We (pseudo)randomly generated
100 000 times the coordinates of vertices A,B, C,D (the time needed for this was
1131 seconds): the situation when one of triangles ABC or ABD had an obtuse an-
gle at the vertex C or D, and the other triangle had a nonobtuse angle at D or C,
respectively, occured 17 235 times. For those 17 235 “undesirable” cases, we could
successfully apply 2 353 times the result of Theorem 5 (the time needed for that was
56 seconds). Also, the swapping procedure of Remark 7 was “successful” for 2 488
cases from those 17 235 “undesirable” cases (time costs for this checking was 24 sec-
onds) , and there was no intersection between “successful” cases of Theorem 5 and
Remark 7 (the time needed for this was 22 seconds).

Another interesting result was that the situation, when both angles C and D in
the triangles ABC and ABD were obtuse, occurred 11 563 times, and we could
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“successfully” apply the swapping procedure from Remark 7 to 2 856 cases from
those 11 563 (time costs in this experiment was 119 seconds).
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[10] Korotov, S., Kř́ıžek, M. and Neittaanmäki, P.: Weakened Acute type condition and
the discrete maximum principle, Mathematics of Computation, 70, (2000), 107–119.
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