On the Diophantine equation $x^{2}+7^{\alpha} \cdot 11^{\beta}=y^{n}$

Gökhan Soydan

ON THE DIOPHANTINE EQUATION $x^{2}+7^{\alpha} \cdot 11^{\beta}=y^{n}$

GOKHAN SOYDAN

Received 21 October, 2011

Abstract. In this paper, we give all the solutions of the Diophantine equation $x^{2}+7^{\alpha} \cdot 11^{\beta}=$ y^{n}, for the nonnegative integers $\alpha, \beta, x, y, n \geq 3$, where x and y coprime, except when $\alpha . x$ is odd and β is even.

2000 Mathematics Subject Classification: 111D61; 11D99
Keywords: exponential equations, primitive divisors of Lucas sequences

1. Introduction

The Diophantine equation

$$
\begin{equation*}
x^{2}+C=y^{n}, \quad n \geq 3 \tag{1.1}
\end{equation*}
$$

in positive integers x, y, n for given a C has a rich history. In 1850, Lebesgue [25] proved that the above equation has no solutions when $C=1$. The equation of the title is a special case of the Diophantine equation $a y^{2}+b y+c=d x^{n}$, where $a \neq 0, b, c$ and $d \neq 0$ are integers with $b^{2}-4 a c \neq 0$, which has at most finitely many integer solutions $x, y, n \geq 3$ (see [23]). In 1993, J.H.E. Cohn [17] solved the Diophantine equation (1.1) for several values of the parameter C in the range $1 \leq C \leq 100$. The solution for the cases $C=74,86$ was completed by Mignotte and de Weger [31]. That had not been covered by Cohn (indeed, Cohn solved these two equations of type (1.1) except for $p=5$, in which case difficulties occur as the class numbers of the corresponding imaginary quadratic fields are divisible by 5). In [12], Bugeaud, Mignotte and Siksek improved modular methods to solve completely (1.1) when $n \geq 3$, for C in the range [1,100]. So they covered the remaining cases.

Different types of the Diophantine equation (1.1) were studied also by various mathematicians. For effectively computable upper bounds for the exponent n, we refer to [8] and [22]. However, these estimates are based on Baker's theory of lower bounds for linear forms in logarithms of algebraic numbers, so they are quite impractical. In [37], Tengely gave a method to solve the equation $x^{2}+a^{2}=y^{n}$ and applied it to $3 \leq a \leq 501$, so it includes $x^{2}+7^{2}=y^{n}$ and $x^{2}+11^{2}=y^{n}$. In [4], the equation $x^{2}+C=2 y^{n}$, where C is a fixed positive integer, under the similar restrictions
$n \geq 3$ and $\operatorname{gcd}(x, y)=1$ was studied. Recently, Luca, Tengely and Togbé studied the Diophantine equation $x^{2}+C=4 y^{n}$ for nonnegative integers $x, y, n \geq 3$ with x and y coprime for various shapes of the positive integer C in [28].

In recent years, a different form of the above equation has been considered, namely where C is a power of a fixed prime. In [6], the equation $x^{2}+2^{k}=y^{n}$ was studied under some conditions by Arif and Muriefah. A conjecture of Cohn (see [16]) was verified. It says that $x^{2}+2^{k}=y^{n}$ has no solutions with x odd and even $k>2$ by Le [24]. In [7], Abu Muriefah and Arif, gave all the solutions of $x^{2}+3^{k}=y^{n}$ with k odd and, Luca [27], gave all the solutions with k even. Again the same equation was independently solved in 2008 by Liqun in [35] for both odd and even m. All solutions of $x^{2}+5^{k}=y^{n}$ are given with k odd in [3] and with k even in [2]. Liqun solves the same equation again in 2009, in [36]. Recently, Bérczes and Pink [9], gave all the solutions of the Diophantine equation (1.1) when $C=p^{k}$ and k is even, where p is any prime in the interval $[2,100]$.

The last variant of the Diophantine equation (1.1) where C is a product of at least two prime powers were studied in some recent papers. In 2002, Luca gave complete solution of $x^{2}+2^{a} .3^{b}=y^{n}$ in [30]. Since then, in 2006, all the solutions of the Diophantine equation $x^{2}+2^{a} .5^{b}=y^{n}$ were found by Luca and Togbé in [30]. In 2008, the equations $x^{2}+5^{a} .13^{b}=y^{n}$ and $x^{2}+2^{a} 5^{b} .13^{c}=y^{n}$ were solved in [5] and [21]. Recently, in [14] and [13], complete solutions of the equations $x^{2}+$ $2^{a} .11^{b}=y^{n}$ and $x^{2}+2^{a} .3^{b} .11^{c}=y^{n}$ were found. In [20], the complete solution (n, a, b, x, y) of the equation $x^{2}+5^{a} .11^{b}=y^{n}$ when $\operatorname{gcd}(x, y)=1$, except for the case when $x a b$ is odd, is given. In [34], Pink gave all the non-exceptional solutions (in the terminology of that paper) with $C=2^{a} .3^{b} \cdot 5^{c} \cdot 7^{d}$. Note that finding all the exceptional solutions of this equation seems to be a very difficult task. A more exhaustive survey on this type of problems is [32].

Here, we study the Diophantine equation

$$
\begin{equation*}
x^{2}+7^{\alpha} \cdot 11^{\beta}=y^{n}, \quad \operatorname{gcd}(x, y)=1 \quad \text { and } \quad n \geq 3 \tag{1.2}
\end{equation*}
$$

There are three papers concerned with partial solutions for equation (1.2). The known results include the following theorem:

Theorem 1. (i) If α is even and $\beta=0$, then the only integer solutions of the Diophantine equation

$$
x^{2}+7^{2 k}=y^{n}
$$

are

$$
\begin{aligned}
& n=3 \quad(x, y, k)=\left(524 \cdot 7^{3 \lambda}, 65 \cdot 7^{2 \lambda}, 1+3 \lambda\right) \\
& n=4 \quad(x, y, k)=\left(24 \cdot 7^{2 \lambda}, 5 \cdot 7^{\lambda}, 1+2 \lambda\right) \text { where } \lambda \geq 0 \text { is any integer. }
\end{aligned}
$$

(ii) If $\alpha=1$ and $\beta=0$, then the only integer solutions (x, y, n) to the generalized Ramanujan-Nagell equation

$$
x^{2}+7=y^{n}
$$

are
$(1,2,3),(181,32,3),(3,2,4),(5,2,5),(181,8,5),(11,2,7),(181,2,15)$.
(iii) If $\alpha=0$, then the only integer solutions of the Diophantine equation

$$
x^{2}+11^{\beta}=y^{n}
$$

are

$$
(x, y, \beta, n)=(2,5,2,3),(4,3,1,3),(58,15,1,3),(9324,443,3,3)
$$

Proof. See [29], [12] and [14].
Our main result is the following.
Theorem 2. The only solutions of the Diophantine equation (1.2) are

$$
\begin{aligned}
& n=3: \quad(x, y, \alpha, \beta) \in\{(57,16,1,2),(797,86,1,2),(4229,284,3,4), \\
& \quad(3093,478,7,2)(4,3,0,1),(58,15,0,1),(2,5,0,2),(9324,443,0,3), \\
&\quad(1,2,1,0),(181,32,1,0),(524,65,2,0),(13,8,3,0)\} \\
& n=4: \quad(x, y, \alpha, \beta) \in\{(2,3,1,1),(57,8,1,2),(8343,92,5,2),(3,2,1,0) \\
&\quad(24,5,2,0)\} \\
& n=6: \quad(x, y, \alpha, \beta)=(57,4,1,2) \\
& n=9: \quad(x, y, \alpha, \beta)=(13,2,3,0) \\
& n= 12:(x, y, \alpha, \beta)=(57,2,1,2)
\end{aligned}
$$

When $n \geq 5, n \neq 6,9,12$, equation (1.2) has no solutions (x, y, α, β) with at least one of α, x even or with β is odd.

Remark 1. For $n \geq 5, n \neq 6,9,12$ the above theorem lefts out the solutions (α, β, x, y) when $\alpha . x$ is odd and β is even. These are exactly the exceptional solutions of the equation (1.2) in the terminology of [34]; see also the remark 2 at the end of this paper.

One can deduce from the Theorem 1 and Theorem 2 the following corollary.
Corollary 1. The only integer solutions of the Diophantine equation (1.2) are

$$
\begin{aligned}
& n=3: \quad(x, y, \alpha, \beta) \in\{(57,16,1,2),(797,86,1,2),(4229,284,3,4), \\
&(3093,478,7,2),(4,3,0,1),(58,15,0,1),(2,5,0,2), \\
&(9324,443,0,3),(1,2,1,0),(181,32,1,0),(524,65,2,0),(13,8,3,0)\} ; \\
& n=4: \quad(x, y, \alpha, \beta) \in\{(2,3,1,1),(57,8,1,2),(8343,92,5,2),(3,2,1,0),
\end{aligned}
$$

$(24,5,2,0)\} ;$

$$
\begin{array}{ll}
n=5: \quad(x, y, \alpha, \beta)=(5,2,1,0),(181,8,1,0) ; \\
n=6: \quad(x, y, \alpha, \beta)=(57,4,1,2) ; \\
n=7: \quad(x, y, \alpha, \beta)=(11,2,1,0) ; \\
n=9: \quad(x, y, \alpha, \beta)=(13,2,3,0) ; \\
n=12: \quad(x, y, \alpha, \beta)=(57,2,1,2) ; \\
n=15: \quad(x, y, \alpha, \beta)=(181,2,1,0) .
\end{array}
$$

2. The proof of Theorem 2

We distinguish the cases $n=3,6,9,12, n=4$ and $n>4$, devoting a subsection to the treatment of each case. We first treat the cases $n=3$ and $n=4$. This is achieved in Section 2.1 and Section 2.2, respectively. For the case $n=3$, we transform equation (1.2) into several elliptic equations in Weierstrass form for which we need to determine all their $\{7,11\}$-integral points. In Section 2.2, we use the same method as in Section 2.1 to determine the solutions of (1.2) for $n=4$. In the last section, we assume that $n>4$ is prime and study the equation (1.2) under this assumption. Here we use the method of primitive divisors for Lucas sequences. All the computations are done with MAGMA [11] and with Cremona's program mwrank.

2.1. The Cases $n=3,6,9$ and 12

Lemma 1. When $n=3$, then only solutions to equation (1.2) are

$$
\begin{align*}
& (57,16,1,2),(797,86,1,2),(4229,284,3,4),(3093,478,7,2), \tag{2.1}\\
& (4,3,0,1),(58,15,0,1),(2,5,0,2),(9324,443,0,3), \\
& (1,2,1,0),(181,32,1,0),(524,65,2,0),(13,8,3,0) ;
\end{align*}
$$

when $n=6$, then only solution to equation (1.2) is $(57,4,1,2)$; when $n=9$, then only solution to equation (1.2) is $(13,2,3,0)$; when $n=12$, then only solution to equation (1.2) is (57, 2, 1, 2).

Proof. Suppose $n=3$. Writing $\alpha=6 k+\alpha_{1}, \beta=6 l+\beta_{1}$ in (1.2) with $\alpha_{1}, \beta_{1} \in$ $\{0,1,2,3,4,5\}$, we get that

$$
\left(\frac{x}{7^{3 k} 11^{3 l}}, \frac{y}{7^{2 k} 11^{2 l}}\right)
$$

is an S-Integral point (X, Y) on the elliptic curve

$$
\begin{equation*}
X^{2}=Y^{3}-7^{\alpha_{1}} \cdot 11^{\beta_{1}} \tag{2.2}
\end{equation*}
$$

where $S=\{7,11\}$ with the numerator of Y being coprime to 77 , in view of the restriction $\operatorname{gcd}(x, y)=1$. Now we need to determine all the $\{7,11\}$-integral points on the above 36 elliptic curves. At this stage we note that in [33] Pethő, Zimmer, Gebel
and Herrmann developed a practical method for computing all S-Integral points on Weierstrass elliptic curve and their method has been implemented in MAGMA [11] as a routine under the name SIntegralPoints. The subroutine SIntegralPoints of MAGMA worked
without problems for all $\left(\alpha_{1}, \beta_{1}\right)$ except for $\left(\alpha_{1}, \beta_{1}\right)=(5,5)$. MAGMA determined the appropriate Mordell-Weil groups except this case and we deal with this exceptional case separately. By computations done for equation (2.2) when $n=3$, we obtain the following solutions for the $\{7,11\}$-integral points on the curves:

$$
\begin{aligned}
& (1,0,0,0),(3,4,0,1),(15,58,0,1),(5,2,0,2),(11,0,0,3),(443,9324,0,3), \\
& (2,1,1,0),(32,181,1,0),(478 / 49,3093 / 3431,2),(11,22,1,2),(16,57,1,2), \\
& (1899062 / 117649,2338713355 / 40353607,1,2),(22,99,1,2),(86,797,1,2), \\
& (88,825,1,2),(638,16115,1,2),(657547,533200074,1,2),(242,3751,1,4), \\
& (65,524,2,0),(7,0,3,0),(8,13,3,0),(14,49,3,0),(28,147,3,0), \\
& (154,1911,3,0),(77,0,3,3),(242,3025,3,4),(284,4229,3,4), \\
& (1435907 / 49,1720637666 / 343,3,4) .
\end{aligned}
$$

We use the above points on the elliptic curves to find the corresponding solutions for equation (2.2). Identifying the coprime positive integers x and y from the above list, one obtains the solutions listed in (2.2) (note that not all of them lead to coprime values for x and y).

We give the details in case $\left(\alpha_{1}, \beta_{1}\right)=(5,5)$ of equation (2.2). Observe that if Y is even, then X is odd and $X^{2}+7^{5} 11^{5} \equiv 0(\bmod 8)$, and hence $X^{2} \equiv 3$ $(\bmod 8)$, which is a contradiction. Therefore Y is always odd. We consider solutions such that X and Y are coprime.

Write $\mathbb{K}=\mathbb{Q}(i \sqrt{77})$. In this field, the primes $2,7,11$ (all primes dividing the discriminant $d_{\mathbb{K}}=4 d$) ramify so there are prime ideals P_{2}, P_{7}, P_{11} such that $2 \mathcal{O}_{\mathbb{K}}=$ $P_{2}^{2}, 7 \mathcal{O}_{\mathbb{K}}=P_{7}^{2}, 11 \mathcal{\vartheta}_{\mathbb{K}}=P_{11}^{2}$ respectively. Now, we show that the ideals $(X+$ $\left.7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}$ and $\left(X-7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}$ are coprime in the ring of integers $\mathcal{O}_{\mathbb{K}}$. To show this, let us assume that the ideals $\left(X+7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}$ and $\left(X-7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}$ are not coprime. So, these ideals have a gcd that divides $2.7^{2} .11^{2} \sqrt{77} i$. Hence there is an ideal $P_{2}^{a} P_{7}^{b} P_{11}^{c}$ with $a \leq 2$, and $b, c \leq 5$. If $b>0$ then $7 \mid X$. Hence $7 \mid Y$, hence $7^{3} \mid X^{2}$, hence $7^{2} \mid X$, hence $7^{4} \mid Y^{3}$, hence $7^{2} \mid Y$, hence $7^{5} \mid X^{2}$, hence $7^{3} \mid$ X. So, we have a contradiction as $7^{6} \mid X^{2}-Y^{3}$. Thus $b=0$. Similarly we can prove that $c=0$.

Now let $\left(X+7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}=P_{2}^{a} \wp^{3}$ for some ideal \wp not divisible by P_{2}, and $\left(X-7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}=P_{2}^{a} \wp^{\prime 3}$ (for its conjugate ideal). If we take norms, then we get that $y^{3}=2^{a}\left[N_{\mathbb{K}}(\wp)\right]^{3}$, where $N_{\mathbb{K}}(\wp)$ is odd. It follows that $a=0$ (as it could be at most 2). So, we showed that the ideals $\left(X+7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}$ and $(X-$
$\left.7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}$ are coprime. Equation (2.2) now implies that

$$
\left(X+7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}=\wp^{3} \text { and }\left(X-7^{2} 11^{2} \sqrt{77} i\right) \mathcal{O}_{\mathbb{K}}=\wp^{\prime 3}
$$

for the ideals \wp and \wp^{\prime}. Let $h(\mathbb{K})$ be the class number of the field \mathbb{K}, then $\delta^{h(\mathbb{K})}$ is principal for any ideal δ. Note that, $h(\mathbb{K})=8$ and so $(3, h(\mathbb{K}))=1$. Thus since \wp^{3} and $\wp^{\prime 3}$ are principal, \wp and \wp^{\prime} are also principal. Moreover, since the units of $\mathbb{Q}(i \sqrt{77})$ are 1 and -1 , which are both cubes, we conclude that

$$
\begin{align*}
& \left(X+7^{2} 11^{2} \sqrt{77} i\right)=(u+\sqrt{77} i v)^{3} \tag{2.3}\\
& \left(X-7^{2} 11^{2} \sqrt{77} i\right)=(u-\sqrt{77} i v)^{3} \tag{2.4}
\end{align*}
$$

for some integers u and v. After subtracting the conjugate equation we obtain

$$
\begin{equation*}
7^{2} \cdot 11^{2}=v\left(3 u^{2} v-77 v^{2}\right) \tag{2.5}
\end{equation*}
$$

Since u and v are coprime, we have the following possibilities in equation (2.5)

$$
v= \pm 1 ; v= \pm 7^{2} ; v= \pm 11^{2} ; v= \pm 7^{2} 11^{2}
$$

All cases lead to the conclusion that no solution is obtained.
For $n=6$, equation

$$
x^{2}+7^{\alpha} \cdot 11^{\beta}=y^{6}
$$

becomes equation

$$
x^{2}+7^{\alpha} \cdot 11^{\beta}=\left(y^{2}\right)^{3} .
$$

Again, here we look in the list of solutions of equation (2.1) and observe that the only solution whose y is a perfect square is $(57,16,1,2)$.Therefore the only solution to equation (1.2) is $(57,4,1,2)$. In the same way, one can see that the value of y above which is a perfect square is $y=4$ for the solution $(57,4,1,2)$, therefore the only solution with $n=12$ is $(57,2,1,2)$.

For $n=9$, equation

$$
x^{2}+7^{\alpha} \cdot 11^{\beta}=y^{9}
$$

becomes equation

$$
x^{2}+7^{\alpha} \cdot 11^{\beta}=\left(y^{3}\right)^{3} .
$$

Again here, we look in the list of solutions of (2.1) and observe that only solution whose y is a perfect cube is $(13,8,3,0)$.Therefore the only solution to equation (1.2) is $(13,2,3,0)$.This completes the proof of lemma.

If (x, y, α, β, n) is a solution of the Diophantine equation (1.2) and d is any proper divisor of n, then $\left(x, y^{d}, \alpha, \beta, n / d\right)$ is also a solution of the same equation. Since $n>3$ and we have already dealt with case $n=3$, it follows that it suffices to look at the solutions n for which $p \mid n$ for some odd prime p. In this case, we may certainly replace n by p, and thus assume for the rest of the paper that $n \in\{4, p\}$.

2.2. The Case $n=4$

Lemma 2. The only solutions with $n=4$ of the Diophantine equation (1.2) are given by

$$
(x, y, \alpha, \beta)=(2,3,1,1),(57,8,1,2),(8343,92,5,2),(3,2,1,0),(24,5,2,0)
$$

Proof. Suppose that $n=4$. Rewrite equation (1.2) as

$$
\begin{equation*}
7^{\alpha} \cdot 11^{\beta}=\left(y^{2}+x\right)\left(y^{2}-x\right) \tag{2.6}
\end{equation*}
$$

From equation (2.6), we have that

$$
\begin{aligned}
& y^{2}+x=7^{a_{1}} \cdot 11^{b_{1}} \\
& y^{2}-x=7^{a_{2}} \cdot 11^{b_{2}}
\end{aligned}
$$

where $a_{1}, a_{2}, b_{1}, b_{2} \geq 0$. Then we get that

$$
2 y^{2}=7^{a_{1}} \cdot 11^{b_{1}}+7^{a_{2}} \cdot 11^{b_{2}}
$$

from the sum of two equations. We multiply the above equation by 2 and we can write the equation

$$
\begin{equation*}
Z^{2}=2 \cdot\left(7^{a_{1}} \cdot 11^{b_{1}}+7^{a_{2}} \cdot 11^{b_{2}}\right) \tag{2.7}
\end{equation*}
$$

as

$$
\begin{equation*}
2 U+2 V=Z^{2} \tag{2.8}
\end{equation*}
$$

where $Z=2 y, U=7^{a_{1}} .11^{b_{1}}$ and $V=7^{a_{2}} .11^{b_{2}}$.
Let $p_{1}, p_{2}, \ldots, p_{s}(s \geq 1)$ be fixed distinct primes. The set of S-Units is defined as $S=\left\{ \pm p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{s}^{x_{s}} \mid x_{i} \in \mathbb{Z}\right.$, for $\left.i=1 \ldots k\right\}$. Let $a, b \in \mathbb{Q}-\{0\}$ be fixed. In [19], B.M.M. de Weger dealt with the solutions of the Diophantine equation $a x+$ $b y=z^{2}$, in $a, b \in S, z \in \mathbb{Q}$. He showed that this equation has essentially only finitely many solutions. Moreover, he indicated how to find all the solutions of this equation for any given set of parameters $a, b, p_{1}, \ldots, p_{s}$. The tools are the theory of p -adic linear forms in logarithms, and a computational p -adic diophantine approximation method. He actually performed all the necessary computations for solving (2.8) completely for $p_{1}, \ldots, p_{s}=2,3,5,7$ and $a=b=1$, and reported on this elsewhere (see [18], Chapter 7). Then we can find all the solutions of the Diophantine equation (2.7). But this requires a lot of additional manual effort. To solve the equation $x^{2}+7^{\alpha} \cdot 11^{\beta}=y^{4}$ instead of this method, we prefer using MAGMA (see [11]).

Writing in (1.2) $\alpha=4 k+\alpha_{1}, \beta=4 l+\beta_{1}$ with $\alpha_{1}, \beta_{1} \in\{0,1,2,3\}$ we get that

$$
\left(\frac{x}{7^{2 k} 11^{2 l}}, \frac{y}{7^{2 k} 11^{2 l}}\right)
$$

is an S-Integral point (X, Y) on the hyperelliptic curve

$$
\begin{equation*}
X^{2}=Y^{4}-7^{\alpha_{1}} \cdot 11^{\beta_{1}} \tag{2.9}
\end{equation*}
$$

where $S=\{7,11\}$ with the numerator of Y being prime to 77 , in view of the restriction $\operatorname{gcd}(x, y)=1$. We use the subroutine SIntegralLjunggrenPoints of MAGMA to determine the $\{7,11\}$-integral points on the above hyperelliptic curves and we only find the following solutions

$$
\begin{gathered}
\left(X, Y, \alpha_{1}, \beta_{1}\right)=\{(1,0,0,0),(2,3,1,0),(3,2,1,1),(8,57,1,2) \\
(92 / 7,8343 / 49,1,2),(5,24,2,0)\}
\end{gathered}
$$

With the conditions on x and y and the definition of X, Y, one can obtain the solutions listed in the statement of the lemma.

2.3. The Case $n>4$ and Prime

Lemma 3. The Diophantine equation (1.2) has no solutions with $n>4$ prime except possibly for α and x are odd and β even.

Proof. Since in section 2 we have finished the study of equation $x^{2}+7^{\alpha} \cdot 11^{\beta}=y^{n}$ with $n=3$, we can assume that n is a prime >4. One can write the Diophantine equation (1.2) as $x^{2}+d z^{2}=y^{n}$, where

$$
\begin{equation*}
d \in\{1,7,11,77\}, \quad z=7^{\alpha_{1}} \cdot 11^{\beta_{1}} \tag{2.10}
\end{equation*}
$$

the relation of α_{1} and β_{1} with α and β, respectively, is clear. If x is odd, then by z also being odd we have that y is even, so $y^{n} \equiv 0(\bmod 8)$. As $x^{2}=z^{2} \equiv 1(\bmod 8)$ we have $1+d \equiv 0(\bmod 8)$, so $d=7$, implying $\alpha \equiv 1 \quad(\bmod 2)$ and $\beta \equiv 0(\bmod 2)$. This case is excluded in the lemma. Hence we have that x is even, and y is odd. We study in the field $\mathbb{K}=\mathbb{Q}(i \sqrt{d})$. As $\operatorname{gcd}(x, z)=1$ standard argument tells us now that in \mathbb{K} we have

$$
\begin{equation*}
(x+i \sqrt{d} z)(x-i \sqrt{d} z)=y^{n} \tag{2.11}
\end{equation*}
$$

where the ideals generated by $x+i z \sqrt{d}$ and $x-i z \sqrt{d}$ are coprime in \mathbb{K}. Hence, we obtain the ideal equation

$$
\begin{equation*}
\langle x+i \sqrt{d} z\rangle=\theta^{n} \tag{2.12}
\end{equation*}
$$

Then, since the ideal class number of \mathbb{K} is 1 or 8 , and n is odd, we conclude that the ideal θ is principal. The cardinality of the group of units of $\mathcal{O}_{\mathbb{K}}$ is 2 or 4 , all coprime to n. Furthermore, $\{1, i \sqrt{d}\}$ is always an integral base for $\mathcal{O}_{\mathbb{K}}$ except for when $d=7$, and $d=11$, in which cases an integral basis for $\mathcal{O}_{\mathbb{K}}$ is $\{1,(1+i \sqrt{d}) / 2\}$. Thus, we may assume that

$$
\begin{equation*}
x+i \sqrt{d} z=\varphi^{n}, \varphi=\frac{u+i \sqrt{d} v}{2} \tag{2.13}
\end{equation*}
$$

the relation holds with some algebraic integer $\varphi \in \mathcal{O}_{\mathbb{K}}$. The algebraic integers in this number field are of the form $\varphi=\frac{u+i \sqrt{d} v}{2}$, where $u, v \in \mathbb{Z}$, with u, v both even, if $d=1,77$ and u, v both odd if $d=7,11$. Note that

$$
\varphi-\bar{\varphi}=v i \sqrt{d}, \varphi+\bar{\varphi}=i \sqrt{d} v, \varphi \bar{\varphi}=\frac{u^{2}+d v^{2}}{4}
$$

We thus obtain

$$
\begin{equation*}
\frac{2 \cdot 7^{\alpha_{1}} \cdot 11^{\beta_{1}}}{v}=\frac{2 z}{v}=\frac{\varphi^{n}-\bar{\varphi}^{n}}{\varphi-\bar{\varphi}} \in \mathbb{Z} \tag{2.14}
\end{equation*}
$$

Let $\left(L_{m}\right)_{m \geq 0}$ be the sequence with general term $L_{m}=\left(\varphi^{m}-\bar{\varphi}^{m}\right) /(\varphi-\bar{\varphi})$ for all $m \geq 0$. This is called a Lucas sequence. Note that

$$
\begin{equation*}
L_{0}=0, L_{1}=1 \text { and } L_{m}=u L_{m-1}-\frac{u^{2}+d v^{2}}{4} L_{m-2}, m \geq 2 \tag{2.15}
\end{equation*}
$$

Following the nowadays standard strategy based on the important paper [10], we distinguish two cases according as L_{n} has or has not primitive divisors.

Suppose first that L_{n} has a primitive divisor, say q. By definition, this means that the prime q divides L_{n} and q does not divide $(\mu-\bar{\mu})^{2} L_{1} \ldots L_{n-1}$, hence

$$
\begin{equation*}
q \nmid(\varphi-\bar{\varphi})^{2} L_{1} \ldots L_{4}=\left(d v^{2}\right) \cdot u \cdot \frac{3 u^{2}-d v^{2}}{4} \cdot \frac{u^{2}-d v^{2}}{2} . \tag{2.16}
\end{equation*}
$$

If $q=2$, then (2.16) implies that $u v$ is odd, hence $d=11$ or 77 . If $d=11$, then third factor in the right hand-most side of (2.16) is even, a contradiction. If $d=77$, then, from (2.15) we see that $L_{m} \equiv L_{m-1}(\bmod 2)$, hence L_{m} is odd for every $m \geq 1$, implying that 2 cannot be a primitive divisor of L_{n}.

If $q=7$, then (2.16) implies that $d=1,11$ and 7 does not divide $u v\left(3 u^{2}-\right.$ $\left.d v^{2}\right)\left(u^{2}-d v^{2}\right)$. It follows easily then that $v^{2} \equiv-d u^{2}(\bmod 7)$, so that, by (2.15), $L_{m} \equiv u L_{m-1}(\bmod 8)$ for every $m \geq 2$. Therefore, $7 \nmid L_{n}$, so that 7 can not be a prime divisor of L_{n}.

If $q=11$, then by (2.16), $d=1$ or 7 . If $d=1$ then we write $u=2 v_{1}, v=2 v_{1}$ with $u_{1}, v_{1} \in \mathbb{Z}$, so that $\varphi=u_{1}+i \sqrt{d} v_{1}$ and (2.16) becomes $q \nmid u_{1} v_{1}\left(3 u_{1}^{2}-\right.$ $\left.d v_{1}^{2}\right)\left(u_{1}^{2}-d v_{1}^{2}\right)$. Moreover, $L_{m}=2 u_{1} L_{m-1}-\left(u_{1}^{2}+d v_{1}^{2}\right) L_{m-2}$ for $m \geq 2$. Note that $\varphi \bar{\varphi}=u_{1}^{2}+d v_{1}^{2} \neq 0(\bmod 8)$; therefore, by corollary 2.2 of [10], there exists a positive integer m_{11} such that $11 \mid L_{m_{11}}$ and $m_{11} \mid m$ for every m such that $11 \mid L_{m}$. It follows then that $11 \mid \operatorname{gcd}\left(L_{n}, L_{m_{11}}\right)=L_{\operatorname{gcd}\left(n, m_{11}\right)}$. Because of the minimality property of m_{11}, we conclude that $\operatorname{gcd}\left(n, m_{11}\right)$, hence, since n is a prime, $m_{11}=n$. On the other hand, the Legendre symbol $\left(\frac{(\varphi-\bar{\varphi})^{2}}{11}\right)=-1$, hence by Theorem XII of [15] (or by theorem 2.2 .4 (iv) of [26]), $11 \mid L_{12}$. Therefore $m_{11} \mid 12$, i.e. $n \mid 12$, a contradiction, since n is a prime ≥ 5. If $d=7$, then (2.16) implies $11 \nmid u_{1} v_{1}\left(3 u_{1}^{2}-\right.$ $\left.d v_{1}^{2}\right)\left(u_{1}^{2}-d v_{1}^{2}\right)$. Moreover, $L_{m}=2 u_{1} L_{m-1}-\left(u_{1}^{2}+d v_{1}^{2}\right) L_{m-2}$ for $m \geq 2$. Note that $\varphi \bar{\varphi}=u_{1}^{2}+d v_{1}^{2} \neq 0(\bmod 8)$; therefore, by corollary 2.2 of [10], there exists a positive integer m_{11} such that $11 \mid L_{m_{11}}$ and $m_{11} \mid m$ for every m such that $11 \mid L_{m}$.It follows then that $11 \mid \operatorname{gcd}\left(L_{n}, L_{m_{11}}\right)=L_{\operatorname{gcd}\left(n, m_{11}\right)}$. Because of the minimality property of m_{11}, we conclude that $\operatorname{gcd}\left(n, m_{11}\right)$, hence, since n is a prime, $m_{11}=n$. On the other hand, the Legendre symbol $\left(\frac{(\varphi-\bar{\varphi})^{2}}{11}\right)=1$, hence by Theorem XII of [15]
(or by theorem 2.2 .4 (iii) of [26]), $11 \mid L_{10}$. Therefore $m_{11} \mid 10$, i.e. $n \mid 10$. Since $n \geq 5$ is a prime, we get that $n=5$.

We conclude that 11 is primitive divisor for $d=7$.
In particular, u and v are integers. Since 11 is coprime to $-4 d v^{2}=-28 v^{2}$, we get that $v= \pm 7^{\alpha_{1}}$. Since $y=u^{2}+7 v^{2}$, we get that u is even.

In the case $v= \pm 7^{\alpha_{1}}$, equation (2.14) becomes

$$
\pm 11^{\beta_{1}}=5 u^{4}-70 u^{2} v^{2}+49 v^{4}
$$

Since u is even, it follows that the right hand side of the last equation above is congruent to $1(\bmod 8) . \operatorname{So} \pm 11^{\beta_{1}} \equiv 1(\bmod 8)$, showing that the sign on the left hand side is positive and β_{1} is odd, or the sign on the left hand side is negative and β_{1} is even.

Assume first that $\beta_{1}=2 \beta_{0}+1$ be odd. We get

$$
11 V^{2}=5 U^{4}-70 U^{2}+49
$$

where $(U, V)=\left(u / v, 11^{\beta_{0}} / v^{2}\right)$ is a $\{7\}$-integral point on the above elliptic curve. We get that the only such points on the above curve are $(U, V)=(\pm 7, \pm 28)$. This does not lead to solutions of our original equation.

Assume now that $\beta_{1}=2 \beta_{0}$ is even and we get that

$$
V^{2}=5 U^{4}-70 U^{2}+49
$$

where $(U, V)=\left(u / v, 11^{\beta_{0}} / v^{2}\right)$ is a $\{7\}$-integral point on the above elliptic curve. With MAGMA, we get that the only such point on the above curve are $(U, V)=(0,7)$. This does not lead to solutions of our original equation.

We now recall that a particular instance of the Primitive Divisor Theorem for Lucas sequences implies that, if $n \geq 5$ is prime, then L_{n} always has a prime factor except for finitely many exceptional triples $(\varphi, \bar{\varphi}, n)$, and all of them appear in the Table 1 in [10] (see also [1]). These exceptional Lucas numbers are called defective.

Let us assume that we are dealing with a number L_{n} without primitive divisors. Then a quick look at Table 1 in [10] reveals that this is impossible. Indeed, all exceptional triples have $n=5,7$ or 13 . The defective Lucas numbers whose roots are in $\mathbb{K}=\mathbb{Q}(i \sqrt{d})$ with $d=7$ and $n=5,7$ or 13 appearing in the list (2.10) is $(\varphi, \bar{\varphi})=((1+i \sqrt{7}) / 2,(1-i \sqrt{7}) / 2)$ for which $L_{7}=7, L_{13}=-1$. Furthermore, with such a value for φ we get that $y=|\varphi|^{2}=2$. However, this is not convenient since for us x and y are coprime so y cannot be even. For $n=5$ and $d=11$, we get $L_{5}=1$ and $y=3$ with $(\varphi, \bar{\varphi})=((1+i \sqrt{11}) / 2,(1-i \sqrt{11}) / 2)$. Therefore the equation is $x^{2}+C=3^{5}$, where $C=7^{\alpha} \cdot 11^{\beta}$, with a even and b odd. Since $11^{3}>3^{5}$, we have $b=1$, and next that $a=0$. But it doesn't yield an integer value for x. The proof is completed.

Remark 2. We mention here why the method applied for the proof of Lemma 3 does not apply when α and x are odd, β is even. In this case $d=7$, the class
number of $\mathbb{Q}(\sqrt{7} i)$ is 1 . With $\omega=\frac{1+\sqrt{7} i}{2}$ a prime dividing 2 , and ω^{\prime} its conjugate, let us now write $(x+z \sqrt{7} i)=\omega^{b} \omega^{c} \xi$, where ξ is an integer in $\mathbb{Q}(\sqrt{7} i)$ of odd norm, not divisible by 7 and ξ^{\prime} its conjugate. As both x and z are odd and they are coprime, we may take $c=1, b \geq 1$. Taking norms we get $y^{n}=2^{b+1} \xi \xi^{\prime}$, and it easily follows that $\xi=c^{n}$ and $b+1=k . n$. Now we take $\varphi=2^{k-1} c, \wp=2 \omega^{n-2}$, and then we have $x+z \sqrt{7} i=\wp \varphi^{n}$. A way to look at the rest of argument why this case is essentially different from the primitive divisors in Lucas sequences thing: From $x+z \sqrt{7} i=\wp \varphi^{n}$ and its conjugate it follows that

$$
z=\frac{\wp \varphi^{n}-\bar{\wp} \bar{\varphi}^{n}}{2 \sqrt{7} i}
$$

If \wp is in \mathbb{Q} then the right hand side is the n -th term of a Lucas sequence. As z has a very nice prime factorization $7^{p} 11^{q}$ then theory of primitive divisors will work. But in our case \wp is not in \mathbb{Q}. Hence the right side, while it is the n-th term of a recurrence sequence, this is not a Lucas sequence, and does not have the nice divisibility properties of Lucas sequences. That's why the method of [10] fails in our case.

3. ACKNOWLEDGEMENT

The author is grateful to Benne De Weger, Nikos Tzanakis and Ismail Naci Cangul for their helps and numerous valuable remarks.

References

[1] M. Abouzaid, "Lucas and Lehmer numbers without primitive divisor. (Les nombres de Lucas et Lehmer sans diviseur primitif.),"J. Théor. Nombres Bordx., vol. 18, no. 2, pp. 299-313, 2006.
[2] F. S. Abu Muriefah, "On the Diophantine equation $x^{2}+5^{2 k}=y^{n}$," Demonstr. Math., vol. 39, no. 2, pp. 285-289, 2006.
[3] F. S. Abu Muriefah and S. Akhtar Arif, "The diophantine equation $x^{2}+5^{2 k+1}=y^{n}$," Indian J. Pure Appl. Math., vol. 30, no. 3, pp. 229-231, 1999.
[4] F. S. Abu Muriefah, F. Luca, S. Siksek, and S. Tengely, "On the Diophantine equation $x^{2}+c=$ $2 y^{n}$," Int. J. Number Theory, vol. 5, no. 6, pp. 1117-1128, 2009.
[5] F. S. Abu Muriefah, F. Luca, and A. Togbé, "On the diophantine equation $x^{2}+5^{a} 13^{b}=y^{n}$," Glasg. Math. J., vol. 50, no. 1, pp. 175-181, 2008.
[6] S. A. Arif and F. S. Abu Muriefah, "On the diophantine equation $x^{2}+2^{k}=y^{n}$," Int. J. Math. Math. Sci., vol. 20, no. 2, pp. 299-304, 1997.
[7] S. Arif and F. S. Abu Muriefah, "The diophantine equation $x^{2}+3^{m}=y^{n}$," Int. J. Math. Math. Sci., vol. 21, no. 3, pp. 619-620, 1998.
[8] A. Bérczes, B. Brindza, and L. Hajdú, "On the power values of polynomials," Publ. Math., vol. 53, no. 3-4, pp. 375-381, 1998.
[9] A. Bérczes and I. Pink, "On the diophantine equation $x^{2}+p^{2 k}=y^{n}$," Arch. Math., vol. 91, no. 6, pp. 505-517, 2008.
[10] Y. Bilu, G. Hanrot, and P. M. Voutier, "Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte)," J. Reine Angew. Math., vol. 539, pp. 75-122, 2001.
[11] W. Bosma, J. Cannon, and C. Playoust, "The Magma algebra system. I: The user language," J. Symb. Comput., vol. 24, no. 3-4, pp. 235-265, 1997.
[12] Y. Bugeaud, M. Mignotte, and S. Siksek, "Classical and modular approaches to exponential Diophantine equations. II: The Lebesgue-Nagell equation," Compos. Math., vol. 142, no. 1, pp. 31-62, 2006.
[13] I. N. Cangül, M. Demirci, I. Inam, F. Luca, and G. Soydan, "On the Diophantine equation $x^{2}+$ $2^{a} 3^{b} 11^{c}=y^{n}$, Math. Slovaca, to appear.
[14] I. N. Cangül, M. Demirci, F. Luca, A. Pintér, and G. Soydan, "On the Diophantine equation $x^{2}+2^{a} \cdot 11^{b}=y^{n}$, , Fibonacci Q., vol. 48, no. 1, pp. 39-46, 2010.
[15] R. D. Carmichael, "On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$," Annals of Math. (2), vol. 15, pp. 30-70, 1913.
[16] J. H. E. Cohn, "The diophantine equation $x^{2}+2^{k}=y^{n}$," Arch. Math., vol. 59, no. 4, pp. 341-344, 1992.
[17] J. H. E. Cohn, "The diophantine equation $x^{2}+c=y^{n}, "$ Acta Arith., vol. 65, no. 4, pp. 367-381, 1993.
[18] B. M. M. de Weger, Algorithms for diophantine equations, ser. CWI Tract. Amsterdam: Centrum voor Wiskunde en Informatica, 1989, vol. 65.
[19] B. M. M. de Weger, "The weighted sum of two S-units being a square," Indag. Math., New Ser., vol. 1, no. 2, pp. 243-262, 1990.
[20] M. Demirci, D. N. Cangül, G. Soydan, and N. Tzanakis, "On the Diophantine equation $x^{2}+5^{a}$. $11^{b}=y^{n}$, , Funct. Approximatio, Comment. Math., vol. 43, no. 2, pp. 209-225, 2010.
[21] E. Goins, F. Luca, and A. Togbé, "On the diophantine equation $x^{2}+2^{\alpha} 5^{\beta} 13^{\gamma}=y^{n}$," in $A l$ gorithmic number theory. 8th international symposium, ANTS-VIII Banff, Canada, May 17-22, 2008, ser. Lecture Notes in Computer Science, A. J. van der Poorten, Ed. Berlin: Springer, 2008, vol. 5011, pp. 430-442.
[22] K. Gy" ory, I. Pink, and A. Pintér, "Power values of polynomials and binomial Thue-Mahler equations," Publ. Math., vol. 65, no. 3-4, pp. 341-362, 2004.
[23] E. Landau and A. Ostrowski, "On the diophantine equation $a y^{2}+b y+c=d x^{n}$," Lond. M. S. Proc. (2), vol. 19, pp. 276-280, 1920.
[24] M. Le, "On Cohn's conjecture concerning the Diophantine equation $x^{2}+2^{m}=y^{n}$, " Arch. Math., vol. 78, no. 1, pp. 26-35, 2002.
[25] V. A. Lebesgue, 'Sur i'impossibilité en nombres entieres de i'l equation $x^{m}=y^{2}+1$, ,' Nouvelles Ann. des. Math., vol. 9, no. 1, pp. 178-181, 1850.
[26] F. Luca, "Effective methods for diophantine equations," in Winter School on Explicit Methods in Number Theory, Debrecen, Hungary, January 26-30, 2009.
[27] F. Luca, "On a Diophantine equation," Bull. Aust. Math. Soc., vol. 61, no. 2, pp. 241-246, 2000.
[28] F. Luca, S. Tengely, and A. Togbé, "On the Diophantine equation $x^{2}+c=4 y^{n}$, " Ann. Sci. Math. Qué., vol. 33, no. 2, pp. 171-184, 2009.
[29] F. Luca and A. Togbé, "On the Diophantine equation $x^{2}+7^{2 k}=y^{n}$," Fibonacci Q., vol. 45, no. 4, pp. 322-326, 2007.
[30] F. Luca and A. Togbé, "On the Diophantine equation $x^{2}+2^{a} \cdot 5^{b}=y^{n}$," Int. J. Number Theory, vol. 4, no. 6, pp. 973-979, 2008.
[31] M. Mignotte and B. M. de Weger, "On the diophantine equations $x^{2}+74=y^{5}$ and $x^{2}+86=y^{5}$," Glasg. Math. J., vol. 38, no. 1, pp. 77-85, 1996.
[32] F. S. Muriefah and Y. Bugeaud, "The diophantine equation $x^{2}+c=y^{n}$: a brief overview," Rev. Colomb. Mat., vol. 40, no. 1, pp. 31-37, 2006.
[33] A. Pethő, H. G. Zimmer, J. Gebel, and E. Herrmann, "Computing all S-integral points on elliptic curves," Math. Proc. Camb. Philos. Soc., vol. 127, no. 3, pp. 383-402, 1999.
[34] I. Pink, "On the Diophantine equation $x^{2}+2^{\alpha} 3^{\beta} 5^{\gamma} 7^{\delta}=y^{n}$," Publ. Math., vol. 70, no. 1-2, pp. 149-166, 2007.
[35] L. Tao, "On the Diophantine equation $x^{2}+3^{m}=y^{n}$," Integers, vol. 8, no. 1, p. 7, 2008.
[36] L. Tao, "On the Diophantine equation $x^{2}+5^{m}=y^{n}$," Ramanujan J., vol. 19, no. 3, pp. 325-338, 2009.
[37] S. Tengely, "On the Diophantine equation $x^{2}+a^{2}=2 y^{p}$," Indag. Math., New Ser., vol. 15, no. 2, pp. 291-304, 2004.

Author's address

Gokhan Soydan

Isiklar Air Force High School, 16039 Bursa, TURKEY
E-mail address: gsoydan@uludag.edu.tr

