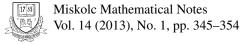


Miskolc Mathematical Notes Vol. 14 (2013), No 1, pp. 345-354 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2013.420

A note on derivations in MV-algebras

Hasret Yazarli



HU e-ISSN 1787-2413

A NOTE ON DERIVATIONS IN MV-ALGEBRAS

HASRET YAZARLI

Received September 22, 2011

Abstract. The aims of this paper are introduce the notions of symmetric bi-derivation and generalized derivation in MV-algebras and investigate some of their properties.

2000 Mathematics Subject Classification: 06D35; 03G25; 06F99

Keywords: (linearly ordered) MV-algebra, symmetric bi-derivation, trace of symmetric bi-derivation, (additive, isotone) symmetric bi-derivation, generalized derivation

1. INTRODUCTION

In [5], C. C. Chang invented the notion of MV-algebra in order to provide an algebraic proof of the completeness theorem of infinite valued Lukasiewicz propositional calculus. Recently, algebraic theory of MV-algebras is intensively studied, see [3,6,7,9].

Let *R* be a ring. An additive mapping $d : R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. During the past few decades there has been on ongoing interest concerning the relation ship between the commutativity of a ring and the existance of certain specific types of derivations of *R*.

The concept of a symmetric bi-derivation has been introduced by Maksa [8]. Let R be a ring. A mapping $B : R \times R \to R$ is said to be symmetric if B(x, y) = B(y, x) holds for all pairs $x, y \in R$. A mapping $f : R \to R$ defined by f(x) = B(x, x), where $B : R \times R \to R$ is a symmetric mapping, is called the trace of B. A symmetric bi-additive (i. e. additive in both arguments) mapping $D : R \times R \to R$ is called a symmetric bi-derivation if D(xy, z) = D(x, z)y + xD(y, z) is fulfilled for all $x, y, z \in R$. In recent years, many mathematicians studied the commutativity of prime and semi-prime rings admitting suitably-constrained symmetric bi-derivations. In [4], Y. Çeven applied the notion of symmetric bi-derivation in ring and near ring theory to lattices. In this paper, we introduce the notion of symmetric bi-derivation in MV-algebras and investigate some of its properties.

M. Bresar [2] defined the following notation. An additive mapping $f : R \to R$ is called a generalized derivation if there exists a derivation $d : R \to R$ such that

© 2013 Miskolc University Press

HASRET YAZARLI

f(xy) = f(x)y + xd(y) for all $x, y \in R$. One may observe that the concept of derivations, also of the left multipliers when d = 0.

In [1], N. O. Alshehri introduced the concept of derivation in MV-algebras and discussed some related properties. In this paper, we introduce the notions of symmetric bi-derivation and generalized derivation in MV-algebras and investigate some of their properties.

2. PRELIMINARIES

Definition 1 ([9]). An MV-algebra is a structure (M, +, *, 0) where + is a binary operation, * is a unary operation and 0 is a constant such that the following axioms are satisfied for any $a, b \in M$,

(MV1) (M, +, 0) is a commutative monoid, (MV2) $(a^*)^* = a$, (MV3) $0^* + a = 0^*$, (MV4) $(a^* + b)^* + b = (b^* + a)^* + a$.

If we define the constant $1 = 0^*$ and the auxiliary \odot , \lor , \land by $a \odot b = (a^* + b^*)^*$, $a \lor b = a + (b \odot a^*)$, $a \land b = a \odot (b \oplus a^*)$ then $(M, \odot, 1)$ is a commutative monoid and the structure $(M, \lor, \land, 0, 1)$ is a bounded distributive lattice. Also, we define the binary operation \ominus by $x \ominus y = x \odot y^*$. A subset of X an MV-algebra M is called subalgebra of M if and only if X is closed under the MV-operations defined in M. In any MV-algebras one can define a partial order \leq by putting $x \leq y$ if and only if $x \land y = x$ for each $x, y \in M$. If the order relation \leq , defined over M, is total then we say that M is linearly ordered. For an MV-algebra M, if we define $B(M) = \{x \in M : x + x = x\} = \{x \in M : x \odot x = x\}$. Then (B(M), +, *, 0) is both largest subalgebra of M and a Boolean algebra.

An *MV*-algebra *M* has the following properties for all $x, y, z \in M$,

- (1) x + 1 = 1,
- (2) $x + x^* = 1$,
- (3) $x + x^* = 0$,
- (4) If x + y = 0, then x = y = 0,
- (5) If $x \odot y = 1$, then x = y = 1,
- (6) If $x \le y$, then $x \lor z \le y \lor z$ and $x \land z \le y \land z$,
- (7) If $x \le y$, then $x + z \le y + z$ and $x \odot z \le y \odot z$,
- (8) $x \le y$ if and only if $y^* \le x^*$,
- (9) x + y = y if and only if $x \odot y = x$.

Theorem 1 ([5]). The following conditions are equivalent for all $x, y \in M$, (i) $x \le y$, (ii) $y + x^* = 1$,

$$(i\,i\,i)\,\,x\odot y^*=0.$$

Definition 2 ([5]). Let *M* be an *MV*-algebra and *I* be a nonempty subset of *M*. Then we say that *I* is an ideal if the following conditions are satisfied, (*i*) $0 \in I$, (*ii*) $x, y \in I$ imply $x \oplus y \in I$,

 $(iii) x \in I$ and $y \le x$ imply $y \in I$.

Proposition 1 ([5]). *Let* M *be a linearly ordered* MV*-algebra, then* x + y = x + z *and* $x + z \neq 1$ *imply that* y = z.

Definition 3 ([1]). Let *M* be an *MV*-algebra and $d : M \to M$ be a function. We called *d* a derivation of *M*, if it satisfies the following condition for all $x, y \in M$,

$$d(x \odot y) = (dx \odot y) + (x \odot dy)$$

Definition 4. Let *M* be an *MV*-algebra. A mapping $D: M \times M \to M$ is a called symmetric if D(x, y) = D(y, x) holds for all $x, y \in M$.

Definition 5. Let *M* be an *MV*-algebra. A mapping $d : M \to M$ defined by d(x) = D(x, x) is called trace of *D*, where $D : M \times M \to M$ is a symmetric mapping.

We often abbreviate d(x) to dx.

3. Symmetric bi-derivation of MV-algebras

Definition 6. Let M be an MV-algebra and $D: M \times M \to M$ be a symmetric mapping. We call D a symmetric bi-derivation on M, if it satisfies the following condition,

$$D(x \odot y, z) = (D(x, z) \odot y) + (x \odot D(y, z))$$

for all $x, y, z \in M$.

Obviously, a symmetric bi-derivation D on M satisfies the relation $D(x, y \odot z) = (D(x, y) \odot z) + (y \odot D(x, z))$ for all $x, y, z \in M$.

Example 1. Let $M = \{0, a, b, 1\}$. Consider the following tables:

+	0	a	b	1
			b b	
a	а	a	1	1
b	b	1	b	1
1	1	1	1	1

Then (M, +, *, 0) is an *MV*-algebra. Define a map $D: M \times M \to M$ by

$$D(x, y) = \begin{cases} b, & (x, y) = (b, b), (b, 1), (1, b) \\ 0, & \text{otherwise} \end{cases}$$

Then we can see that D is a symmetric bi-derivation of M.

Proposition 2. Let M be an MV-algebra, D be a symmetric bi-derivation on Mand d be a trace of D. Then, for all $x \in M$, (i) d0 = 0, (ii) $dx \odot x^* = x \odot dx^* = 0$, (iii) $dx = dx + (x \odot D(x, 1))$, (iv) $dx \le x$, (v) If I is an ideal of an MV-algebra, $d(I) \subseteq I$.

Proof. (*i*) For all $x \in M$,

$$D(x,0) = D(x,0 \odot 0) = (D(x,0) \odot 0) + (0 \odot D(x,0))$$

= 0 + 0 = 0.

Since d is the trace of D,

$$d0 = D(0,0) = D(0 \odot 0,0) = (D(0,0) \odot 0) + (0 \odot D(0,0))$$

= 0 + 0 = 0.

(*ii*) For all $x \in M$,

$$0 = D(x,0) = D(x, x \odot x^*)$$
$$= (D(x,x) \odot x^*) + (x \odot D(x,x^*))$$

and so, $dx \odot x^* = 0$ and $x \odot D(x, x^*) = 0$. Similarly, $x \odot dx^* = 0$ for all $x \in M$. (*iii*) For all $x \in M$,

$$dx = D(x, x) = D(x, x \odot 1) = (D(x, x) \odot 1) + (x \odot D(x, 1))$$

= $dx + (x \odot D(x, 1))$

(iv) For all $x \in M$,

$$1 = 0^* = (dx \odot x^*)^* = \left[\left((dx)^* + (x^*)^* \right)^* \right]^*$$

= $(dx)^* + x$

From Theorem 1 (*ii*), $dx \le x$ for all $x \in M$.

(v) Let $y \in d(I)$, then d(x) = y for some $x \in I$. From (iv), $d(x) \le x$ and so $y \in I$, since I is an ideal of M. Hence $d(I) \subseteq I$.

Corollary 1. For all $x \in M$, since $x \odot D(x, x^*) = 0$, we get $D(x, x^*) \le x^*$ and $x \le (D(x, x^*))^*$. For all $x, y \in M$, since

$$0 = D(x \odot x^*, y) = (D(x, y) \odot x^*) + (x \odot D(x^*, y))$$

we get, $D(x, y) \le x$ and $D(x^*, y) \le x^*$. Similarly, $D(x, y) \le y$ and $D(x, y^*) \le y^*$ for all $x, y \in M$.

Proposition 3. Let M be an MV-algebra, D be a symmetric bi-derivation on M and d be a trace of D. If $x \le y$ for $x, y \in M$, then the followings hold: (i) $d(x \odot y^*) = 0$, (ii) $dy^* \le x^*$, (iii) $dx \odot dy^* = 0$.

Proof. (i) Let $x \le y$, for $x, y \in M$. From (7), since $x \odot y^* \le y \odot y^* = 0$, we get $x \odot y^* = 0$. Since d0 = 0, we have $d(x \odot y^*) = 0$.

(*ii*) Let $x \le y$, for $x, y \in M$. Since $x \odot dy^* \le y \odot dy^* \le y \odot y^* = 0$, we get $x \odot dy^* = 0$ and so $dy^* \le x^*$.

(*iii*) Since $x \le y$, we get $dx \le y$ and so $dx \odot dy^* \le y \odot dy^* \le y \odot y^* = 0$. Hence $dx \odot dy^* = 0$.

Proposition 4. Let M be an MV-algebra, D be a symmetric bi-derivation on M and d be a trace of D. The the followings hold: (i) $dx \odot dx^* = 0$,

(*ii*) $dx^* = (dx)^*$ if and only d is the identity on M.

Proof. (i) Since $dx \odot dy^* = 0$, replacing y by x, we get $dx \odot dx^* = 0$. (ii) Since $x \odot dy^* = 0$ for $x, y \in M$, we get $x \odot dx^* = x \odot (dx)^* = 0$. Since $x \le dx$ and $dx \le x$, we have x = dx. Hence d is the identity on M. If d is the identity on M, $dx^* = (dx)^*$ for all $x \in M$.

Definition 7. Let *M* is an *MV*-algebra, *D* be a symmetric bi-derivation on *M*. If $x \le y$ implies $D(x, z) \le D(y, z)$ for all $x, y, z \in M$, *D* is called an isotone.

If d is the trace of D and D is an isotone, $x \le y$ implies $d(x) \le d(y)$ for all $x, y \in M$.

Example 2. Let M be an MV-algebra as in Example 1. Define a map $D: M \times M \to M$ by

$$D(x,y) = \begin{cases} 0, & (x,y) \in \{(0,0), (a,0), (0,a), (b,0), (0,b), (1,0), (0,1), (a,b), (b,a)\} \\ b, & (x,y) \in \{(b,b), (b,1), (1,b)\} \\ a, & (x,y) \in \{(a,a), (1,a), (a,1)\} \\ 1, & (x,y) \in \{(1,1)\} \end{cases}$$

Then we can see that D is an isotone symmetric bi-derivation on M. Since d0 = 0, d1 = 1, da = a and db = b, d is the identity on M and so $x \le y$ implies $d(x) \le a$

d(y) for all $x, y \in M$.

In Example 1, $b \le 1$, D(b, 1) = b, D(1, 1) = 0, but $0 \le b$. That is, D is not isotone.

Proposition 5. Let M be an MV-algebra, D be a symmetric bi-derivation on M and d be a trace of D. If $dx^* = dx$ for all $x \in M$, then the followings hold: (i) d1 = 0, (ii) $dx \odot dx = 0$, (iii) If D is an isotone on M, then d = 0.

Proof. (i) Replacing x by 0 in $dx^* = dx$, we get d1 = 0. (ii) For all $x \in M$, $dx \odot dx = dx \odot dx^* = 0$. (iii) Let D is an isotone on M. For $x \in M$, since $dx \le d1 = 0$, we get dx = 0. Thus d = 0.

Definition 8. Let *M* be an *MV*-algebra and *D* be a symmetric mapping on *M*. If D(x + y, z) = D(x, z) + D(y, z) for all $x, y, z \in M$, *D* is called bi-additive mapping.

Theorem 2. Let M be an MV-algebra, D be a bi-additive symmetric bi-derivation on M and d be a trace of D. Then $d(B(M)) \subseteq B(M)$.

Proof. Let $y \in d(B(M))$. Thus y = d(x) for some $x \in B(M)$. Then y + y = dx + dx = D(x, x) + D(x, x) = D(x + x, x)= D(x, x) = y.

Hence $y \in B(M)$. That is, $d(B(M)) \subseteq B(M)$.

Theorem 3. Let *M* be a linearly ordered *MV*-algebra, *D* be a bi-additive symmetric bi-derivation on *M* and *d* be a trace of *D*. Then d = 0 or d1 = 1.

Proof. Since
$$x + x^* = 1$$
 and $x + 1 = 1$ for all $x \in M$,
 $d1 = D(1, 1) = D(x + x^*, 1) = D(x, 1) + D(x^*, 1)$

and

$$d1 = D(1, 1) = D(x + 1, 1)$$
$$= D(x, 1) + d1$$

If $d1 \neq 1$, Proposition 1, we get $D(x^*, 1) = d1$. Replacing x by 1, we get d1 = 0. For all $x \in M$,

$$0 = d1 = D(x, 1) + d1 = D(x, 1)$$

and

$$D(x,1) = D(x,x+1) = dx = D(x,1) = dx.$$

Thus dx = 0 for all $x \in M$. That is, d = 0.

350

 \square

Theorem 4. Let M be a linearly ordered MV-algebra, D_1 and D_2 bi-additive symmetric bi-derivations on M and d_1 , d_2 be traces of D_1 , D_2 , respectively. If $d_1d_2 = 0$ where $(d_1d_2)(x) = d_1(d_2x)$ for all $x \in M$, then $d_1 = 0$ or $d_2 = 0$.

Proof. Let $d_1d_2 = 0$ and $d_2 \neq 0$. Thus $d_21 = 1$. For all $x \in M$,

$$0 = (d_1d_2)(x) = d_1(d_2x) = d_1(d_2x + (x \odot D_2(x, 1))).$$

Also, since $d_2 1 = 1$, we have

$$D_2(x,1) = D_2(x \odot 1,1) = (D_2(x,1) \odot 1) + (x \odot D_2(1,1))$$
$$= D_2(x,1) + x$$

From (9), we get $x \odot D_2(x, 1) = x$.

Thus,

$$0 = d_1 (d_2 x + x) = D_1 (d_2 x + x, d_2 x + x)$$

= $D_1 (d_2 x, d_2 x) + D_1 (d_2 x, x) + D_1 (x, d_2 x) + D_1 (x, x)$
= $D_1 (d_2 x, x) + D_1 (x, d_2 x) + d_1 x.$

From (4), we get $D_1(d_2x, x) = 0$ or $d_1x = 0$ for all $x \in M$.

Let $D_1(d_2x, x) = 0$ for all $x \in M$. Replacing x by 1, we get $D_1(1, 1) = 0$, that is, $d_1 1 = 0$. For all $x \in M$,

$$0 = d_1 1 = D_1 (x + 1, 1) = D_1 (x, 1) + d_1 1$$

and so, $D_1(x, 1) = 0$. Therefore,

$$0 = D_1(x, 1) = D_1(x, x+1) = d_1x + d_11 = d_1x.$$

Thus $d_1 = 0$.

4. GENERALIZED DERIVATIONS ON MV-ALGEBRAS

Definition 9. Let *M* be an *MV*-algebra. A mapping $f : M \to M$ is called generalized derivation on *M* if there exists a derivation $d : M \to M$ such that

$$f(x \odot y) = (f(x) \odot y) + (x \odot d(y))$$

for all $x, y \in M$.

Example 3. Let M be an MV-algebra in Example 1. Define a function $d: M \rightarrow M$ as the following,

$$d(x) = \begin{cases} 0, & x = 0, a, 1 \\ b, & x = b \end{cases}$$

Example 4. It is obvious that d is derivation on M. If we define f by

$$f(x) = \begin{cases} 0, & x = 0, a \\ b, & x = b, 1 \end{cases}$$

Then f is generalized derivation determined by d on M. Also, f is derivation on M.

Example 5. Let $M = \{0, a, b, c, d, 1\}$. Consider the following tables:

+	0	a	b	c	d	1
0	0	a	b	с	d	1
a	а	c	d	c	1	1
b	b	d	b	1	d	1
c	c	c	1	c	1	1
d	d	1	d	1	1	1
1	1	1	1	1	1	1

Then (M, +, *, 0) is an *MV*-algebra. Define a function $d : M \to M$ as the following

$$d(x) = \begin{cases} 0, & x = 0, a, c \\ b, & x = b, d, 1 \end{cases}$$

It is obvious that *d* is derivation on *M*. If we define a function *f* by f(x) = x, for all $x \in M$.

Then f is generalized derivation determined by d on M. But, since

$$f(ac) = f(a)c + af(c)$$
$$= ac + ac = a + a = c$$

and f(ac) = f(c) = a, f is not derivation on M.

Proposition 6. Let M be an MV-algebra, f be a generalized derivation determined by d on M. Then the followings hold for all $x \in M$,

(i) f(0) = 0, (ii) $f(x) \odot x^* = 0$, (iii) $f(x) = f(x) + (x \odot d (1))$, (iv) $f(x) \le x$, (v) If I is an ideal of an MV-algebra, then $f(I) \subseteq I$.

Proof. (*i*)
$$f(0) = f(0 \odot 0) = (f(0) \odot 0) + (0 \odot d(0)) = 0.$$

(*ii*) For all $x \in M$,

$$0 = f(0) = f(x \odot x^*) = (f(x) \odot x^*) + (x \odot d(x^*))$$

and so, $f(x) \odot x^* = 0$.

(iii) For all $x \in M$,

$$f(x) = f(x \odot 1) = (f(x) \odot 1) + (x \odot d(1))$$

= f(x) + (x \odot d(1)).

(iv) For all $x \in M$,

$$1 = 0^* = (f(x) \odot x^*)^* = (f(x))^* + x$$

From Theorem 1 (ii), $f(x) \le x$ for all $x \in M$.

(v) Let $y \in f(I)$, then d(x) = y for some $x \in I$. From (iv), $f(x) \le x$ and so $y \in I$, since I is an ideal of M. Hence $f(I) \subseteq I$.

Corollary 2. Let M be an MV-algebra, f be a generalized derivation determined by d on M. If $x \le y$ for some $x, y \in M$, then the followings hold, (i) $f(x \odot y^*) = 0$, (ii) $f(x) \le y$, (iii) $f(x) \odot f(y^*) = 0$, (iv) $f(x^*) = (f(x))^*$ if and only if f is the identity on M.

Definition 10. Let *M* is an *MV*-algebra, *f* be a generalized derivation determined by *d* on *M*. If $x \le y$ implies $f(x) \le f(y)$ for all $x, y \in M$, *f* is called an isotone.

Example 6. In Example 5, since f is an identity function, f is isotone.

Proposition 7. Let M be an MV-algebra, f be a generalized derivation determined by d on M. If $f(x^*) = f(x)$ for all $x \in M$, then the followings hold, (i) f(1) = 0, (ii) $f(x) \odot f(x) = 0$, (iii) If f is an isotone on M, then f = 0.

Proof. It is clear.

Definition 11. Let *M* be an *MV*-algebra and *f* be a generalized derivation determined by *d* on *M*. If f(x + y) = f(x) + f(y) for all $x, y \in M$, *f* is called additive generalized derivation on *M*.

Example 7. In Example 4, f is additive generalized derivation on M.

Theorem 5. Let M be an MV-algebra and f be a nonzero additive derivation on M. Then $f(B(M)) \subseteq B(M)$.

Proof. Let
$$y \in f(B(M))$$
. Thus $y = f(x)$ for some $x \in B(M)$. Then
 $y + y = f(x) + f(x) = f(x + x) = f(x) = y$
Hence $y \in B(M)$. That is, $f(B(M)) \subseteq B(M)$.

Theorem 6. Let f be an additive generalized derivation on a linearly ordered MV-algebra M. Then either f = 0 or f(1) = 1.

Π

Proof. Let f be an additive generalized derivation on a linearly ordered MV-algebra M. Hence

$$f(1) = f(x + x^*) = f(x) + f(x^*)$$

and

$$f(1) = f(x+1) = f(x) + f(1)$$

for all $x \in M$. If $f(1) \neq 1$, from Proposition 1, we get f(1) = 0. Therefore

$$0 = f(1) = f(1) + f(x) = f(x)$$

for all $x \in M$. That is, f = 0.

Corollary 3. Let M be a linearly ordered MV-algebra and f additive generalized derivation determined by d on M. If $f^2 = 0$ where $f^2(x) = f(f(x))$ for all $x \in M$, then f = 0.

REFERENCES

- [1] N. O. Alshehri, "Derivations of MV-algebras," Int. J. Math. Math. Sci., vol. 2010, p. 7, 2010.
- [2] M. Bresar, "On the distance of the composition of the two derivations to the generalized derivations," *Glasgow Math. J.*, vol. 33, no. 1, pp. 89–93, 1991.
- [3] G. Cattaneo, R. Giuntini, and R. Pilla, "BZMV^{dM} algebras and Stonian MV-algebras (applications to fuzzy sets and rough approximations)," *Fuzzy Sets Syst.*, vol. 108, no. 2, pp. 201–222, 1999.
- [4] Y. Çeven, "Symmetric bi-derivations of lattices," Quaest. Math., vol. 32, no. 2, pp. 241-245, 2009.
- [5] C. C. Chang, "Algebraic analysis of many valued logics," *Trans. Am. Math. Soc.*, vol. 88, pp. 467–490, 1958.
- [6] C. C. Chang, "A new proof of the completeness of the łukasiewicz axioms," *Trans. Am. Math. Soc.*, vol. 93, pp. 74–80, 1959.
- [7] R. L. O. Cignoli, I. M. L. D'Ottaviano, and D. Mundici, *Algebraic foundations of many-valued reasoning*, ser. Trends in Logic-Studia Logica Library. Dordrecht: Kluwer Academic Publishers, 2000, vol. 7.
- [8] G. Maksa, "On the trace of symmetric bi-derivations," C. R. Math. Acad. Sci., Soc. R. Can., vol. 9, pp. 303–307, 1987.
- [9] S. Rasouli and B. Davvaz, "Roughness in MV-algebras," Inf. Sci., vol. 180, no. 5, pp. 737–747, 2010.

Author's address

Hasret Yazarli

Cumhuriyet University, Faculty of Sciences, Department of Mathematics, 58140 Sivas, Turkey *E-mail address:* hyazarli@cumhuriyet.edu.tr

354

 \Box