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1. INTRODUCTION AND PRELIMINARIES

The first important result on fixed points for contractive type mapping was the
much celebrated Banach’s contraction principle by Banach [2] in 1922. After this,
Kannan [9, 10] proved the following result:

Theorem 1. Let (X,d) be a complete metric space. If T : X — X satisfies
d(Tx,Ty) <kl[d(x,Tx)+d(y.Ty)],
where 0 < k < % and x,y € X, then T has a unique fixed point.

A similar type of contractive condition has been studied by Chatterjee [5] and he
proved the following result:

Theorem 2. Let (X,d) be a complete metric space. If T : X — X satisfies a
C -contraction given as follows:

d(Tx,Ty) <kld(x,Ty)+d(y,Tx)],
where 0 < k < % and x,y € X, then T has a unique fixed point.
Alber and Guerre-Delabriere [ 1] introduced the definition of weak @-contraction.

Definition 1. A self mapping 7" on a metric space X is called weak @-contraction
if there exists a function @ : [0, +00) — [0, +00) such that for each x,y € X,

d(Tx,Ty) <d(x,y)—®(d(x,y))).

(© 2013 Miskolc University Press
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The notion of @-contraction and weak ®-contraction has been studied by many
authors, see [3, 12, 15,17, 19]. In recent years, many results related to fixed point
theorems in partially ordered metric spaces are given, for more details see [8, |2—16].

Choudhury in [6] introduced a generalization of C-contraction given by the follo-
wing definition.

Definition 2 ([6]). Let (X, d) be a metric space. A mapping T : X — X is said to
be weakly C-contractive (or a weak C-contraction) if for all x,y € X,

d(Tx.Ty) £ 5@, Ty) 40, Tx) ~g(d(x. 7). d(. ),

where ¢ : [0, +00) — [0, 400) is a continuous function such that ¢(x, y) = 0 if and
only x =y =0.

In [6] the author proves that if X is complete then every weak C -contraction has a
unique fixed point. Recently, Harjani et al, [8] presented this last result in the context
of ordered metric spaces.

Chandok [4] introduced the following definition: Amap 7 : X — X is generalized
f-weakly contractive if for each x,y € X,

d(Tx,Ty) < %(d(fx, Ty)+d(fy.Tx))—e(d(fx.Ty).d(fy,Tx)),

where ¢ : [0, +00) — [0, +00) — [0, +00) is a continuous function such that ¢(x, y) =
Oifandonly x =y = 0.

If f = Iy, the identity mapping, then generalized f-weakly contractive mapping
is weakly C-contractive.

Khan et al. [11] introduced the concept of altering distance function as follows:

Definition 3 (altering distance function, [1 1]). The function ¥ : [0, +00) — [0, 4+00)
is called an altering distance function if the following properties are satisfied:
(1) ¢ is continuous and non-decreasing.
(2) ¥(¢) =0if and only if = 0.

Following the above definitions, we introduce the following:

Definition4. Amap T : X — X is called (i, ¢)-generalized f-weakly contractive
if for each x,y € X,

Y(d(Tx.Ty)) < W(%[d(fx, Ty)+d(fy. Tx)) —e(d(fx.Ty).d(fy.Tx)),

where
(1) ¥ :[0,400) — [0, +00) is an altering distance function.
(2) ¢ :[0,400) x[0,400) — [0,400) is a continuous function with ¢(¢,s) =0
ifand only if r =5 = 0.
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If Y (¢) = ¢, then (¥, p)-generalized f-weakly contractive mapping is generalized
f-weakly contractive.

The aim of this paper is to study some common fixed point theorems for (v, ¢)-
generalized f-weakly contractive in metric and ordered metric spaces.

2. MAIN RESULTS
First, we state the following known definition:

Definition 5. Let X a non-empty set. A point x € X is a coincidence point (com-
mon fixed point)of f: X > XandT:X — X if fx =Tx (x = fx =Tx). The
pair { f, T} is called commuting if Tfx = fTx forall x € X.

We start with a common fixed point theorem for (i, ¢)-generalized f-weakly
contractive mappings in complete metric spaces.

Theorem 3. Let (X, d) be a metric space. Let f,T : X — X satisfy T(X) C f(X),
(f(X).d) is complete and

v(d(Tx,Ty)) < W(%[d(fx, Ty)+d(fy,Tx))—ed(fx,Ty),d(fy,Tx)),
2.1)
forall x,y € X, where

(1) ¥ :[0,400) — [0, +00) is an altering distance function,

(2) ¢:]0,400)x[0,400) — [0, +00) is a continuous function with (t,s) = 0 if
andonly ift =5 =0, then T and f have a coincidence point in X. Further, if
T and f commute at their coincidence points, then T and f have a common
fixed point.

Proof. Let xg € X. Since T(X) C f(X), we can choose x; € X, so that fx; =
T xo. Since Txy1 € f(X), there exists xp € X such that fx, = Tx;. By induction,
we construct a sequence {x,} in X such that fx,4+1; = Tx,, for every n € N. By
inequality (2.1), we have

1
Y (d(Txp41,Txp)) < W(E[d(fxn-i-l»Txn) +d(fxn, Txn4+1)])
—od(fxn+1,Txn),d(fxn, T Xn+1))

1

= W(Ed(Txn—l’Txn—l—l)) —¢0,d(Txp-1,TXn41))
1

< W(id(Txn—l ,TXn+1))

1
=Y (Gd(Txn—1,Txn) +d(Txn. TXn11)))- (22
Since V¥ is a non-decreasing function, we get that

d(Txp,Txp+1) <d(Txp—1,Tx,) forany ne N*. (2.3)
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Thus, {d(T x,,T xn+1)} is a monotone non-increasing sequence of non-negative real
numbers and hence is convergent. Hence there is 7 > 0 such that

lim d(Tx,, Txp4+1)=r.

n—+oo

Using a triangular inequality, we have

1 1
d(Txp41,Txy) < Ed(Txn—laTxn+l) = E[d(Txn—l,Txn) +d(Txn, Txps1)]

Letting n — +o00, we get

< ! lim d(T T ) < ! + !
r= 2n_gr_loo Xn—1,1 Xp+1) = 2” 2”,
thatis lim d(Txu—1,T xpn4+1) = 2r. Using the continuity of ¢ and ¢, and inequ-

n——+o0o

ality (2.2), we have, letting n — 400
Y (r) =¥ (r)—¢(0,2r),
and consequently, ¢(0,2r) < 0. Thus, by a property of ¢, r =0, so
lim d(Txp+1,Tx,)=0. 2.4

n——+oo

Now, we show that {T'x,} is a Cauchy sequence. If otherwise, then there exists
& > 0 for which we can find subsequences {7 x,,(k)} and {T x,x)} of {Tx,} with
n(k) > m(k) > k such that for every k,

d(Txmys Txny) = & d(T Xy, T Xnk)—1) <é&. (2.5)
By triangular inequality, we have from (2.5)
e < d(Txm(k), Txn(k))
< d(Txmeys TxXney—1) +d(T X0 -1 T Xnk))
<e+d(Txup)—1-T Xn(k))-
Using (2.4), we get

lim d(Txp@).Txnk)) = HIm  d(TXp@), T Xn@)—1) = & (2.6)
k—+o00 k—+o00

On the other hand,
d(TXmpey> TXnky=1) < d(TXm@)> T Xmy—1) + d(T Xmpy—1, T Xn(k))
+d(T xnkys T Xn(k)—1)-
and
d(Txmiy—1,T Xnk)) < d(TXmy—1,T Xmk)) + d(T Xk, T Xn(k))-
Letting k — +o00 in the two above inequalities, we have thanks to (2.4) and (2.6),

lim d(Txm(k)—l: Txn(k)) =¢&. (2.7)

k—>+o00
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From (2.1), we have
V(&) Y d(Txmys T Xn(k)))

1
< w(i[d(fxm(k)a Txni)) +d(fXniys T Xm))])
—0d(fXm@)> TXnk)) - d(fXn@k)> T Xm(x)))

= W(%[d(Txm(k)—l’Txn(k)) +d(Txpt)—1T Xm(x))])
=@ d(TxXmk)—1:TXn (k) AT Xn(k)—1. T Xm(k)))-
Taking k — 400, using the continuity of ¥ and ¢, we obtain from (2.6), (2.7)
V() = y(e) —p(e.8),
hence ¢(g,e) = 0, so ¢ = 0, it is a contradiction. Thus {7 x,} is a Cauchy sequence.

Since fx, = Txu—1, hence { fx,} is a Cauchy sequence in ( f(X),d), which is
complete. Thus there is z € X such that

lim fx,=fz. (2.8)
n—+o0o
Moreover, (2.4) reads
lim d(fx,,,fan) =0. (29)
n—+oo

By (2.1), we have
v(d(Tz, fxn+1) = ¥ (d(Tz,Txp))

< W(%[d(fz,Txn) +d(fxn. T2)) —@(d(f2.Txn).d(fxn.T2))

1
= W(E[d(fz’fxiH-l) +d(fxn. T —d(f2, fXn+1),d(fxn. T2)),
and letting n — 400, using the continuity of {» and ¢ and by (2.8), (2.9), we find

1 1
V(d(Tz. f2)) =¥ (5d(Tz. f2) —¢(0.d(f2.T2)) =¥ (5d(Tz. f2)).
Consequently, d(Tz, fz) < %d(Tz,fz), that is, d(Tz, fz) =0, 1e. Tz = fz,
hence z is a coincidence point of T and f. Now suppose that T and f commute at
z.Lletw=Tz= fz.ThenTw =T(fz) = f(Tz) = fw. By inequality (2.1)
1
Y(d(Tz.Tw) =y (Sld(fz. Tw) +d(fw. T —ed(fz. Tw).d(fw.T2))
= W(%[d(Tz, Tw)+d(Tw,Tz)])—e(d(Tz,Tw),d(Tw,Tz))
= w(%[d(Tz, Tw)+d(Tw,Tz))—¢d(Tz,Tw),d(Tw,Tz))
=y (d(Tz,Tw))—ed(Tz,Tw),d(Tw,Tz)).
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This implies that d(Tz, Tw) = 0, by the property of ¢. Therefore, Tw = fw = w.
This completes the proof of Theorem 3. U

Example 1. Let X = [0,400). Let d be defined by d(x,y) = |x — y| for all
x,y € X. Weset fx =7 and Tx = § forall x € X. Itis clear that T(X) C f(X)
and (f(X),d) is a complete metric space. Define v : [0, +00) — [0,+00) and ¢ :
[0, +00) x [0, +00) — [0, +00) by

t 1
V=5 and p(t.s) = 1 +5)

It is obvious that i and ¢ satisfy the hypotheses of Theorem 3. We need to show that
the inequality (2.1) holds for any x, y € X. First, the left-hand side of (2.1) is

1
Y(d(Tx.Ty)) = glx—yl. (2.10)
While, the right-hand side of (2.1) is

W(l(d(fx, Ty)+d(fy.Tx))—e(d(fx.Ty).d(fy.Tx)

——[|———|+|———|1—En5——|+|———|1

——= ———] 2.11
oF LERAPNE R @1
By symmetry of (2.10) and (2.1 1), and without loss of generality, we suppose that
x > y. In particular, (2.10) reads

1
YT Ty) = o (x=y).

We distinguish two cases:
o If 2y > x. Here, we have from (2.11)

lﬂ(l(d(fx, Ty)+d(fy.Tx))—e(d(fx,Ty).d(fy.Tx)

X X
16[|5——| '"1”‘16[(5") -3

= a(ery) > g(x—y) =y (d(Tx,Ty)). (2.12)
o If 2y < x. Here, we have from (2.11)

lﬂ(l(d(fx, Ty)+d(fy.Tx))—e(d(fx.Ty).d(fy.Tx)

- 16[|5——| 2-2= G-+ 2+ 7]

=a(x—y)zg(x—y)=1/f(d(Tx,TY))- (2.13)
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By (2.12) and (2.13), the inequality (2.1) is satisfied. Then by Theorem 3, T and f
have a common fixed point, which is z = 0.

Corollary 1. Let (X,d) be a complete metric space. If T : X — X satisfies

Y(d(Tx.Ty)) < W(%[d(x, Ty)+d(y.Tx)])—¢(d(x.Ty).d(y.Tx)), (2.14)

forall x,y € X, where

(1) ¥ :[0,400) — [0,+00) is an altering distance function,
(2) ¢ :]0,4+00) x[0,+00) = [0,400) is a continuous function with ¢(t,s) =0
ifand only ift = s = 0, then T has a unique fixed point.

Proof. 1t follows by taking f = Iy in Theorem 3. The uniqueness of the fixed
point follows by the following: suppose u and v are fixed points of 7. By (2.14), we
have

Vv (d(u,v)) =¥ (d(Tu,Tv))
< lﬂ(%[d(u,Tv) +dw, Tu)])—e(du,Tv),d(,Tu))

= W(%[d(u,v) +dw.u)]) —e(d(u,v).d(v.u))

=Y (d(u,v)) —e(d(u,v),d(v,u)),
which implies that ¢(d (1, v),d(v,u)) = 0, and by a property of ¢, we getu =v. [
Corollary 2. Let (X,d) be a metric space. If T, f : X — X are such that T(X) C
f(X), (f(X),d) is complete and

AT, Ty) < STy +d(fy. T =g fx Ty d(f3.Tx),  219)

forall x,y € X, where ¢ : [0,400) x [0,400) — [0, +00) is a continuous function
with ¢(t,s) =0 ifand only ift =s =0, then T and f have a coincidence point in
X. Further, if T and f commute at their coincidence points, then T and [ have a
common fixed point.

Proof. The proof follows by taking v (¢) = ¢ in Theorem 3. O

Corollary 3. Let (X,d) be a complete metric space. If T : X — X satisfies for all
x,yeX

d(Tx.Ty) < %[d(x, Ty)+d(y.Tx)|—¢(d(x,Ty).d(y.Tx)), (2.16)

where ¢ : [0, +00) X [0, +00) — [0, +00) is a continuous function with ¢(t,s) = 0 if
and only ift =s = 0, then T has a unique fixed point.

Proof. Tt follows by taking f = Idx in Corollary 2. The uniqueness of the fixed
point follows from Corollary 1. O
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Remark 1. e Corollary 1 corresponds to Corollary 2.1 of Shatanawi [18].
e Corollary 2 corresponds to Theorem 1 of Chandok [4].
e Corollary 3 corresponds to Theorem 2.1 of Choudhury [6].

Now, we extend Theorem 3 and we prove a common fixed point theorem for f-
non-decreasing generalized nonlinear contraction mappings in the context of ordered
metric spaces.

Definition 6 ([7]). Suppose (X, <) is a partially ordered setand 7, f : X - X. T
is said to be monotone f-nondecreasing if for all x,y € X,

fx < fy implies Tx <Ty. (2.17)
If f = Ix in Definition 6, then T is monotone non-decreasing.

Theorem 4. Let (X, <) be a partially ordered set and suppose that there exists a
metric d on X such that (X,d) is a complete metric space. Let f and T are self-
mappings of X such that T(X) C f(X), f(X) is closed and T is f-non-decreasing
mapping. Suppose that f and T satisfy for all x,y € X, for which f(x) < f(y)

1
vd(Tx.Ty) =y Gld(fx.Ty) +d(fy. T)]) —e(d(fx.Ty).d(fy.Tx))
(2.18)

where

(1) ¥ :[0,+00) — [0, +00) is an altering distance function,

(2) ¢ :[0,400) %[0, +00) = [0, +00) is a continuous function with ¢(x,y) =0

ifandonly if x =y =0.

Also, suppose that if { f (xn)} C X is a non-decreasing sequence with f(x,) — f(2)
in f(X), then f(x,) < f(z) and f(z) < f(f(2)) for every n.

If there exists xg € X with fxo < Txg, then T and f have a coincidence point.
Further, if T and [ commute at their coincidence points, then T and f have a
common fixed point.

Proof. Let x¢g € X such that fxo < Txg. Since T(X) C f(X), we can choose
X1 € X, so that fx; = Txg. Since Tx; € f(X), there exists xp € X such that
fx2 = Tx1. By induction, we construct a sequence {x,} in X such that

fxn+1 = Txn.

Since fxo <Txo, Txo= fx1,50 fxo < fxy. T is f-non-decreasing mapping, we
get Txg < Txy. Similarly fx; < fxs, Tx; <Tx3, hence fxp < fx3. Continuing,
we obtain

frxo<fx1 < fx2<..<fxn<fxpy1=<..

If forsome n, Txy,+1 =T xp,then T x,, 41 = fxp41,i.e. T and f have a coincidence
point x,+1, and so we have the result. For the rest, assume that d(T x,, T x,+1) > 0
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for all n € N. By (2.18), we have

Y (d(Txn, Txnt1)) < w(%[d(fan,Txn) +d(fxn,Txn41)])
—od(fxn+1.Txn) d(fxn, T Xn+1))

1

= 1/’(Ed(Txn—l T xn+1) —@0,d(Txp—1,T xn+1))
1

< W(Ed(Txn—l,Txn—H))

1 1
=< l»”(Ed(Txn—l , Txn) + Ed(Txn, Txn+1))~

It follows that, for any n € N*
d(Txn, Txp+1) <d(Txp—1,Txp).
Thus {d(T x,,T xn+1)} is a monotone non-increasing sequence, hence it is conver-

gent. Now, proceeding as in Theorem 3, we can prove that

lim d(Txn,Txp41) = 0. (2.19)

n——+o0o
Moreover, {T x,} is a Cauchy sequence. Since Tx, = fx,+1 and f(X) is closed,
so there exists z € X such that

lim fx, = fz. (2.20)

n——+o0o

Having in mind { fx, } is a non-decreasing sequence, so by (2.20) we have for every
neN

fxn < fz, f(2)=f(f2). (2.21)

Having fx, < fz, so from inequality (2.18), we have
Y (d(fxnt1.T2)) =¥ (d(Txn,T2))

=< xlf(%[d(fz, Txp) +d(fxn. T2)]) —@d(f2.Txn).d(fxn.T2))

1
=V Gld(fz. fant1) +d(fxn. Tl =@ (f2. fxns1).d(fxn. T2)).

Taking n — +o00, using the continuity of y and ¢, we get from (2.19), (2.20)
1
V(d(Tz. f2)) =¥ (d(fz2. f2)) —¢(0.d(f2.T2)).

thatis, d(Tz, fz) =0, hence Tz = fz,so z is a coincidence point of T and f.

Now suppose that 7 and f commute at 7. Let w = Tz = fz. Then Tw =
T(fz)= f(Tz)= fw. From (2.21), we have fz < f(fz) = fw, so the inequality
(2.18) gives us

1
Y(d(Tz.Tw) =y (Sld(fz. Tw) +d(fw. T)) —e(d(fz. Tw).d(fw.T2))
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= W(%[d(Tz, Tw)+d(Tw,Tz)])—ed(Tz,Tw),d(Tw,Tz))

_ w(%[d(n, Tw) +d(Tw, T2)]) - o(d(Tz, Tw),d(Tw, Tz))
— (T2, Tw)) - (d(Tz, Tw),d(Tw, T2)).

This implies that d(T z, Tw) = 0, by the property of ¢. Therefore, Tw = fw = w.
This completes the proof of Theorem 4. O

Corollary 4. Let (X, <) be a partially ordered set and suppose that there exists
a metric d on X such that (X,d) is a complete metric space. Let f and T are self-
mappings of X such that T(X) C f(X), f(X) is closed and T is f-non-decreasing
mapping. Assume that  and T satisfy for all x,y € X, for which f(x) < f(y)

d(Tx.Ty) < %[d(fx, Ty)+d(fy.Tx)—e(d(fx.Ty).d(fy.Tx)), (222)

where ¢ : [0,4+00) X [0, +00) — [0, 400) is a continuous function with ¢(x,y) =0
ifand only if x =y = 0.

Also, suppose that if { f (xn)} C X is a non-decreasing sequence with f(x,) — f(2)
in f(X), then f(xn) < f(2) and f(2) < f((2)) for every n.

If there exists xo € X with fxo < Txo, then T and f have a coincidence point.
Further, if T and f commute at their coincidence points, then T and f have a
common fixed point.

Proof. 1t follows by taking ¥ (¢) =t in Theorem 4. O

Corollary 5. Let (X, <) be a partially ordered set and suppose that there exists
a metric d on X such that (X,d) is a complete metric space. Let T : X — X be
a monotone non-decreasing mapping. Suppose that T satisfies for all x,y € X, for
which x <y,

Y(d(Tx.Ty)) < K/f(%[d(X» Ty)+d(y.Tx)])—¢(d(x.Ty).d(y.Tx)), (2.23)

where
(1) ¥ :[0,400) — [0, +00) is an altering distance function,
(2) ¢ :[0,400) x[0,+00) = [0, +00) is a continuous function with ¢(x,y) =0
ifand only if x =y = 0.
Also suppose either
(1) {xn} C X is a non-decreasing sequence with x, — z, then x, < z for every
n, or
(i1) T is continuous.

If there exists xo € X with xg < T xo, then T has a fixed point.
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Proof. 1f (i) holds, then taking f = Ix in Theorem 4, we get the result.
If (ii) holds, then proceeding as in Theorem 4 with f = Ix, we can prove that {7 x, }
is a Cauchy sequence and

z= lim xp4y1=1mTx,=T( lim x,)=Tz.
n—4o00 n——+o0o

Hence the proof is completed. O

Corollary 6. Let (X, <) be a partially ordered set and suppose that there exists
a metric d on X such that (X,d) is a complete metric space. Let T : X — X be
a monotone non-decreasing mapping. Suppose that T satisfies for all x,y € X, for
which x <y,

d(Tx,Ty) < %[d(x,Ty) +d(y, Tx)]|—¢(d(x,Ty),d(y,Tx)), (2.24)

where ¢ : [0,+00) X [0, +00) = [0, +00) is a continuous function with ¢(x,y) =0
ifand only if x =y = 0.
Also, suppose either
(1) If{xn} C X is a non-decreasing sequence with x,, — z, then x,, < z for every
n, or
(i1) T is continuous.

If there exists xo € X with xg < T xoq, then T has a fixed point.
Proof. Tt follows by taking ¥ (¢) = t in Corollary 5. O

Remark 2. Corollary 6 corresponds to Theorem 2.1 and Theorem 2.2 of Harjani
et al. [8].

Corollary 7. Let (X, <) be a partially ordered set and suppose that there exists
a metric d on X such that (X,d) is a complete metric space. Let T : X — X be
a monotone non-decreasing mapping. Suppose that T satisfies for all x,y € X, for
which x <y,

d(Tx,Ty) <kl[d(x,Ty)+d(y,Tx)], (2.25)
where 0 < k < %
Also, suppose either

(1) If{xn} C X is a non-decreasing sequence with x, — z, then x, < z for every
n, or
(i1) T is continuous.

If there exists xg € X with xo < T xo, then T has a fixed point.

Proof. 1t follows by taking ¢(t) = (% — k)t in Corollary 6. O
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