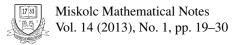


Miskolc Mathematical Notes Vol. 14 (2013), No 1, pp. 19-30

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2013.399

On common fixed point theorems for (ψ, ϕ) -generalized f-weakly contractive mappings

H. Aydi



ON COMMON FIXED POINT THEOREMS FOR (ψ, φ) -GENERALIZED *f*-WEAKLY CONTRACTIVE MAPPINGS

H. AYDI

Received September 15, 2011

Abstract. In this paper, we present some common fixed point theorems for (ψ, φ) -generalized f-weakly contractive mappings in metric and ordered metric spaces. Our results extend, generalize and improve some well-known results in the literature. Also, we give an example to illustrate our results.

2000 Mathematics Subject Classification: 54H25; 47H10; 54E50

Keywords: common fixed point, commuting maps, f-weakly contractive maps, generalized f-weakly contractive maps, ordered metric space

1. INTRODUCTION AND PRELIMINARIES

The first important result on fixed points for contractive type mapping was the much celebrated Banach's contraction principle by Banach [2] in 1922. After this, Kannan [9, 10] proved the following result:

Theorem 1. Let (X, d) be a complete metric space. If $T : X \to X$ satisfies

 $d(Tx, Ty) \le k[d(x, Tx) + d(y, Ty)],$

where $0 < k < \frac{1}{2}$ and $x, y \in X$, then T has a unique fixed point.

A similar type of contractive condition has been studied by Chatterjee [5] and he proved the following result:

Theorem 2. Let (X,d) be a complete metric space. If $T : X \to X$ satisfies a *C*-contraction given as follows:

$$d(Tx, Ty) \le k[d(x, Ty) + d(y, Tx)],$$

where $0 < k < \frac{1}{2}$ and $x, y \in X$, then T has a unique fixed point.

Alber and Guerre-Delabriere [1] introduced the definition of weak Φ -contraction.

Definition 1. A self mapping *T* on a metric space *X* is called weak Φ -contraction if there exists a function $\Phi : [0, +\infty) \to [0, +\infty)$ such that for each $x, y \in X$,

$$d(Tx, Ty) \le d(x, y) - \Phi(d(x, y))).$$

© 2013 Miskolc University Press

The notion of Φ -contraction and weak Φ -contraction has been studied by many authors, see [3, 12, 15, 17, 19]. In recent years, many results related to fixed point theorems in partially ordered metric spaces are given, for more details see [8, 12–16].

Choudhury in [6] introduced a generalization of C-contraction given by the following definition.

Definition 2 ([6]). Let (X, d) be a metric space. A mapping $T : X \to X$ is said to be weakly *C*-contractive (or a weak *C*-contraction) if for all $x, y \in X$,

$$d(Tx, Ty) \le \frac{1}{2}(d(x, Ty) + d(y, Tx)) - \varphi(d(x, Ty), d(y, Tx)),$$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a continuous function such that $\varphi(x, y) = 0$ if and only x = y = 0.

In [6] the author proves that if X is complete then every weak C-contraction has a unique fixed point. Recently, Harjani et al, [8] presented this last result in the context of ordered metric spaces.

Chandok [4] introduced the following definition : A map $T : X \to X$ is generalized f-weakly contractive if for each $x, y \in X$,

$$d(Tx,Ty) \leq \frac{1}{2}(d(fx,Ty) + d(fy,Tx)) - \varphi(d(fx,Ty),d(fy,Tx)),$$

where $\varphi : [0, +\infty) \to [0, +\infty) \to [0, +\infty)$ is a continuous function such that $\varphi(x, y) = 0$ if and only x = y = 0.

If $f = I_X$, the identity mapping, then generalized f-weakly contractive mapping is weakly C-contractive.

Khan et al. [11] introduced the concept of altering distance function as follows:

Definition 3 (altering distance function, [11]). The function $\psi : [0, +\infty) \rightarrow [0, +\infty)$ is called an altering distance function if the following properties are satisfied:

- (1) ψ is continuous and non-decreasing.
- (2) $\psi(t) = 0$ if and only if t = 0.

Following the above definitions, we introduce the following:

Definition 4. A map $T : X \to X$ is called (ψ, φ) -generalized f-weakly contractive if for each $x, y \in X$,

$$\psi(d(Tx,Ty)) \le \psi(\frac{1}{2}[d(fx,Ty) + d(fy,Tx)]) - \varphi(d(fx,Ty),d(fy,Tx)),$$

where

- (1) $\psi: [0, +\infty) \to [0, +\infty)$ is an altering distance function.
- (2) $\varphi : [0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty)$ is a continuous function with $\varphi(t, s) = 0$ if and only if t = s = 0.

If $\psi(t) = t$, then (ψ, φ) -generalized f-weakly contractive mapping is generalized f-weakly contractive.

The aim of this paper is to study some common fixed point theorems for (ψ, φ) -generalized *f*-weakly contractive in metric and ordered metric spaces.

2. MAIN RESULTS

First, we state the following known definition:

1

Definition 5. Let X a non-empty set. A point $x \in X$ is a coincidence point (common fixed point) of $f : X \to X$ and $T : X \to X$ if fx = Tx (x = fx = Tx). The pair $\{f, T\}$ is called commuting if Tfx = fTx for all $x \in X$.

We start with a common fixed point theorem for (ψ, φ) -generalized f-weakly contractive mappings in complete metric spaces.

Theorem 3. Let (X, d) be a metric space. Let $f, T : X \to X$ satisfy $T(X) \subset f(X)$, (f(X), d) is complete and

$$\psi(d(Tx,Ty)) \le \psi(\frac{1}{2}[d(fx,Ty) + d(fy,Tx)]) - \varphi(d(fx,Ty), d(fy,Tx)),$$
(2.1)

for all $x, y \in X$, where

- (1) $\psi: [0, +\infty) \rightarrow [0, +\infty)$ is an altering distance function,
- (2) $\varphi: [0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty)$ is a continuous function with $\varphi(t, s) = 0$ if and only if t = s = 0, then T and f have a coincidence point in X. Further, if T and f commute at their coincidence points, then T and f have a common fixed point.

Proof. Let $x_0 \in X$. Since $T(X) \subset f(X)$, we can choose $x_1 \in X$, so that $fx_1 = Tx_0$. Since $Tx_1 \in f(X)$, there exists $x_2 \in X$ such that $fx_2 = Tx_1$. By induction, we construct a sequence $\{x_n\}$ in X such that $fx_{n+1} = Tx_n$, for every $n \in \mathbb{N}$. By inequality (2.1), we have

$$\psi(d(Tx_{n+1}, Tx_n)) \leq \psi(\frac{1}{2}[d(fx_{n+1}, Tx_n) + d(fx_n, Tx_{n+1})]) -\varphi(d(fx_{n+1}, Tx_n), d(fx_n, Tx_{n+1})) = \psi(\frac{1}{2}d(Tx_{n-1}, Tx_{n+1})) - \varphi(0, d(Tx_{n-1}, Tx_{n+1})) \leq \psi(\frac{1}{2}d(Tx_{n-1}, Tx_{n+1})) \leq \psi(\frac{1}{2}[d(Tx_{n-1}, Tx_n) + d(Tx_n, Tx_{n+1})]).$$
(2.2)

Since ψ is a non-decreasing function, we get that

$$d(Tx_n, Tx_{n+1}) \le d(Tx_{n-1}, Tx_n) \quad \text{for any } n \in \mathbb{N}^*.$$
(2.3)

Thus, $\{d(Tx_n, Tx_{n+1})\}$ is a monotone non-increasing sequence of non-negative real numbers and hence is convergent. Hence there is $r \ge 0$ such that

$$\lim_{n \to +\infty} d(Tx_n, Tx_{n+1}) = r.$$

Using a triangular inequality, we have

$$d(Tx_{n+1}, Tx_n) \le \frac{1}{2}d(Tx_{n-1}, Tx_{n+1}) \le \frac{1}{2}[d(Tx_{n-1}, Tx_n) + d(Tx_n, Tx_{n+1})].$$

Letting $n \to +\infty$, we get

$$r \le \frac{1}{2} \lim_{n \to +\infty} d(T x_{n-1}, T x_{n+1}) \le \frac{1}{2}r + \frac{1}{2}r$$

that is $\lim_{n \to +\infty} d(Tx_{n-1}, Tx_{n+1}) = 2r$. Using the continuity of ψ and φ , and inequality (2.2), we have, letting $n \to +\infty$

$$\psi(r) \le \psi(r) - \varphi(0, 2r),$$

and consequently, $\varphi(0, 2r) \leq 0$. Thus, by a property of φ , r = 0, so

$$\lim_{n \to +\infty} d(Tx_{n+1}, Tx_n) = 0.$$
(2.4)

Now, we show that $\{Tx_n\}$ is a Cauchy sequence. If otherwise, then there exists $\varepsilon > 0$ for which we can find subsequences $\{Tx_{m(k)}\}$ and $\{Tx_{n(k)}\}$ of $\{Tx_n\}$ with n(k) > m(k) > k such that for every k,

$$d(Tx_{m(k)}, Tx_{n(k)}) \ge \varepsilon, \quad d(Tx_{m(k)}, Tx_{n(k)-1}) < \varepsilon.$$

$$(2.5)$$

By triangular inequality, we have from (2.5)

$$\varepsilon \le d(Tx_{m(k)}, Tx_{n(k)}) \le d(Tx_{m(k)}, Tx_{n(k)-1}) + d(Tx_{n(k)-1}, Tx_{n(k)}) < \varepsilon + d(Tx_{n(k)-1}, Tx_{n(k)}).$$

Using (2.4), we get

$$\lim_{k \to +\infty} d(Tx_{m(k)}, Tx_{n(k)}) = \lim_{k \to +\infty} d(Tx_{m(k)}, Tx_{n(k)-1}) = \varepsilon.$$
(2.6)

On the other hand,

$$d(Tx_{m(k)}, Tx_{n(k)-1}) \le d(Tx_{m(k)}, Tx_{m(k)-1}) + d(Tx_{m(k)-1}, Tx_{n(k)}) + d(Tx_{n(k)}, Tx_{n(k)-1}),$$

and

$$d(Tx_{m(k)-1}, Tx_{n(k)}) \le d(Tx_{m(k)-1}, Tx_{m(k)}) + d(Tx_{m(k)}, Tx_{n(k)}).$$

Letting $k \to +\infty$ in the two above inequalities, we have thanks to (2.4) and (2.6),

$$\lim_{k \to +\infty} d(Tx_{m(k)-1}, Tx_{n(k)}) = \varepsilon.$$
(2.7)

From (2.1), we have

$$\begin{split} \psi(\varepsilon) &\leq \psi(d(Tx_{m(k)}, Tx_{n(k)})) \\ &\leq \psi(\frac{1}{2}[d(fx_{m(k)}, Tx_{n(k)}) + d(fx_{n(k)}, Tx_{m(k)})]) \\ &- \varphi(d(fx_{m(k)}, Tx_{n(k)}), d(fx_{n(k)}, Tx_{m(k)}))) \\ &= \psi(\frac{1}{2}[d(Tx_{m(k)-1}, Tx_{n(k)}) + d(Tx_{n(k)-1}, Tx_{m(k)})]) \\ &- \varphi(d(Tx_{m(k)-1}, Tx_{n(k)}), d(Tx_{n(k)-1}, Tx_{m(k)})). \end{split}$$

Taking $k \to +\infty$, using the continuity of ψ and φ , we obtain from (2.6), (2.7)

$$\psi(\varepsilon) \leq \psi(\varepsilon) - \varphi(\varepsilon, \varepsilon)$$

hence $\varphi(\varepsilon, \varepsilon) = 0$, so $\varepsilon = 0$, it is a contradiction. Thus $\{Tx_n\}$ is a Cauchy sequence. Since $fx_n = Tx_{n-1}$, hence $\{fx_n\}$ is a Cauchy sequence in (f(X), d), which is complete. Thus there is $z \in X$ such that

$$\lim_{n \to +\infty} f x_n = f z. \tag{2.8}$$

Moreover, (2.4) reads

$$\lim_{n \to +\infty} d(fx_n, fx_{n+1}) = 0.$$
 (2.9)

By (2.1), we have

$$\begin{split} \psi(d(Tz, fx_{n+1})) &= \psi(d(Tz, Tx_n)) \\ &\leq \psi(\frac{1}{2}[d(fz, Tx_n) + d(fx_n, Tz)]) - \varphi(d(fz, Tx_n), d(fx_n, Tz))) \\ &= \psi(\frac{1}{2}[d(fz, fx_{n+1}) + d(fx_n, Tz)]) - \varphi(d(fz, fx_{n+1}), d(fx_n, Tz)), \end{split}$$

and letting $n \to +\infty$, using the continuity of ψ and φ and by (2.8), (2.9), we find

$$\psi(d(Tz,fz)) \le \psi(\frac{1}{2}d(Tz,fz)) - \varphi(0,d(fz,Tz)) \le \psi(\frac{1}{2}d(Tz,fz)).$$

Consequently, $d(Tz, fz) \leq \frac{1}{2}d(Tz, fz)$, that is, d(Tz, fz) = 0, i.e. Tz = fz, hence z is a coincidence point of T and f. Now suppose that T and f commute at z. Let w = Tz = fz. Then Tw = T(fz) = f(Tz) = fw. By inequality (2.1)

$$\begin{split} \psi(d(Tz,Tw) &\leq \psi(\frac{1}{2}[d(fz,Tw) + d(fw,Tz)]) - \varphi(d(fz,Tw),d(fw,Tz))) \\ &= \psi(\frac{1}{2}[d(Tz,Tw) + d(Tw,Tz)]) - \varphi(d(Tz,Tw),d(Tw,Tz))) \\ &= \psi(\frac{1}{2}[d(Tz,Tw) + d(Tw,Tz)]) - \varphi(d(Tz,Tw),d(Tw,Tz))) \\ &= \psi(d(Tz,Tw)) - \varphi(d(Tz,Tw),d(Tw,Tz)). \end{split}$$

This implies that d(Tz, Tw) = 0, by the property of φ . Therefore, Tw = fw = w. This completes the proof of Theorem 3.

Example 1. Let $X = [0, +\infty)$. Let d be defined by d(x, y) = |x - y| for all $x, y \in X$. We set $fx = \frac{x}{2}$ and $Tx = \frac{x}{4}$ for all $x \in X$. It is clear that $T(X) \subset f(X)$ and (f(X), d) is a complete metric space. Define $\psi : [0, +\infty) \to [0, +\infty)$ and $\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty)$ by

$$\psi(t) = \frac{t}{2}$$
 and $\varphi(t,s) = \frac{1}{16}(t+s)$.

It is obvious that ψ and φ satisfy the hypotheses of Theorem 3. We need to show that the inequality (2.1) holds for any $x, y \in X$. First, the left-hand side of (2.1) is

$$\psi(d(Tx, Ty)) = \frac{1}{8}|x - y|.$$
(2.10)

While, the right-hand side of (2.1) is

1

$$\psi(\frac{1}{2}(d(fx,Ty) + d(fy,Tx)) - \varphi(d(fx,Ty),d(fy,Tx)) = \frac{1}{4}[|\frac{x}{2} - \frac{y}{4}| + |\frac{y}{2} - \frac{x}{4}|] - \frac{1}{16}[|\frac{x}{2} - \frac{y}{4}| + |\frac{y}{2} - \frac{x}{4}|] = \frac{3}{16}[|\frac{x}{2} - \frac{y}{4}| + |\frac{y}{2} - \frac{x}{4}|].$$
(2.11)

By symmetry of (2.10) and (2.11), and without loss of generality, we suppose that $x \ge y$. In particular, (2.10) reads

$$\psi(d(Tx,Ty)) = \frac{1}{8}(x-y).$$

We distinguish two cases:

• If $2y \ge x$. Here, we have from (2.11)

$$\psi(\frac{1}{2}(d(fx,Ty) + d(fy,Tx)) - \varphi(d(fx,Ty),d(fy,Tx))$$

$$= \frac{3}{16}[|\frac{x}{2} - \frac{y}{4}| + |\frac{y}{2} - \frac{x}{4}|] = \frac{3}{16}[(\frac{x}{2} - \frac{y}{4}) + (\frac{y}{2} - \frac{x}{4})]$$

$$= \frac{3}{64}(x+y) \ge \frac{1}{8}(x-y) = \psi(d(Tx,Ty)).$$
(2.12)

• If 2y < x. Here, we have from (2.11)

$$\psi(\frac{1}{2}(d(fx,Ty) + d(fy,Tx)) - \varphi(d(fx,Ty),d(fy,Tx))$$

$$= \frac{3}{16}[|\frac{x}{2} - \frac{y}{4}| + |\frac{y}{2} - \frac{x}{4}|] = \frac{3}{16}[(\frac{x}{2} - \frac{y}{4}) + (-\frac{y}{2} + \frac{x}{4})]$$

$$= \frac{9}{64}(x-y) \ge \frac{1}{8}(x-y) = \psi(d(Tx,Ty)). \qquad (2.13)$$

By (2.12) and (2.13), the inequality (2.1) is satisfied. Then by Theorem 3, T and f have a common fixed point, which is z = 0.

Corollary 1. Let (X,d) be a complete metric space. If $T: X \to X$ satisfies

$$\psi(d(Tx,Ty)) \le \psi(\frac{1}{2}[d(x,Ty) + d(y,Tx)]) - \varphi(d(x,Ty),d(y,Tx)), \quad (2.14)$$

for all $x, y \in X$, where

- (1) $\psi: [0, +\infty) \rightarrow [0, +\infty)$ is an altering distance function,
- (2) $\varphi : [0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty)$ is a continuous function with $\varphi(t, s) = 0$ if and only if t = s = 0, then T has a unique fixed point.

Proof. It follows by taking $f = I_X$ in Theorem 3. The uniqueness of the fixed point follows by the following: suppose u and v are fixed points of T. By (2.14), we have

$$\begin{split} \psi(d(u,v)) &= \psi(d(Tu,Tv)) \\ &\leq \psi(\frac{1}{2}[d(u,Tv) + d(v,Tu)]) - \varphi(d(u,Tv),d(v,Tu)) \\ &= \psi(\frac{1}{2}[d(u,v) + d(v,u)]) - \varphi(d(u,v),d(v,u)) \\ &= \psi(d(u,v)) - \varphi(d(u,v),d(v,u)), \end{split}$$

which implies that $\varphi(d(u, v), d(v, u)) = 0$, and by a property of φ , we get u = v. \Box

Corollary 2. Let (X, d) be a metric space. If $T, f : X \to X$ are such that $T(X) \subset f(X)$, (f(X), d) is complete and

$$d(Tx, Ty) \le \frac{1}{2} [d(fx, Ty) + d(fy, Tx)] - \varphi(d(fx, Ty), d(fy, Tx)), \quad (2.15)$$

for all $x, y \in X$, where $\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty)$ is a continuous function with $\varphi(t, s) = 0$ if and only if t = s = 0, then T and f have a coincidence point in X. Further, if T and f commute at their coincidence points, then T and f have a common fixed point.

Proof. The proof follows by taking $\psi(t) = t$ in Theorem 3.

Corollary 3. Let (X, d) be a complete metric space. If $T : X \to X$ satisfies for all $x, y \in X$

$$d(Tx, Ty) \le \frac{1}{2} [d(x, Ty) + d(y, Tx)] - \varphi(d(x, Ty), d(y, Tx)),$$
(2.16)

where $\varphi : [0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty)$ is a continuous function with $\varphi(t, s) = 0$ if and only if t = s = 0, then T has a unique fixed point.

Proof. It follows by taking $f = Id_X$ in Corollary 2. The uniqueness of the fixed point follows from Corollary 1.

Remark 1. • Corollary 1 corresponds to Corollary 2.1 of Shatanawi [18].

- Corollary 2 corresponds to Theorem 1 of Chandok [4].
- Corollary 3 corresponds to Theorem 2.1 of Choudhury [6].

Now, we extend Theorem 3 and we prove a common fixed point theorem for f-non-decreasing generalized nonlinear contraction mappings in the context of ordered metric spaces.

Definition 6 ([7]). Suppose (X, \leq) is a partially ordered set and $T, f : X \to X$. *T* is said to be monotone *f*-nondecreasing if for all $x, y \in X$,

$$fx \le fy$$
 implies $Tx \le Ty$. (2.17)

If $f = I_X$ in Definition 6, then T is monotone non-decreasing.

Theorem 4. Let (X, \leq) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let f and T are self-mappings of X such that $T(X) \subset f(X)$, f(X) is closed and T is f-non-decreasing mapping. Suppose that f and T satisfy for all $x, y \in X$, for which $f(x) \leq f(y)$

$$\psi(d(Tx,Ty)) \le \psi(\frac{1}{2}[d(fx,Ty) + d(fy,Tx)]) - \varphi(d(fx,Ty),d(fy,Tx))$$
(2.18)

where

- (1) $\psi: [0, +\infty) \rightarrow [0, +\infty)$ is an altering distance function,
- (2) $\varphi: [0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty)$ is a continuous function with $\varphi(x, y) = 0$ if and only if x = y = 0.

Also, suppose that if $\{f(x_n)\} \subset X$ is a non-decreasing sequence with $f(x_n) \to f(z)$ in f(X), then $f(x_n) \leq f(z)$ and $f(z) \leq f(f(z))$ for every n.

If there exists $x_0 \in X$ with $fx_0 \leq Tx_0$, then T and f have a coincidence point. Further, if T and f commute at their coincidence points, then T and f have a common fixed point.

Proof. Let $x_0 \in X$ such that $fx_0 \leq Tx_0$. Since $T(X) \subset f(X)$, we can choose $x_1 \in X$, so that $fx_1 = Tx_0$. Since $Tx_1 \in f(X)$, there exists $x_2 \in X$ such that $fx_2 = Tx_1$. By induction, we construct a sequence $\{x_n\}$ in X such that

$$fx_{n+1} = Tx_n.$$

Since $fx_0 \leq Tx_0$, $Tx_0 = fx_1$, so $fx_0 \leq fx_1$. T is f-non-decreasing mapping, we get $Tx_0 \leq Tx_1$. Similarly $fx_1 \leq fx_2$, $Tx_1 \leq Tx_2$, hence $fx_2 \leq fx_3$. Continuing, we obtain

$$fx_0 \le fx_1 \le fx_2 \le \dots \le fx_n \le fx_{n+1} \le \dots$$

If for some n, $Tx_{n+1} = Tx_n$, then $Tx_{n+1} = fx_{n+1}$, i.e. T and f have a coincidence point x_{n+1} , and so we have the result. For the rest, assume that $d(Tx_n, Tx_{n+1}) > 0$

for all $n \in \mathbb{N}$. By (2.18), we have

$$\begin{split} \psi(d(Tx_n, Tx_{n+1})) &\leq \psi(\frac{1}{2}[d(fx_{n+1}, Tx_n) + d(fx_n, Tx_{n+1})]) \\ &- \varphi(d(fx_{n+1}, Tx_n), d(fx_n, Tx_{n+1})) \\ &= \psi(\frac{1}{2}d(Tx_{n-1}, Tx_{n+1})) - \varphi(0, d(Tx_{n-1}, Tx_{n+1})) \\ &\leq \psi(\frac{1}{2}d(Tx_{n-1}, Tx_{n+1})) \\ &\leq \psi(\frac{1}{2}d(Tx_{n-1}, Tx_n) + \frac{1}{2}d(Tx_n, Tx_{n+1})). \end{split}$$

It follows that, for any $n \in \mathbb{N}^*$

$$d(Tx_n, Tx_{n+1}) \le d(Tx_{n-1}, Tx_n).$$

Thus $\{d(Tx_n, Tx_{n+1})\}$ is a monotone non-increasing sequence, hence it is convergent. Now, proceeding as in Theorem 3, we can prove that

$$\lim_{n \to +\infty} d(Tx_n, Tx_{n+1}) = 0.$$
(2.19)

Moreover, $\{Tx_n\}$ is a Cauchy sequence. Since $Tx_n = fx_{n+1}$ and f(X) is closed, so there exists $z \in X$ such that

$$\lim_{n \to +\infty} f x_n = f z. \tag{2.20}$$

Having in mind $\{fx_n\}$ is a non-decreasing sequence, so by (2.20) we have for every $n \in \mathbb{N}$

$$fx_n \le fz, \quad f(z) \le f(fz). \tag{2.21}$$

Having $fx_n \leq fz$, so from inequality (2.18), we have

$$\begin{split} &\psi(d(fx_{n+1},Tz)) = \psi(d(Tx_n,Tz)) \\ &\leq \psi(\frac{1}{2}[d(fz,Tx_n) + d(fx_n,Tz)]) - \varphi(d(fz,Tx_n),d(fx_n,Tz)) \\ &= \psi(\frac{1}{2}[d(fz,fx_{n+1}) + d(fx_n,Tz)] - \varphi(d(fz,fx_{n+1}),d(fx_n,Tz)). \end{split}$$

Taking $n \to +\infty$, using the continuity of ψ and φ , we get from (2.19), (2.20)

$$\psi(d(Tz, fz)) \le \psi(\frac{1}{2}d(fz, fz)) - \varphi(0, d(fz, Tz)),$$

that is, d(Tz, fz) = 0, hence Tz = fz, so z is a coincidence point of T and f.

Now suppose that T and f commute at z. Let w = Tz = fz. Then Tw = T(fz) = f(Tz) = fw. From (2.21), we have $fz \le f(fz) = fw$, so the inequality (2.18) gives us

$$\psi(d(Tz,Tw) \le \psi(\frac{1}{2}[d(fz,Tw) + d(fw,Tz)]) - \varphi(d(fz,Tw),d(fw,Tz)))$$

H. AYDI

$$= \psi(\frac{1}{2}[d(Tz, Tw) + d(Tw, Tz)]) - \varphi(d(Tz, Tw), d(Tw, Tz))$$

= $\psi(\frac{1}{2}[d(Tz, Tw) + d(Tw, Tz)]) - \varphi(d(Tz, Tw), d(Tw, Tz))$
= $\psi(d(Tz, Tw)) - \varphi(d(Tz, Tw), d(Tw, Tz)).$

This implies that d(Tz, Tw) = 0, by the property of φ . Therefore, Tw = fw = w. This completes the proof of Theorem 4.

Corollary 4. Let (X, \leq) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let f and T are selfmappings of X such that $T(X) \subset f(X)$, f(X) is closed and T is f-non-decreasing mapping. Assume that f and T satisfy for all $x, y \in X$, for which $f(x) \leq f(y)$

$$d(Tx, Ty) \le \frac{1}{2} [d(fx, Ty) + d(fy, Tx)] - \varphi(d(fx, Ty), d(fy, Tx)), \quad (2.22)$$

where $\varphi : [0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty)$ is a continuous function with $\varphi(x, y) = 0$ if and only if x = y = 0.

Also, suppose that if $\{f(x_n)\} \subset X$ is a non-decreasing sequence with $f(x_n) \to f(z)$ in f(X), then $f(x_n) \leq f(z)$ and $f(z) \leq f(f(z))$ for every n.

If there exists $x_0 \in X$ with $fx_0 \leq Tx_0$, then T and f have a coincidence point. Further, if T and f commute at their coincidence points, then T and f have a common fixed point.

 \square

Proof. It follows by taking $\psi(t) = t$ in Theorem 4.

Corollary 5. Let (X, \leq) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let $T : X \to X$ be a monotone non-decreasing mapping. Suppose that T satisfies for all $x, y \in X$, for which $x \leq y$,

$$\psi(d(Tx,Ty)) \le \psi(\frac{1}{2}[d(x,Ty) + d(y,Tx)]) - \varphi(d(x,Ty),d(y,Tx)), \quad (2.23)$$

where

- (1) $\psi: [0, +\infty) \rightarrow [0, +\infty)$ is an altering distance function,
- (2) $\varphi: [0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty)$ is a continuous function with $\varphi(x, y) = 0$ if and only if x = y = 0.

Also suppose either

- (i) $\{x_n\} \subset X$ is a non-decreasing sequence with $x_n \to z$, then $x_n \leq z$ for every *n*, or
- (ii) T is continuous.

If there exists $x_0 \in X$ with $x_0 \leq T x_0$, then T has a fixed point.

Proof. If (i) holds, then taking $f = I_X$ in Theorem 4, we get the result. If (ii) holds, then proceeding as in Theorem 4 with $f = I_X$, we can prove that $\{Tx_n\}$ is a Cauchy sequence and

$$z = \lim_{n \to +\infty} x_{n+1} = \lim T x_n = T(\lim_{n \to +\infty} x_n) = T z.$$

Hence the proof is completed.

Corollary 6. Let (X, \leq) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let $T : X \to X$ be a monotone non-decreasing mapping. Suppose that T satisfies for all $x, y \in X$, for which $x \leq y$,

$$d(Tx, Ty) \le \frac{1}{2} [d(x, Ty) + d(y, Tx)] - \varphi(d(x, Ty), d(y, Tx)),$$
(2.24)

where $\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty)$ is a continuous function with $\varphi(x, y) = 0$ if and only if x = y = 0.

Also, suppose either

- (i) If $\{x_n\} \subset X$ is a non-decreasing sequence with $x_n \to z$, then $x_n \leq z$ for every *n*, or
- (ii) T is continuous.

If there exists $x_0 \in X$ with $x_0 \leq Tx_0$, then T has a fixed point.

Proof. It follows by taking $\psi(t) = t$ in Corollary 5.

Remark 2. Corollary 6 corresponds to Theorem 2.1 and Theorem 2.2 of Harjani et al. [8].

Corollary 7. Let (X, \leq) be a partially ordered set and suppose that there exists a metric d on X such that (X,d) is a complete metric space. Let $T : X \to X$ be a monotone non-decreasing mapping. Suppose that T satisfies for all $x, y \in X$, for which $x \leq y$,

$$d(Tx, Ty) \le k[d(x, Ty) + d(y, Tx)],$$
(2.25)

where $0 < k < \frac{1}{2}$. Also, suppose either

- (i) If $\{x_n\} \subset X$ is a non-decreasing sequence with $x_n \to z$, then $x_n \leq z$ for every n, or
- (ii) T is continuous.

If there exists $x_0 \in X$ with $x_0 \leq T x_0$, then T has a fixed point.

Proof. It follows by taking $\varphi(t) = (\frac{1}{2} - k)t$ in Corollary 6.

H. AYDI

REFERENCES

- Y. I. Alber and S. Guerre-Delabriere, "Principle of weakly contractive maps in Hilbert spaces," in New results in operator theory and its applications: the Israel M. Glazman memorial volume, ser. Oper. Theory, Adv. Appl., I. Gohberg, Ed. Basel: Birkhäuser, 1997, vol. 98, pp. 7–22.
- [2] S. Banach, "Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales," *Fundamenta math.*, vol. 3, pp. 133–181, 1922.
- [3] D. W. Boyd and J. S. W. Wong, "On nonlinear contractions," Proc. Am. Math. Soc., vol. 20, pp. 458–464, 1969.
- [4] S. Chandok, "Some common fixed point theorems for generalized *f*-weakly contractive mappings," J. Appl. Math. Inform., vol. 29, no. 1-2, pp. 257–265, 2011.
- [5] S. K. Chatterjee, "Fixed point theorem," C. R. Acad. Bulgare Sci., vol. 25, pp. 727–730, 1972.
- [6] B. S. Choudhury, "Unique fixed point theorem for weakly C-contractive mappings," Kathmandu University J. Sci. Engg. Tech., vol. 5, pp. 6–13, 2009.
- [7] L. Ćirić, N. Cakić, M. Rajović, and J. S. Ume, "Monotone generalized nonlinear contractions in partially ordered metric spaces," *Fixed Point Theory Appl.*, vol. 2008, p. 11, 2008.
- [8] J. Harjani, B. López, and K. Sadarangani, "Fixed point theorems for weakly *c*-contractive mappings in ordered metric spaces," *Comput. Math. Appl.*, vol. 61, no. 4, pp. 790–796, 2011.
- [9] R. Kannan, "Some results on fixed points. ii." Am. Math. Mon., vol. 76, pp. 405–408, 1969.
- [10] R. Kannan, "Some results on fixed points," Bull. Calcutta Math. Soc., vol. 60, pp. 71–76, 1986.
- [11] M. S. Khan, M. Swaleh, and S. Sessa, "Fixed point theorems by altering distances between the points," *Bull. Aust. Math. Soc.*, vol. 30, pp. 1–9, 1984.
- [12] H. K. Nashine and B. Samet, "Fixed point results for mappings satisfying (ψ, φ) -weakly contractive condition in partially ordered metric spaces," *Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods*, vol. 74, no. 6, pp. 2201–2209, 2011.
- [13] J. J. Nieto, R. L. Pouso, and R. Rodríguez-López, "Fixed point theorems in ordered abstract spaces," *Proc. Am. Math. Soc.*, vol. 135, no. 8, pp. 2505–2517, 2007.
- [14] J. J. Nieto and R. Rodríguez-López, "Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations," *Order*, vol. 22, no. 3, pp. 223–239, 2005.
- [15] O. Popescu, "Fixed points for (ψ, φ) -weak contractions," *Appl. Math. Lett.*, vol. 24, no. 1, pp. 1–4, 2011.
- [16] A. C. M. Ran and M. C. B. Reurings, "A fixed point theorem in partially ordered sets and some applications to matrix equations," *Proc. Am. Math. Soc.*, vol. 132, no. 5, pp. 1435–1443, 2004.
- [17] B. E. Rhoades, "Some theorems on weakly contractive maps," *Nonlinear Anal., Theory Methods Appl.*, vol. 47, no. 4, pp. 2683–2693, 2001.
- [18] W. Shatanawi, "Fixed point theorems for nonlinear weakly-contractive mappings in metric spaces," *Math. Comput. Modelling*, vol. 54, no. 11-12, pp. 2816–2826, 2011.
- [19] Q. Zhang and Y. Song, "Fixed point theory for generalized φ-weak contractions," Appl. Math. Lett., vol. 22, no. 1, pp. 75–78, 2009.

Author's address

H. Aydi

Université de Sousse, Institut Supérieur d'Informatique et des Technologies de Communication de Hammam Sousse, Route GP1-4011, H. Sousse, Tunisia

E-mail address: hassen.aydi@isima.rnu.tn